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Abstract
Organizations need to ensure the quality of data that is used for analytics and to maintain its consistency across multiple
analytical and operational systems. Master data is a term that refers to domain-specific data concerning business objects,
crucial for organization operation, e.g., contracts, suppliers, employees and so on. Usually, such source data is scattered
around different applications across the organization and is of varying quality. Master Data Management (MDM) is a set of
practices, information management methods, and data management tools intended for producing accurate, consistent, and
complete master data. At the same time, data management tools play a vital role in setting up and supporting MDM-related
processes.

In this paper, we describe the Unidata platform: a toolkit for constructing MDM solutions. Its modular architecture allows
to construct solutions tailored for a specific domain and case requirements.

We start with a short introduction to MDM, discussing its aims, user-facing benefits, and approaches to working with
data. Then, we describe the architecture of the Unidata platform and present the data storage approach and query processing
algorithms. Finally, we discuss use-cases and put forward our thoughts regarding the future of MDM systems.
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1. Introduction
Contemporary companies and public institutions manage
huge volumes of data, which is now a strategic asset [1].
Data became an enabler of organization business models
and value propositions [2]. At the same time, each or-
ganization usually possesses a complex data ecosystem,
which makes it hard to make use of information con-
tained in it. For example, a recent study [3] concerning
local governmental organizations in Denmark showed
that one of the significant obstacles to using this data
is the lack of its overview. Thus, if providing even an
overview is hard, then efficient use will require much
more effort which will include ensuring data quality (du-
plicate detection and data conflict resolution), setting up
ETL pipelines, providing proper metadata management,
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tracking data lineage and so on.
Master Data Management (MDM) solutions aim to ad-

dress these technical issues by consolidating available
information while interacting with existing systems of
organization in a minimally intrusive way. As a research
discipline, MDM is an actively developing area that con-
cerns all aspects of enterprise data management practices.
Its practical counterpart is closely monitored by Gartner,
which releases yearly reviews describing established and
promising products. The recent publication of the 2nd
edition of the fundamental reference [4] describing all
aspects of MDM is also worth noting.

Large organizations that are principal customers of
MDM vendors have many individual characteristics, and,
consequently, individual pressing tasks. Therefore, by
implementing MDM they aim to fulfill these tasks, thus
adhering to the organization pull strategy [5]. The other
strategy — technology push — is essentially large-scale
adoption of a new technology based on the belief in its
usefulness instead of focusing on particular tasks at hand.
The organization pull approach significantly reduces the
cost of MDM adoption by narrowing its application area.
Moreover, its iterative nature enables progressive build-
up of MDM functionality via step-by-step incorporation
of different organization business areas. However, imple-
menting MDM in the organization pull manner requires
flexibility of the MDM toolkit used to build the solution,
and major MDM toolkits fail to provide it since initially
they were built as monolithic systems.

Usually, the structure of large organizations is the re-
sult of lengthy historical processes, which may include
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Figure 1: Approaches to handling data using an MDM solu-
tion

several acquisitions and mergers of other companies or
organizations. Another important feature of such orga-
nizations is a unique software ecosystem comprised of
core technologies from various vendors (e.g. SAP, IBM,
Microsoft). Next, specific priorities and issues of the or-
ganization should be taken into account as well. Finally,
there are various external constraints which an organi-
zation has to follow and which define the structure of
the business processes. For example, organizations in
different countries may have different rules, e.g. either a
declaratory or an authorization system.

Next, the need to fulfill specific tasks of the organi-
zation leads to a specific subset of the MDM functional-
ity of the solution being “clipped out” from an abstract
general-purpose MDM toolkit. It may be due to tuning to
organization software ecosystem or implementing spe-
cific functionality. Such functionality usually concerns
areas that border on MDM or that may be completely
external to MDM. Obviously, organizations do not want
to have functionality and code that they do not need for
the task at hand. Finally, there is a trend of implementing
various enterprise applications in the cloud in order to
lower expenses.

Multi-domain MDM, i.e. MDM covering several key
business entity areas (products, vendors, employees and
so on), is the state-of-the-art [6] approach. Aside from the
aforementioned generic domains there may be a num-
ber of business-specific ones, such as patients in case
of a hospital or an inventory of land plots managed by
forestry. Furthermore, each customer may have its own
set of domains, with its specifics. In order to support com-
binations of different domains, an MDM platform should
be able to describe them inside itself and be sufficiently
independent from any particular one.

In this paper we describe the Unidata platform — a
core technology of an industrial product line [7] that
was used to produce dozens of target MDM solutions
for large organizations. These solutions are focused on
the specific needs of organizations such as specialized
business segments, heterogeneous IT infrastructure, and
particular business tasks. The platform has received an
honourable mention by Gartner in “Magic Quadrant for

Master Data Management Solutions 2021” [8].
The architecture of the Unidata platform aims to ad-

dress the above-mentioned concerns. Its core ideas are
as follows.

1. Tune-ability. An MDM platform should be
adaptable to various software ecosystems, take
into account specific priorities and issues of the
concrete organization, and comply with external
constraints. This will ensure that target MDM
solutions meet the organization needs.

2. Component-based architecture. In order to
provide the required flexibility, the MDM plat-
form architecture has to follow the component-
based principle. The platform should consist of
modules — i.e., building blocks which can be
freely combined together in order to create ef-
ficient and specialized MDM solutions.

3. Metamodeling. A metamodel describing models
of individual areas can be used to handle combi-
nations of different domains. This will provide
the product with the required extensionability.

Building an MDM platform upon these principles
makes it possible to achieve synergy between individual
MDM instruments such as data quality, data provenance,
metadata management, and so on. That is, building a
solution from tools that are intended to work together
from the start (as opposed to integrating a set of different
tools) will result in shorter development times and solu-
tions of better quality. Furthermore, it will be possible
to deliver different versions of solutions with different
functionality (e.g. standard vs enterprise edition) and
prices. The overall idea of this approach is presented in
Figure 2. The core set of modules has been released as
an open-source version1 of the platform. It is published
under the GNU GPLv3 license.

Overall, the contributions of this paper are:

1. A description of the Unidata platform architec-
ture.

2. A discussion of data storage and processing algo-
rithms.

3. A list of use-cases and our vision of the future of
MDM.

The structure of this paper is as follows. We start with
the description of the background in Section 2. In it, we
provide basic definitions and describe user roles. Next,
in Section 3 we discuss several use-cases in order to illus-
trate benefits that can be obtained by using such systems.
All presented use cases are real and describe actual MDM
deployments that were driven by the organization pull
strategy. Section 4 contains the description of the plat-
form architecture and its modules. The way data is stored

1https://gitlab.com/unidata-community-group/unidata-
platform-deploy



Figure 2: Modular structure of the Unidata platform

and how queries are processed is discussed in Section 5.
Next, present our view on the future of MDM systems
and describe related work in Sections 6 and 7. Finally, we
conclude this paper with Section 8.

2. Background

2.1. Master Data Management
According to David Loshin [9], Master Data “are those
core business objects used in the different applications
across the organization, along with their associated meta-
data, attributes, definitions, roles, connections, and tax-
onomies”. Examples are product data, customer data,
supplier data, location data, party data, reference data,
asset data, employee data, ledger data, and vendor data.

In turn, Master Data Management is “a set of practices,
information management methods, and data manage-
ment tools to implement the policies, procedures, ser-
vices, and infrastructure to support the capture, inte-
gration, and subsequent shared use of accurate, timely,
consistent, and complete master data”.

The purpose of an MDM platform is to obtain data
from source information system(s), then process it to en-
sure data quality by, for example, performing data dedu-
plication, filling in missing values, removing outdated
information, etc. Eventually, it must obtain a golden
record for each item — an error-free version conforming
to the defined quality criteria.

How exactly data is processed is defined by the MDM
implementation architecture/style [6, 10] (sometimes
called the data hub architecture). Gartner identifies four
approaches, presented in Figure 1).

1. Registry. The hub does not contain the data itself,
instead storing only the corresponding references
(indexes). This approach is relevant for data that

cannot be copied or “moved” for various (includ-
ing legal) reasons.

2. Consolidation. Data is uploaded into the com-
mon repository on a regular basis, appropriately
processed, and then the hub itself provides data
consuming systems with access to this data. How-
ever, new data is supplied by live data source sys-
tems, i.e., new data is uploaded to the hub on a
regular basis.

3. Centralization. This architecture is very similar
to the previous one, but here the hub takes over
data upload as well: i.e., data is uploaded once,
and then all changes are performed on the hub
itself, thus turning all systems that initially were
data sources into data consumers.

4. Coexistence. This architecture implements a com-
bination of the Consolidation and Centralization
for different master data of an organization. Addi-
tionally, if some data fragments are not “movable”,
they can be handled using the Registry.

All of them are supported by the Unidata platform.

2.2. Basic definitions

Golden (master) record. According to [6], one of the
core goals of MDM systems is to create and maintain a
single version of the truth for an entity. The information
which constitutes it is stored in multiple sources and
thus, it should be assembled. All information concerning
a particular entity is called the golden record.

Data models and Metamodel. In order to support
a particular domain, the objects which the platform will
work with must be defined. A Metamodel consists of
the description of the data itself (data schema) and re-
lated procedures. For example, it is possible to add a
supplementary metamodel of data quality for a particu-
lar domain, e.g. specific duplicate detection procedures.

In other words, a metamodel specifies how individual
data models will be created and processed.

A registry is a collection of records that are related to
some entity, such as a person, an organization, etc. This
information comes from many different source informa-
tion systems. A registry has a schema which consists of
a list of its attributes and nested entities. Similarly to ta-
bles, registries can have references to other registries, e.g.
suppliers and items: each supplier can have references
to items which it sells.

A lookup table is a referential table that contains data
which is rarely changed, but at the same time frequently
used. For example, lookup tables may be created to list
countries, timezones, currencies, and so on. Similarly to
registries, lookup tables consist of attributes.

System of a Record (SOR). During the golden record
assembly process, the same attribute may turn out to be



Figure 3: Representation of the Saint-Petersburg name validity periods

stored in several sources, having different values. In this
case, either a system of a record or a conflict resolution
process should be set up. SOR is a primary data source
which contains the “true” value.

Validity Period — is an interval in which the data
describing an entity is valid. Each golden record may
have several validity periods which should be taken into
account while querying the data. Moreover, there are
two temporal dimensions: time of an event and time
of addition of this new version of information into the
system. This leads to a need for a special scheme for
managing this information.

Consider the example presented in Figure 3 which de-
scribes the history of Saint Petersburg’s name changes.
The Y-axis denotes update times, while the X-axis shows
the validity periods. In this example, we assume that
before 2019 the system contained only the basic version
of name information: from 1703 until the present time
(2019), the city was called Saint Petersburg. Then, some-
where between 2019 and 2020, the knowledge of the
Leningrad name was added into the system, and later,
somewhere before 2021, a similar update was done for
Petrograd.

A user may pose queries like “what was the name of
the city in 1921”. There are two possible answers: up
until 2020 (point 1 ) the system would have returned
“Saint Petersburg”, which was the correct answer at the
time. Currently, (point 2 ) it should output “Petrograd”.

Thus, the golden record should be constructed on-the-
fly, taking into account updates in two temporal dimen-
sions which is done by looking into the origin history
(which is discussed later).

2.3. Humans in the MDM system
From a high-level perspective, an MDM system produces
a new role for a human user — a Data Steward. According
to [9], a data steward is a person responsible for collect-
ing, collating, and evaluating issues and problems with
data and the data life cycle. Their duty includes manag-
ing standard business definitions and metadata. Finally,

a data steward is the person who is accountable for the
quality of the data. However, in practice, a data steward
is not necessarily a single person, but rather, a group of
several people. Each of them may be responsible for a dif-
ferent key business area or even a part of it. The Unidata
platform supports two types of users that implement data
stewardship:

• Administrator manages the platform in general.
Their duties include data model administration,
classifier2 administration, managing rules of du-
plicate detection and so on.

• Data operator manages records (e.g. database
population), registries and lookup tables, and par-
ticipates in related business processes.

Consequently, there are two types of interfaces, for
each type of user. Finally, Unidata platform supports role-
based access model, where each user may be assigned
rights to perform operations (e.g. CRUD) with various
objects.

3. Use Cases
All of the presented use-cases are real projects that were
completed using the Unidata platform, driven by the
organization pull strategy. They clearly illustrate the
concrete goals of organizations, as well as the benefits
the platform has provided to the final users.

They also demonstrate that each particular deploy-
ment needs a different set of data governance tools, i.e.
they highlight the importance of component-based ar-
chitecture, which we have discussed in the Introduction.

3.1. Case 1: managing logistical resources
The first case is a system for managing logistical re-
sources of a large company in the energy sector. The

2In this paper, “classifier” refers mainly to a product class hier-
archy, such as the Global Product Classification [11].



covered domains included raw materials, equipment, and
replacement parts. The purpose of this system was to:

• Provide high-quality data for business processes
that cover equipment maintenance and repairs,
inventory management.

• Consolidate available information using data stan-
dardization and unification.

Additionally, this project succeeded at automating
complex company regulations that involved more than
ten different divisions. Furthermore, a classifier of logis-
tical resources was deployed.

3.2. Case 2: product catalogue for a
telecommunication company

The next case is a product catalogue development for
a large telecommunication company. The goals of the
project were to consolidate:

• information regarding product offers for different
customer segments,

• information related to service availability,
• financial information from the billing system and

accounting records.

As the result, a product hierarchy (a product tree) that
contains various product details (including financial ones)
was constructed. It is now utilized by the sales depart-
ment and financial officers.

3.3. Case 3: data consolidation for a
transport company

This project was dedicated to consolidation of items and
services purchased by a large transport company. The
goal was to unify information contained in several dif-
ferent product classifiers and to produce a list of services
offered by contractors.

The stakeholder of this MDM solution was the procure-
ment department of the company. After the deployment,
items and services that had different prices were identi-
fied and analyzed. This resulted in creation of monetary
metrics, i.e., calculated total savings on purchases. The
system made it possible to perform automatic purchases
with the minimal available price.

This data consolidation project relied on the pub-
lish/subscribe model.

3.4. Case 4: data enrichment for a fashion
vendor

This project concerned an MDM system for a company
that sells fashion products. The system needed to per-
form client base segmentation and sales support in the
premium segment.

The aim of the system was to find those clients in the
client database that have popular social media accounts
and a lot of followers. The company wanted to improve
their loyalty by offering additional discounts and per-
forming various other actions in order to obtain more
customers from their follower bases. The core data gov-
ernance tools that were used were data enrichment and
consolidation.

3.5. Case 5: smart personal account
The goal of this project was to create a smart personal
account of a city resident. It was necessary to integrate
it with various federal and regional information systems.
The reason for this was to enable exporting relevant in-
formation concerning vehicles, real estate, bank accounts
and so on. The primary focus of this project was ac-
cess control, security, and ensuring real-time as well as
publish/subscribe model master data acquisition.

3.6. Case 6: energy and heavy industry
company

This project was developed for a multi-sector interna-
tional company focused on energy and heavy industry
areas. Since this company has hundreds of thousands of
clients from all over the world, the procedure of adding
a new client was very complicated. Before applying our
MDM solution, it took 21 days on average. However,
it has shortened to only eight days after. The solution
automatized various checks, finding final beneficiaries in
corporate hierarchies, and centralized information input.

This project mainly concerned data inventory, data
quality (duplicate search), and implementing real-time
access to master data in order to speed up a particular
business process.

4. Architecture

Now, let us turn to the architecture of the Unidata plat-
form. It follows the component-based principle, which
means its building blocks (modules) can be freely com-
bined with each other in order to obtain a solution with
the desired set of features.

4.1. Preliminaries
A module is a self-sufficient set of functionality that is
intended for solving a particular problem. Each mod-
ule contains a number of services that cover parts of
this functionality. For example, the Meta module which
encompasses all metadata-related activities contains ser-
vices that cover managing lookup tables, registries, units
of measurement, enumerations, etc.



Figure 4: Architecture of UniData Platform

Modules have rules of creation (a contract), behavior,
and they can interact with other modules via being a part
of a pipeline.

In a broad sense, a Pipeline is a sequence of operations
which are performed either on data or on the model.
Pipelines implement dataflows, which consist of service
calls and may contain utility nodes such as branching,
parallelism (applying an operation to each record inside
the batch), calling another pipeline, and so on.

Each module contains services that work with the data
and services that interact with and modify the model.
Therefore, pipelines may modify not only the data, but
the model itself too.

Thus, modules and pipelines implement tuneability
and composition aspects discussed in the Introduction
section.

4.2. Architectural Overview
The overall architecture of the Unidata platform is pre-
sented in Figure 4. It consists of four main components:

1. Platform Core contains basic modules that im-
plement core services of the platform and mini-
mally depend on other modules. These services
are: system boot, job batches, and data types.

Modules of this component are rarely modified
and are never adapted for a particular deployment
or domain.

2. Storages concern everything related to data
stores that are employed by the platform. These
modules make it possible to abstract functionality
required by the platform from the specific DBMS
and to restrict and simplify it (as not all DBMS
functionality is required by an MDM solution).

3. MDM includes all modules that implement basic
MDM functionality, such as metadata manage-
ment, rules for computing master record alterna-
tives, data quality management, duplicate detec-
tion, and business process implementation. This
component is responsible for integrating and syn-
chronizing all necessary data stores that reside
on the previous level.

4. Extra MDM implements advanced MDM func-
tionality. It contains modules that are either ad-
vanced variants of some existing module from
the MDM component, or modules that provide
functionality usually implemented “outside” of
MDM. An example of the first case is the fol-
lowing: Match Extra is a sophisticated machine
learning-based inexact match module and the



MDM match module is a straightforward exact
one. The second case is illustrated by the data
delivery set. Usually, in MDM systems the ETL
is implemented separately as a standalone appli-
cation. In our case, it is possible to have it inside
the system. The same idea is employed with the
Pub/Sub module, which make it possible to imple-
ment sophisticated patterns of sending records
to various consumers. This is an advanced com-
ponent which is not present in the open-source
version.

These components are organized in a hierarchical way,
which means that:

• components residing in the bottom levels of the
figure are more low-level, they contain basic fea-
tures, essential for implementing high-level func-
tionality, and,

• components interact with each other in hierarchi-
cal way, i.e. their interactions rarely “jump” over
the immediate neighbor.

4.3. Entities, modules, and their
relationships

In this section, we will overview core entities that the
system works with, as well as important modules and
their functionality relevant to the entities.

System. All modules that constitute the platform
share a single interface that contains methods of ini-
tialization, configuration, launch, and verification. The
system module orchestrates system boot process and
ensures that all modules have everything necessary for
trouble-free launch and operation.

Data Types. An attribute is a basic entity representing
some key aspect of a stored object, similar to attributes
in RDBMS tables. In Unidata, Registries, lookup tables
and references may have attributes.

There are three attribute types in the system:

1. Simple attribute is a basic data type which de-
scribes some entity. Its type can be: string, nu-
meric, boolean, file, date and time, reference, and
enum. Enum is a domain-specific enumeration
which describes mutually exclusive states of a
real-life entity, e.g. a subject which can be either a
legal person, a natural person, or a self-employed
person.

2. Array attribute is used to represent a series of
similar entities, such as property owners.

3. Complex attribute is used to represent nested
tree-like structures. It can contain simple at-
tributes, arrays, and other complex attributes.

The Unidata platform also supports references, which
can be of the following types:

1. Reference — a reference which ensures that for
each individual record there can be only one ref-
erenced object per each validity period.

2. Many-to-many — a classic many-to-many refer-
ence.

3. Contains — a reference which is created by user
pointing to an entity with all attributes filled in.
This type is used to define entities which do not
exist without its parent entity.

The platform lets the user browse both direct and back-
ward references (those that point to a specific record). It
also provides rich search capabilities that allow the user
to query attributes of references.

The Core module contains interfaces and abstract im-
plementations for all data types that the platform uses. It
also implements metamodel support, the need for which
was discussed in the Introduction. Finally, this module
supports additional services which may be used by other
modules such as roles, logging, license verification and
so on.

The next important entity is a draft. Drafts are an
essential part of MDM since master data needs to be
synchronized over data producers (sources) and data con-
sumers. Such synchronization frequently results in the
creation of temporary intermediates. These need to pass
various reconciliation procedures and be agreed upon in
order to become fair copies. Drafts may also emerge as a
result of conflicts that arise during record consolidation
process, after various data quality procedures, etc.

Drafts may concern individual items or the model.
Drafts can have revisions: all of them are stored in the
database in a serialized form.

Therefore, drafts need to have general support: oper-
ations such as creation, publication (transforming into
fair copy), and merge must be implemented. Draft is a
module that enables all kinds of drafts in the platform.

Logging capabilities. The Unidata platform supports
extensive and configurable logging capabilities. It is pos-
sible to record user actions such as record upsert, user
login or logout, etc. It is also possible to select the log-
ging level. Coarse-grained logging logs errors only, while
fine-grained enables the logging of search and browsing.

Storages and Adapters. For its operation, Unidata
needs a number of storages, e.g. data storage, graph
storage, match storage, and so on. In order to achieve
flexibility and independence from a particular database
vendor, a collection of adapters was implemented. For
example, the platform can use either Neo4J or OrientDB
for graph storage.

Match storage is a module that concerns data repre-
sentation for performing data deduplication. There is
a separate representation for both records and clusters
that differ from the original data by, for example, omitted
fields that do not participate in the matching. For the



deduplication itself, matching engines such as Senzing,
Elasticsearch or RDBMS can be used.

Match and Match Extra. While match storage imple-
ments basic matching functionality, this module imple-
ments deduplication in MDM entities: in the data itself,
drafts, business processes, etc. The Match Storage mod-
ule does not possess any specifics regarding these entities
and therefore separate modules are needed. These mod-
ules also let the user define deduplication procedures and
manage them. The Match module operates with rules,
while Match Extra employs various machine learning
approaches.

Workflow and Workflow Extra. In MDM, it is fre-
quently necessary to implement various business pro-
cesses that may involve various officials and span mul-
tiple departments (e.g. resolving a surname conflict in
various personal documents). To run such workflows, a
subset of the BPMN 2.0 standard that includes events, ac-
tivities, and gateways is supported. For this, integration
with several third-party engines such as Activiti BPMN
and Camunda BPMN is implemented.

Workflow Extra extends basic capability by enabling
the implementation of various scenarios involving ma-
chine learning approaches. It also provides the ability to
perform SLA enforcement for data operations.

Meta is a module that is responsible for metamodel
(schema) management such as creating and editing en-
tities (attributes, references, etc). It provides a GUI that
allows users of the MDM solution (data stewards) to work
with the metamodel while automatically generating the
corresponding API for data access.

Data Quality and Complex Data Quality. These
modules are responsible for ensuring data quality —
checking data for errors and performing data enrich-
ment. While the Data Quality component works with a
single record, Complex Data Quality may involve several
records (e.g. checking aggregate values).

The core instruments are the enrichment and valida-
tion rules. The enrichment rule enables using attributes
of other registries in order to generate new attributes of
the target registry. The validation rule does not generate
any data, instead, it generates an error if it is violated by
input. Each rule can have a number of ports which may
be either incoming or outgoing. Rules take input from
the incoming ports and produce results into the outgoing
ones.

In the UI, a user can construct rules using a special
UPath language (an XPath derivative) and a number of
pre-defined functions such as string manipulation func-
tions (case conversion, concatenation), a boolean func-
tion and so on. It is possible to upload custom rules that
are implemented in Java or Python.

Finally, rules can be grouped into sets and applied on
a per-set basis.

Classifiers. This module employs classifiers for mas-

Figure 5: Tables used for data storage in the Unidata platform

ter data. Classifiers are tree-like data structures in which
each node describes some entity and may contain vari-
ous attributes (e.g. see [11]). They are frequently used
in MDM domains, for example, to describe a hierarchy
of product types. Unidata platform enables interactions
of master data with such classifiers (e.g. arranging arriv-
ing data according to a classifier) and supports various
operations on classifiers themselves with versioning.

Data Catalog implements a comprehensive body of
knowledge concerning all data of the organization. It in-
cludes provenance, current storage location, its domain,
use, relation to other data and so on. This module is of
critical importance since an organization may have hun-
dreds of source information systems and manual tracking
of such information would be impossible.

5. Data Storage and Processing

5.1. Requirements
The specifics of the platform’s application scope lead
to the following requirements imposed on storage and
processing of the data.

1. Tombstone deletes. Information should be
deleted only when it is absolutely necessary. Real
deletions should be performed only by an admin-
istrator while regular users should not actually
delete data. Instead, if a regular user attempts to
perform a deletion, the data should be marked
as deleted and the system should take this into
account.

2. Versioning support should be pervasive. Users
and administrators should be allowed to recon-
struct previous versions of any object. At the
same time, querying using validity periods, dis-
cussed earlier in Section 2.2 should be supported.



3. Provenance (traceability) should be provided for
any operation. For example, if a bulk-loading op-
eration inserted records into a database, it should
be possible to reverse it by removing newly-
inserted records while keeping the rest.

These points should be fulfilled for all data handled by
the system, even for the manually entered.

5.2. Storage
In order to meet these requirements, an approach based
on the following three logical tables was used. Each table
represents an entity:

• Etalon is the metadata of the golden record itself.
• Origin is the metadata related to system from

which the record originates.
• Vistory (version history) is the validity period of

origin, which in turn may have revisions.

Tables describing these entities share the following
attributes.

1. Id — an unique identifier of an object.
2. Shard — an identifier of the shard where the

record resides. Each of these logical tables may
be physically represented by a collection of hori-
zontal partitions (shards).

3. Status — may be ACTIVE, INACTIVE, or
MERGED. These are used to describe the status
of the record and to support tombstone deletes.
Thus, INACTIVE means that the record was
deleted, while ACTIVE indicates that it is valid.
The MERGED status indicates records that were
used in the duplicate resolution process and no
longer contain valid information.

4. Create_date and Created_by — when and by
whom this object was created.

The relations between these tables are shown in Fig-
ure 5. The links with empty arrowheads denote “shared”
attributes and full arrowheads show PK-FK relationship.

The etalon table additionally stores:

1. Name of the registry or lookup table it refers to.
2. Update_date and update_by attributes, which

contain the date and the last user who updated
this data, respectively.

3. Operation_id attribute which contains the identi-
fier of the operation during which this record was
created. It is needed to support the provenance
requirement.

Apart from the basic set of attributes, the origins table
has the following additional ones:

1. Etalon_id — an identifier of etalon which this
origin belongs to.

2. Source_system — an identifier of the system
where this record came from.

3. External_id — an identifier of the record in the
system where this record came from.

4. Enrichment — a boolean flag which shows
whether this origin is a result of the enrichment
rule.

5. Similarly to etalon, attributes update_date and
update_by that bear the same semantics but per-
taining to this particular origin.

Finally, the vistory table contains the data itself. Its
important attributes (apart from the basic ones) are the
following:

1. Origin_id — a reference to origin whose part of
vistory is contained in this record.

2. Revision — a version number, which is needed to
ensure versioning, described in Section 5.1.

3. ValidFrom and validTo attributes — a validity pe-
riod of the vistory entry.

4. Data_b — serialized data in the XML format.
5. Operation_id attribute, similar to the one in the

Etalon table. It can be used to, for example, find
and cancel a modification action. However, in
this case, cancelling will affect only this particular
update, while in the etalon case it will cancel the
creation of the whole record.

Note that the vistory table contains no attributes con-
cerning updates, since for each update a new record is
formed. Next, setting the status attribute INACTIVE in
case of the vistory table makes it possible to mark some
validity period as “deleted”.

To illustrate the idea, in Table 1 we provide a vistory
table fragment for the city name example described in
Figure 3. There are three records and all of them belong
to a single origin. Therefore, there are no data conflicts
possible and the process of calculating the etalon data is
rather straightforward. First, it is necessary to perform a
cross-product of all time periods, and then to select the
row that fits the necessary combination of creation and
queried dates. The result of the period cross-product for
the considered example is shown in Table 2. Thus, it is
possible to find an answer for points 1 – 4 .

Finally, there are complex rules of attribute interaction
inside the etalon −→ origin −→ vistory hierarchy. For
example, if adding a new revision of a particular origin
leads to a recalculation of the etalon, then its update time
is recalculated too. Next, status updates are propagated
in a bottom-up fashion: e.g. if INACTIVE is set for a
vistory entry, then its etalon will have to be recalculated
and may have to be set INACTIVE too. However, if etalon
is set INACTIVE, then there is no need to set all vistory



Table 1
Vistory representation of the city name example from Figure 3

city_name rev validFrom validTo createDate

Saint-Petersburg 1 27.05.1703 31.12.9999 01.01.2018
Leningrad 2 26.01.1924 6.09.1991 01.06.2019
Petrograd 3 1.09.1914 26.01.1924 01.06.2020

Table 2
Validity periods calculation

city_name rev validFrom validTo createDate

Saint-Petersburg 1 27.05.1703 1.09.1914 01.01.2018
Petrograd 2 1.09.1914 26.01.1924 01.06.2020
Leningrad 3 26.01.1924 6.09.1991 01.06.2019
Saint-Petersburg 1 6.09.1991 31.12.9999 01.01.2018

entries INACTIVE since they will never be reachable for
queries.

The same approach is used to represent not only
records, but other entities as well, e.g. references and
classification results. It is possible to create a golden
record for a reference. Consider a case where a reference
has two origin systems, and in the first system, there is a
𝑠𝑒𝑡1 of values and in the second a 𝑠𝑒𝑡2. Using the BVR
or BVT algorithm, it is possible to create a golden record,
by, for example, intersecting them.

5.3. Query Processing: BVR and BVT
algorithms

Each vistory entry has a date of creation and a valid-
ity period, which are used to construct golden records,
as was demonstrated in the previous section. However,
what if there are two origin systems which have the same
attribute and there is a data conflict, i.e. each system re-
ports different values? In other words, how is a SOR
selected for this attribute?

For this, two special algorithms — the BVR (Best Value
Record) and BVT (Best Value of the Truth) — were de-
vised. The BVR algorithm is used to construct a golden
record by resolving data conflicts for all attributes of an
etalon using a set of thresholds, one for each origin sys-
tem. The general idea of this algorithm is to pick values
from source systems that have higher weights.

More formally, the BVR algorithm is as follows.

1. For each origin obtain its latest version, except
the ones that have the MERGED status.

2. For each source_system select the latest version
according to its creation_date.

3. The golden record will be created out of the
record that pertains to the source_system with
the maximum weight.

The BVT algorithm is used to construct the golden
record when system administrator wishes to form it on a
per-attribute basis.

The algorithm itself is as follows:

1. Similarly to the BVR, obtain the latest version for
each origin, except origins that have the MERGED
status.

2. For each attribute sort obtained versions accord-
ing to the weights of sources and update_date

3. Compute values of each attribute by iterating over
versions obtained on the previous step:

a) if the value of the attribute is not null, then
use it for etalon construction.

b) otherwise, proceed to the next iteration.

Note that BVT algorithm is meant to be more robust
to null values and therefore handles them differently.

To illustrate both algorithms, let us consider the exam-
ple presented in Table 3. In this table, we denote entities
selected on each step in bold. The first seven rows con-
tain the data itself. Note that for presentation purposes
we have joined all three tables that contain it.

Our first step (regardless of the selected algorithm) is
to select most recent vistories for each origin, which is
done inside the DBMS. Rows 15–16 contain the answer.

On the second step it is necessary to compute valid-
ity periods, which is done in Java code (all consequent
computations are performed in Java code, too). Applying
cross-product to validFrom and validTo attributes, we ob-
tain three periods: (1989–2000), (2000–2005), (2005–9999).
Rows 20–23 contain our data partitioned by validity pe-
riods.

One can note that there is a data conflict, namely, rows
20 and 23 concern the same period and contain different
values. Periods of rows 21 and 22 do not have alternatives
and therefore may be used as is.

In order to resolve the conflict, the BVR algorithm will
require weights of source systems. Suppose that they are
as follows: source1 = 50, source2 = 100. In this case, the
record on row 32 will be selected with all its attributes.

The BVT algorithm will additionally require a set of
attribute weights. In this example, we have weights for
a single attribute — year_of_birth, which are as follows:
source1 = 100, source2 = 50.

These attribute weights are used to override source
weights that act over the whole record. Therefore, the
year_of_birth attribute will be set as 1991, while name
attribute will be set as John.

The BVT algorithm additionally follows the “null is
not a value” rule. It never picks null value, even if it has
to according to an attribute rule. This is why we select
Saint-Petersburg in the city attribute. At the same time,



Table 3
BVT and BVR illustration

1 Initial data
2 etalon_d origin_d source_system name city year_of_birth validFrom validTo rev create_date
3 etalon1 origin1 source1 John Moscow 1991 2000 9999 1 9.11.2021
4 etalon1 origin1 source1 John Saint-Petersburg 1991 2000 9999 2 10.11.2021
5 etalon1 origin2 source2 John 1992 1989 2005 1 8.11.2021
6 etalon1 origin2 source2 John 1993 1989 2005 2 11.11.2021
7 1. Selecting actual vistories
8 etalon_d origin_d source_system name city year_of_birth validFrom validTo rev create_date
9 etalon1 origin1 source1 John Moscow 1991 2000 9999 1 9.11.2021
10 etalon1 origin1 source1 John Saint-Petersburg 1991 2000 9999 2 10.11.2021
11 etalon1 origin2 source2 John 1992 1989 2005 1 8.11.2021
12 etalon1 origin2 source2 John 1993 1989 2005 2 11.11.2021
13 Result
14 etalon_d origin_d source_system name city year_of_birth validFrom validTo rev create_date
15 etalon1 origin1 source1 John Saint-Petersburg 1991 2000 9999 2 10.11.2021
16 etalon1 origin2 source2 John 1993 1989 2005 2 11.11.2021
17 2. Calculation of the validity periods.
18 Using cross-product to obtain the following periods: (1989-2000), (2000-2005), (2005-9999). Result in the vistory form:
19 etalon_d origin_d source_system name city year_of_birth validFrom validTo rev create_date
20 etalon1 origin1 source1 John Saint-Petersburg 1991 2000 2005 2 10.11.2021
21 etalon1 origin1 source1 John Saint-Petersburg 1991 2005 9999 2 10.11.2021
22 etalon1 origin2 source2 John 1993 1989 2000 2 11.11.2021
23 etalon1 origin2 source2 John 1993 2000 2005 2 11.11.2021
24 3. Calculation of the golden record.
25 Records participating in consolidation:
26 etalon_d origin_d source_system name city year_of_birth validFrom validTo rev create_date
27 etalon1 origin1 source1 John Saint-Petersburg 1991 2000 2005 2 10.11.2021
28 etalon1 origin2 source2 John 1993 2000 2005 2 11.11.2021
29 Example 1: BVR. BVR settings: source1 = 50, source2 = 100.
30 etalon_d origin_d source_system name city year_of_birth validFrom validTo rev create_date
31 etalon1 origin1 source1 John Saint-Petersburg 1991 2000 2005 2 10.11.2021
32 etalon1 origin2 source2 John 1993 2000 2005 2 11.11.2021
33 Example 2: BVT. BVT Settings: year_of_birth: source1 = 100, source2 = 50
34 etalon_d origin_d source_system name city year_of_birth validFrom validTo rev create_date
35 etalon1 origin1 source1 John Saint-Petersburg 1991 2000 2005 2 10.11.2021
36 etalon1 origin2 source2 John 1993 2000 2005 2 11.11.2021

this rule is absent in the BVR case, as was demonstrated
in row 31.

Note that we have computed data for the period that
had data conflicts, but the considered golden record spans
multiple periods. The overall result for both algorithms
that includes data for all periods is shown in Table 4.

6. Beyond MDM
Despite recent significant technological advances, hu-
man approaches to handling information have not really
changed. This is also true in case of MDM systems, in
which interaction scenarios have stayed the same. Users
still have to think about data layouts and procedures,
e.g., define registries and referential tables, set up data
pipelines and so on. In other words, people solve prob-

lems in an imperative way, specifying everything that
needs to be done in order to obtain answers. This ap-
proach requires a lot of effort, which often comes in the
form of duplicated work since processes share a large
degree of similarity in many organizations.

At the same time, humans think in terms of problems
such as: “Why did sales drop in the last quarter?” or
“How did the introduction of the new discount system
impact profits?”. A declarative approach would suit these
problems better, and thus there is a need for it.

There are two possible ways to achieve it — exhaus-
tive standardization and machine learning. The former
is very challenging since there are too many details that
should be reflected inside the standards. Companies and
public institutions exist all over the world and each has
to conform to various local and international regulations.
Standardizing them all will either require a coordinated



Table 4
BVT and BVR result comparison

BVR
etalon_id name city year_of_birth validFrom validTo
etalon1 John 1993 1989 2000
etalon1 John 1993 2000 2005
etalon1 John Saint-Petersburg 1991 2005 9999
BVT
etalon1 name city year_of_birth validFrom validTo
etalon1 John 1993 1989 2000
etalon1 John Saint-Petersburg 1991 2000 2005
etalon1 John Saint-Petersburg 1991 2005 9999

effort of multiple governmental entities or lead to im-
mense labor costs required to pay the workers who will
perform this standardization.

Machine learning, on the other hand, will incur smaller
costs and will not depend on any external collaboration.
While a full-fledged AI with a natural language interface
is a very distant vision, machine learning has already
been successfully adopted in individual components of
MDM systems. For example, semantic column type de-
tection [12, 13, 14], database schema matching [15], du-
plicate detection [16, 17, 18], and various types of table
autocompletion [19, 20].

Another promising direction is digital storytelling [21,
22, 23] — automatically extracting and presenting facts
contained in the data in a human-friendly way. Employ-
ing such techniques will lower the qualification require-
ments and open analytics to broader public.

There is also a novel class of so-called visual analyt-
ics [24, 25] systems that contain collaborative tools that
allow users to employ various visualization primitives,
machine learning models, and other objects. These are
dragged onto a dashboard and connected to each other
in order to construct pipelines. Thus, machine learning
will be present not only inside such systems, but outside
as well, i.e. allow users to build and use custom machine
learning models inside their decision-making pipelines.

7. Related Work
The established MDM market vendors [8] such as IBM,
SAP, Informatica and others offer a wide range of prod-
ucts for the creation of all types of MDM systems.

However, their toolkits 1) were largely started as mono-
lithic products, 2) are heavily oriented towards vendors’
infrastructure, 3) are frequently proprietary software
which is not open-sourced. While the monolithic ap-
proach greatly simplifies architecture, it has a number
of drawbacks, such as hindering extension-ability and
thus making open-sourcing largely useless. Vendor ori-
entation is not necessarily a bad thing, but the need to
cope with a systems zoo requires modern MDM products

to be flexible in terms of the used DBMS, search, BPMN
implementation and so on. Not every customer is will-
ing to add more dependencies, which may also require
additional expenses.

However, the next generation of MDM toolkits such as
Egeria3, Fuyuko4, AtroCore MDM5 and many others offer
open-sourced versions and actively attempt to implement
a modular architecture.

The reason for this are changes in the MDM landscape
and emerging requirements. The contemporary environ-
ment favors, if not requires modular and open products.
Cloud-ready systems have become mainstream, and these
properties are a must in ensuring extension-ability.

Finally, aiming for the organization pull strategy, one
must prefer the latter approach, since such applications
require increased flexibility. The Unidata platform aims
for this niche and is therefore modular, open-source and
extension-able.

8. Conclusion
In this paper we have presented the Unidata platform —
a software product line intended for the creation of vari-
ous MDM solutions. We have described its architecture,
use-cases, data storage and query processing algorithms.
Finally, we have shared our vision regarding the future
of MDM systems.

Acknowledgments
We would like to thank Alexander Konstantinov and Ro-
man Strekalovsky for their comments. We would also
like to thank Anna Smirnova for her help with the prepa-
ration of the paper.

3https://github.com/odpi/egeria
4https://github.com/tmjeee/fuyuko
5https://github.com/atrocore/atrocore

https://github.com/odpi/egeria
https://github.com/tmjeee/fuyuko
https://github.com/atrocore/atrocore


References
[1] V. Khatri, C. V. Brown, Designing data governance,

Commun. ACM 53 (2010) 148–152. URL: https:
//doi.org/10.1145/1629175.1629210. doi:10.1145/
1629175.1629210.

[2] M. Jagals, E. Karger, F. Ahlemann, Already grown-
up or still in puberty? a bibliometric review of
16 years of data governance research, Corporate
Ownership & Control 19 (2021) 105–120.

[3] O. B. Nielsen, et al., Why governing data is diffi-
cult: Findings from danish local government, in:
Smart Working, Living and Organising, Springer
International Publishing, Cham, 2019, pp. 15–29.

[4] D. International, DAMA-DMBOK: Data Manage-
ment Body of Knowledge (2nd Edition), Technics
Publications, LLC, Denville, NJ, USA, 2017.

[5] R. W. Zmud, An Examination of ’Push-Pull’ The-
ory Applied to Process Innovation in Knowledge
Work, Management Science 30 (1984) 727–738.
URL: https://www.jstor.org/stable/2631752, pub-
lisher: INFORMS.

[6] M. Allen, D. Cervo, Multi-Domain Master Data
Management: Advanced MDM and Data Gover-
nance in Practice, 1st ed., Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2015.

[7] Software Product Lines. Carnegie Mellon
Software Engineering Institute Web Site.,
https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=513819, 2022.

[8] Walker S., Parker S, Hawker M., Radhakrish-
nan D., Dayley A., Magic Quadrant for Master
Data Management. Gartner. ID G00466922.,
https://www.gartner.com/en/documents/
3995999/magic-quadrant-for-master-data-
management-solutions, 27 January 2021.

[9] D. Loshin, Master Data Management, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2009.

[10] Andrew White. The Five Vectors of Complexity
That Define Your MDM Strategy. ID: G00276267.,
https://www.gartner.com/en/documents/
3038017/the-five-vectors-of-complexity-that-
define-your-mdm-stra, 27 April 2015.

[11] Global Product Classification (GPC). GS1 Web Site.,
https://www.gs1.org/standards/gpc, 2022.

[12] M. Hulsebos, et al., Sherlock: A deep learning ap-
proach to semantic data type detection, in: Pro-
ceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Min-
ing, KDD ’19, 2019, p. 1500–1508.

[13] X. Deng, et al., Turl: Table understanding through
representation learning, Proc. VLDB Endow. 14
(2020) 307–319.

[14] D. Zhang, et al., Sato: Contextual semantic type
detection in tables, Proc. VLDB Endow. 13 (2020)

1835–1848.
[15] T. Sahay, A. Mehta, S. Jadon, Schema matching us-

ing machine learning, CoRR abs/1911.11543 (2019).
arXiv:1911.11543.

[16] N. Barlaug, J. A. Gulla, Neural networks for entity
matching: A survey, ACM Trans. Knowl. Discov.
Data 15 (2021).

[17] W.-C. Tan, Deep data integration, in: Proceedings
of the 2021 International Conference on Manage-
ment of Data, SIGMOD/PODS ’21, Association for
Computing Machinery, New York, NY, USA, 2021,
p. 2.

[18] Y. Li, et al., Deep entity matching: Challenges and
opportunities, J. Data and Information Quality 13
(2021).

[19] S. Zhang, K. Balog, Web table extraction, retrieval
and augmentation, in: B. Piwowarski, M. Cheva-
lier, É. Gaussier, Y. Maarek, J. Nie, F. Scholer (Eds.),
Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in In-
formation Retrieval, SIGIR 2019, Paris, France, July
21-25, 2019, ACM, 2019, pp. 1409–1410.

[20] S. Zhang, K. Balog, Web table extraction, retrieval,
and augmentation: A survey, ACM Trans. Intell.
Syst. Technol. 11 (2020).

[21] F. El Outa, et al., Towards a conceptual model for
data narratives, in: Conceptual Modeling, Springer
International Publishing, Cham, 2020, pp. 261–270.

[22] P. Vassiliadis, P. Marcel, S. Rizzi, Beyond roll-
up’s and drill-down’s: An intentional analytics
model to reinvent OLAP (long-version), CoRR
abs/1812.07854 (2018). arXiv:1812.07854.

[23] P. Vassiliadis, P. Marcel, S. Rizzi, Beyond roll-
up’s and drill-down’s: An intentional analytics
model to reinvent OLAP, Inf. Syst. 85 (2019) 68–
91. URL: https://doi.org/10.1016/j.is.2019.03.011.
doi:10.1016/j.is.2019.03.011.

[24] E. Wu, Systems for human data interaction
(keynote), in: D. Mottin, et al. (Eds.), Proc of
the 2nd Workshop on Search, Exploration, and
Analysis in Heterogeneous Datastores (SEA-Data
2021@VLDB’21), 2021.

[25] Z. Shang, et al., Davos: A system for interactive
data-driven decision making, Proc. VLDB Endow.
14 (2021) 2893–2905.

https://doi.org/10.1145/1629175.1629210
https://doi.org/10.1145/1629175.1629210
http://dx.doi.org/10.1145/1629175.1629210
http://dx.doi.org/10.1145/1629175.1629210
https://www.jstor.org/stable/2631752
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819
https://www.gartner.com/en/documents/3995999/magic-quadrant-for-master-data-management-solutions
https://www.gartner.com/en/documents/3995999/magic-quadrant-for-master-data-management-solutions
https://www.gartner.com/en/documents/3995999/magic-quadrant-for-master-data-management-solutions
https://www.gartner.com/en/documents/3038017/the-five-vectors-of-complexity-that-define-your-mdm-stra
https://www.gartner.com/en/documents/3038017/the-five-vectors-of-complexity-that-define-your-mdm-stra
https://www.gartner.com/en/documents/3038017/the-five-vectors-of-complexity-that-define-your-mdm-stra
https://www.gs1.org/standards/gpc
http://arxiv.org/abs/1911.11543
http://arxiv.org/abs/1812.07854
https://doi.org/10.1016/j.is.2019.03.011
http://dx.doi.org/10.1016/j.is.2019.03.011

	1 Introduction
	2 Background
	2.1 Master Data Management
	2.2 Basic definitions
	2.3 Humans in the MDM system

	3 Use Cases
	3.1 Case 1: managing logistical resources
	3.2 Case 2: product catalogue for a telecommunication company
	3.3 Case 3: data consolidation for a transport company
	3.4 Case 4: data enrichment for a fashion vendor
	3.5 Case 5: smart personal account
	3.6 Case 6: energy and heavy industry company

	4 Architecture
	4.1 Preliminaries
	4.2 Architectural Overview
	4.3 Entities, modules, and their relationships

	5 Data Storage and Processing
	5.1 Requirements
	5.2 Storage
	5.3 Query Processing: BVR and BVT algorithms

	6 Beyond MDM
	7 Related Work
	8 Conclusion

