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Abstract  
The purpose of this work is to dedicate to the improvement of the automatic control system 
for helicopters aircraft engines by dividing the control object into actuating mechanism and 
gas turbine engine. This allows you to take into account the dynamics of the executive part of 
the system and the engine, it becomes possible to use the mismatch between parts of the 
structural diagram of the automatic control system, thereby increasing the reliability and 
stability of the system in various modes. As a hardware-software implementation of the 
automatic control system for helicopters aircraft engines, it is proposed to use a self-tuning 
neural network control system for multiply connected dynamic objects, the adaptation of 
which as a modified neural network controller of helicopters aircraft engines by introducing 
an integrator into the system structure made it possible to bring the graph of the real transient 
process in the engine closer to the ideal one, thereby increasing the reliability and stability of 
the system in various modes.  
 
Keywords  1 
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1. Introduction 

The process of ensuring the stability of the operation parameters of helicopters aircraft turboshaft 
engines (TE) by maintaining the required (stable) compressor rotor speed and the dosage of fuel 
supply to the combustion chamber has always been a difficult task. Of particular difficulty are the 
launch modes and transient modes of engine operation, taking into account external factors (the 
impact of atmospheric conditions and aircraft flight modes). In view of this, automatic control 
systems (ACS) are used to adjust the engine [1, 2]. The values of engine thermogasdynamic 
parameters required for helicopter flight and the reliable and stable operation of the power plant over 
the entire range of operating conditions are ensured with appropriate engine adjustment carried out by 
the ACS. It establishes and maintains some relationships between engine parameters. This regulation 
is formed taking into account the requirements for specific fuel consumption and other 
thermogasdynamic parameters, strength limitations, the required accuracy of maintaining parameters, 
and other factors [3, 4]. 

At present, the ACS of TE that implement the specified control laws are subject to rather stringent 
requirements both for permissible deviations of parameters in steady-state operating modes and for 
dynamic errors during transients [5]. The ACS for helicopters TE is no exception. As a rule, the 
following requirements are imposed of TE ACS: high accuracy of maintaining the specified 
parameters; minimal complexity of technical execution; the possibility of switching from one mode to 
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another (when performing a maneuver) without reducing the quality of control. To fulfill all the above 
requirements, it is necessary to create a new approach to the choice of the ACS structure, the 
synthesis of control methods and their technical implementation. This statement is based on the 
analysis of the results of full-scale tests and previous theoretical studies. 

2. Literature review 

Modern methods and experience in development automatic control systems for gas turbine engines 
originate in the works of scientists, for example, A. Shevyakov, S. Sirotin, O. Gurevich, F. Golberg, 
O. Selivanov, G. Dobryansky, V. Dedesh, V. Rutkovsky, S. Zemlyakov, B. Petrov, B. Cherkasov, 
V. Avgustinovich, Yu. Gusev, F. Shaimardanov, B. Ilyasov, V. Vasiliev, G. Kulikov, Yu. Kabalnov, 
V. Krymsky, V. Efanov and others. Problems of scientists from foreign universities, research 
organizations and firms involved in the creation of dynamic objects, engines and airborne equipment. 

In many practical cases, it becomes necessary to automate processes occurring in complex 
dynamic systems, which include several subsystems that are interconnected and interact with each 
other [6]. The characteristic properties of such systems are non-linearity, multidimensionality, multi-
connectivity and multifunctionality, i.e., during normal operation, both the layout of the system and 
the dynamic properties of the separate subsystems themselves change [7]. Examples of such modern 
systems are multi-connected automatic control systems (MCAS) for complex dynamic objects, such 
as aircraft gas turbine engine, power complexes, synchronous generators, and so on. According to the 
American company Honeywell, which analyzed the operation of more than 100000 control loops in 
350 production processes, about 49 % of the control loops are configured incorrectly or erroneously 
[8]. The main difficulty in this case lies in ensuring the stability and the desired quality of functioning 
of both the MCAS as a whole and its separate subsystems in various operating modes [9]. Therefore, 
achieving the desired quality of functioning of a multiply connected system is an urgent practical and 
theoretical task. In the article, to solve this problem, it is proposed to use logical controllers in 
separate channels. 

In modern MCAS, to improve the dynamic properties, nonlinear elements and connections are 
often used, implemented in the form of nonlinear controllers [10]. The use of nonlinear algorithms 
significantly expands the possibilities of purposefully changing the quality of control processes, and 
also improves the dynamic and static properties of the system [11]. 

Among this class of regulators, regulators with logical switching of transmission coefficients either 
in a direct circuit or in a feedback circuit are widely used [12]. Switching in such systems occurs at 
certain ratios of the coordinates of the system, which are determined by the logical control law. There 
are many different logical control laws [13–15], which have in common that switching occurs 
depending on the value of the error coordinate ε(t) and its derivative ε'(t). However, these logic 
control laws are developed for systems with one input and output, and do not take into account the 
mutual influence of separate channels, which is typical for MCAS. And also, for them it is necessary 
to calculate the values of the coefficients each time when the parameters of the control object change 
to ensure high quality control. Under these conditions, the use of the apparatus of neural networks is 
appropriate. 

3. Synthesis of a multidimensional neural network controller for helicopters 
aircraft turboshaft engines 

It is assumed that the dynamic properties of helicopters aircraft TE as multidimensional control 
objects are described by the following differential equations "input-output": 

        1 1, ,..., ; , ,..., ;n n n n   Y Y Y U U U       (1) 

where       1 2, ,...,
T

Nu t u t u tU ,       1 2, ,...,
T

NY y t y t y t  – respectively, vectors of inputs 

(control actions) and outputs (controlled variables); m and n – maximum orders of derivatives  i
ku , 



 j
ey  for input and output variables uk(t) and ye(t), (m ≤ n); N – number of engine control channels, 

that is, the dimension of the ACS; φ(∙) – nonlinear vector function. 
It is also considered that for helicopters aircraft TE, the condition of observation and control is 

made [16]. In [17–19], a block diagram of a multidimensional ACS for helicopters aircraft TE (using 
the TV3-117 aircraft engine as an example) is proposed with the inclusion of N integrators (I) in the 
system – one in each of the N channels of the control system (fig. 1), implemented in in the form of a 
multi-mode neural network controller using a dynamic recurrent neural network based on a 
perceptron (fig. 2), which provides control of the object (1), subject to the following requirements for 
the synthesized ACS: 

– astatism (zero static error); 
– physical implementation of the neural network controller; 
– stability and given quality of control processes on a fixed set of modes М = {М1, ..., МR} of engine 

operation; 
– minimum complexity of the multidimensional neural network controller. 
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Figure 1: Structural diagram of the multidimensional ACS of helicopters aircraft TE 
 

The requirement of astaticism of a multidimensional ACS is reduced to the inclusion of N integrators (I) 
in the system – one in each of the N channels of the control system. Then for the circuit in fig. 1 can be 
accepted: 

   0
1

;
1

i i

T
V z E z

z



        (2) 

where i = 1, 2, …, N; z–1 – time shift operator, one cycle delay T0; 0
11

T

z
 – integrator discrete 

transfer function. 
The requirement of the physical capability of the neural network controller to be implemented is 

based on the assumption that a dynamic recurrent neural network based on a perceptron is taken as a 
neural network (fig. 2). 
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Figure 2: Multimode neural network controller based on perceptron 



The neural network controller has N inputs and N outputs, including  
1

N

i i
i

N p q


   neurons in the 

input layer, σ neurons in the common hidden layer, and N neurons in the output layer, the connections 

between which are carried out using adjustable (training) weights Wαβ, Wβ (α = 1, 2, …,  
1

N

i i
i

N p q


  ; 

β = 1, 2, …, Nσ). It is obvious that the number of neurons in the hidden layer σ must satisfy the 
constraints σ > N (otherwise, it is impossible to provide independent formation of control actions u1, 
u2, ..., uN when changing the neural network inputs v1, v2, ..., vN) [17–19]. The total number of 
unknown parameters of the neural network controller, that is, the number of adjustable neural network 
weights, is: 

 
1

2 .
N

P i i
i

K N p q


 
   

 
        (3) 

To ensure stability on a given set of М1, …, МR modes of operation of helicopter aircraft TE ACS, 
it is necessary to fulfill the following relationship between the values of pi, qi, σ, п, R and N: 

   
1 1

2 ;
N N

i i
i i

N p R q R N n 
 

 
     

 
        (4) 

from which it is possible to determine the unknown integer values pi, qi and σ, which determine the 
structure of the neural network controller. 

To fulfill the requirement of the minimum complexity criterion, it is assumed that the complexity 
of the neural network controller is determined by the number of adjustable neural network parameters 
(KP), the desired solution to the structural synthesis problem based on the minimum complexity 
criterion should be considered a neural network controller described by a set of numbers 

1 1,..., ; , ..., ;N Np p q q   minimizing the value of the objective function (3) when executing the 

constraint (4). 
For helicopters aircraft TE, the vector of inputs (control actions) has the form: 

U = (GT)T;        (5) 
where GT – fuel consumption, and the state vector and the vector of outputs (controlled variables) of 

the engine are written, respectively, as X = (x1, x2)
T and  *,ТC Gn TY , where nТC – gas generator 

r.p.m.; *
GT  – gas temperature in front of the compressor turbine. 

The block diagram of the ACS is shown in fig. 3, where Dn and DT – sensors gas generator r.p.m. 
and gas temperature in front of the compressor turbine; 

TGAct  – actuator that provides the formation 

of actions along the coordinate TG ; 
00 *,

T

ТC Gn T   
 

G  – vector of settings (given influences); 
0
ТCn  and 

0
*

GT  – required (tasks) values gas generator r.p.m.; *
GT  – gas temperature in front of the compressor 

turbine. 
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Figure 3: Structural diagram of synthesized ACS for helicopters aircraft TE 



4. Modification  of  automatic  control  system  for  helicopters  turboshaft 
engines 

According to the concept developed in [20], the actuating mechanism (AM) and TE were 
considered as a single whole: an invariable part of the system. This approach has proven itself in the 
synthesis of TE control algorithms for helicopters of civil aviation or transport aviation. For such 
control objects, the dynamic processes in the fuel system proceed much faster than in the engine; 
therefore, their influence on TE was simply neglected. But in TE, transient processes in the fuel and 
engine assembly occur almost simultaneously. This statement has been repeatedly confirmed by the 
results of full-scale tests [21]. On the basis of the foregoing, we single out the TE and AM directly 
into separate links – the fuel metering unit (FMU) and modify the structural diagram of the ACS 
shown in fig. 1 (fig. 4). 
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Figure 4: Structural diagram of a modified multidimensional ACS of helicopters aircraft TE with a 
divided control object on FMU and TE 
 

When conducting a simple study of the operation of the ACS TE, which consists in various 
combinations of parameters for transfer functions for TE and FMU, it was found that the quality of 
control (accuracy, overshoot, stability margins) changes dramatically when switching from mode to 
mode. Thus, the task of analyzing the quality of control and synthesizing control algorithms for 
objects of this class becomes very relevant. 

In this paper, the ACS of TE is studied and the quality of control is analyzed taking into account 
the dynamics of the FMU and TE. Consider the automatic control system of the gas turbine engine 
shown in fig. 4. The system consists of a comparison element (CE), a regulator, FMU and TE. The 
initial value of r.p.m. and gas temperature in front of the compressor turbine and the obtained values 
of the number of these parameters are received at the input of the CE, the inconsistency of the 
incoming parameters is formed at the output and the system error is formed – ξ [20, 21]. The error is 
fed to the input of the controller, the signal u is generated at the output, which is fed to the input of the 
FMU, the signal of fuel consumption GT is generated at the output, which is fed to the input of TE 
and, accordingly, the signal Y is generated, which is fed to the input of the CE. Taking into account 
that in the proposed ACS scheme of TE the control object was divided, it is advisable to introduce 
nonlinear models separately for the TE and FMU and simulate the operation of the system, taking into 
account the dynamics of its elements. In order to investigate the above-described ACS TE, it is also 
proposed to introduce mathematical models of the FMU and TE into the structure of the system in 
order to improve the quality of control of the entire system as a whole [20, 21]. 

On fig. 5 shows the ACS TE scheme developed in this work. In the logical block (LB) the input 
signals are analyzed as follows: a knowledge base is built on the basis of experimental data and 
conclusions. In relation to it, membership functions are formed for the input parameters of the LB, as 
well as output signals [22]. Having formed the necessary change, the LB sends response signals to the 
input of the comparison element, forming a control signal that is fed to the input of the FMU and its 
model. The LB receives two signals: the inconsistency of the FMU and TE models with the FMU and 
TE models – model error (ξmod) and the inconsistency of the FMU with the FMU model – FMU error 
(ξFMU). As practice shows, the TE error is small and is not taken into account in the course of the 
study. 
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Figure 5: Proposed ACS TE, including the regulator, FMU, TE, FMU model, TE model and LB 

5. Mathematical  description  of  helicopters  aircraft  turboshaft  engines 
automatic control system 

Synthesis of one channel of the automatic control system. 
Professor Valery Petunin made a significant contribution to the synthesis of logical-dynamic 

systems of automatic control of gas turbine engines based on the coordination and adaptation of 
control channels [23–27]. According to [23], the block diagram of a separate channel of ACS TE has 
the form of fig. 6. 
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Figure 6: Structural diagram of a separate ACS channel 
 

The transfer function of a closed ACS is determined by the expression: 

     
     

.
1

CD TE

CD TE MD

W p H p
p

W p H p W p


 

  
      (6) 

The transfer function of the measuring device must be equal to unity, i.e., WMD(p) = 1. Let us 
equate the transfer function of the closed system to the transfer function of the desired system Ф*(р), 

i.e., Ф(р) = Ф*(р), then      
     

*

1
CD TE

CD TE MD

W p H p
p

W p H p W p


 

  
. After transformations, we obtain the 

following expression for the transfer function of the control device [24]: 

 
 
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*

*

1
;

1CD
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p
W
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
 


       (7) 

where 
 

1

TEH p
 – inverse transfer function of the control object; 

 
 

*

*1

p

p




 – desired open-loop 

transfer function. 



For one channel, the GTE transfer function    
 TE TE

A p
H p k

B p
  , then 

 
 
 

1 1

TE TE

B p

H p k A p
  . If an 

open-loop transfer function W*(p) is required: 

   
   

*
*

*
;

1

p k
W p

p p C p


 

 
         (8) 

where 
k

p
– determines system astatism, and 

 
1

C p
 – its inertia, then the transfer function of the 

control device will take the form: 

 
   

1
.CD

TE

B p k
W

k A p p C p
  


       (9) 

In the ACS of complex technical objects, professor Valery Petunin proposed the implementation 
of a common isodromic controller [23] with a transfer function: 

   
 

1
;ІC ІC

ІC

k T p
W p

p C p

  



     (10) 

where the boosting link (ТIC ‧ р + 1) corrects the inertia of TE and regulators of individual channels: 

 
   

1
.

1
i

MD
TE i ІC ІC

B p k
W

k A p k T p
  

  
    (11) 

Mathematical description of the desired automatic control system. 
The block diagram of the desired ACS of one channel is shown in fig. 7, where W*(p) – transfer 

function of the desired open-loop system. 
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Figure 7: Structural diagram of the desired ACS 
 

Then the transfer function of the closed desired system can be represented as: 

   
 

*
*

*
.

1

W p
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 


      (12) 

According to (8),    
 

*
*
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p
W p

p





, and if    

* k
W p

p C p



, then 

   
* .

k
p

p C p k
 

 
                  (13) 

The inertia of the actuators must be taken into account in C(p), if necessary, it can be adjusted. The 
transfer function of a closed system Ф*(р) should be close to the standard transfer function, taking 
into account the requirements for the quality of transient processes. 

Synthesis of controlling channel for gas generator r.p.m. 
For the fuel dosing circuit into the main combustion chamber by the speed channel, the transfer 

function of helicopter aircraft TE can be represented as: 

   
 

;
T

n
nG n

A p
H p k

B p
        (14) 

where the order of the polynomial An(p) is one less than the order of B(p) (table 1). 
Table 1 
Correspondence of polynomial order on the number of shafts of helicopters aircraft TE 

Number of helicopters aircraft TE shafts  Polynomial order 

1  0  1 
2  1  2 



Transfer function of a one-shaft TE (for example, GTE-350) in terms of gas generator r.p.m. can 
be obtained according to [23] in the form: 

  0 4

0 5 1TnG

,
H p .

, p


 
      (15) 

Then the transfer function of the control device for gas generator r.p.m. channel is represented as: 
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If the transfer function of the desired system    
3

0 02 1
*W p

p , p


  
 and the transfer function of 

the general isodromic controller    
 

3 0 56 1
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  


  
 [23, 25], then the transfer function of the 

controller over the channel of gas generator r.p.m.: 

   1

1
2 5

0 4nW p W p , .
,

        (17) 

For emergency operation, the transfer function of two-shaft TE (for example, TV3-117) in terms of 
gas generator r.p.m. can be obtained in accordance with [23, 25]: 

  2
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0 133 0 94 1ТC Tn G

, p ,
H p .

, p , p

 

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     (18) 

Then the transfer function of the control device for gas generator r.p.m. channel is: 
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If the transfer function of the desired system    
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 [23, 25], then the transfer function of the 

controller over the channel of gas generator r.p.m.: 
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, p , p ,
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   (20) 

Synthesis of the gas temperature control channel before the compressor turbine. 
For the fuel dosing circuit into the combustion chamber by the gas temperature channel before the 

compressor turbine, the transfer function of helicopter aircraft TE can be represented as: 

 
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 
*

* * ;G T
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where  *
G TT G

A p  and B(p) are polynomials of the same order (table 2). 

Table 2 
Correspondence of polynomial order on the number of shafts of helicopters aircraft TE 

Number of helicopters aircraft TE shafts  Polynomial order 

1  1  1 
2  2  2 

 
For emergency operation, the transfer function of a one-shaft TE in terms of gas temperature in 

front of the compressor turbine can be obtained according to [23, 25]: 

 *

0.829 0.29
0.35 .

0.56 1 0.56 1G TT G

p p
H p

p p

 
  

   
    (22) 

Then the transfer function of the control device for the gas temperature channel before the 
compressor turbine has the form: 
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If the transfer function of the desired system    
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 [23, 25], then transfer function of the 

controller through the gas temperature channel before the compressor turbine will look like: 
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For emergency operation, the transfer function of a two-shaft TE in terms of gas temperature in 
front of the compressor turbine can be obtained in accordance with [13, 15]: 
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2 2
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  (25) 

Then the transfer function of the control device for the gas temperature channel before the 
compressor turbine looks like this: 
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If the transfer function of the desired system    
3

0 02 1
*W p

p , p


  
 and the transfer function of 

the general isodromic controller    
 

3 0 56 1
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, p
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  
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 [23, 25], then transfer function of the 

controller through the gas temperature channel before the compressor turbine will look like: 
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  (27) 

The principles of construction of fast-response GTE gas temperature meters were studied in [17]. 
Synthesis of cross-links of control channels. 
According to [23], it is assumed that WK1(p) and WK2(p) – transfer functions of corrective links, the 

results of the synthesis of which are given in [16], which have the form: 
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Then the expressions for the transfer functions for these links look like this: 
1. For a one-shaft TE:  

   1 0 428 0 829 1 =0 355 0 428;KW p . . p . p .         2 0 35 0 829 1 857 =0 29 0 65KW p . . p . . p . .       

2. For a two-shaft TE: 
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According to [23], the corrective element W1(p) of the ACS control channel is permanently 
switched on, and the corrective element W2(p) is implemented when the limitation channel is turned 
on by parallel connection to W1(p) of a differential dynamic link with a transfer function according to 
the output logical signal of the selector L: 

     1 2W p W p W p .         (29) 

1. For a one-shaft TE:   1 842 0 653
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2. For a two-shaft TE:  
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6. Development  of  a  neural  network  for  implementation  of 
multidimensional  automatic  control  system  for  helicopters  turboshaft 
engines 

Fig. 8 shows a block diagram of the proposed self-adjusting neural network control system for 
helicopters aircraft TE with interconnected coordinates. 

Neural
Network

Weight 
Correction 

Block

Comparison 
Elements

Helicopter
Aircraft TE

ТCn

*
GT

0
ТCn

0
*

GT

1u

2u

 
Figure 8: Proposed neural network control system  for helicopters aircraft TE with  interconnected 
coordinates 
 

The control error vector e = [e1, e2, …, en]
T after the comparison elements is fed to the input of the 

neural network and the weight correction block, in which, depending on the signal e(t), at each 
discrete time t, the weight coefficients of the neural network are adjusted. networks. The vector of 
signals u = [u1, u2, …, un]

T from neural network output is the control one and is fed to the input of the 
control object (helicopter aircraft TE). The neural network for controlling aviation gas turbine engines 
of helicopters as multiply connected objects is a multilayer neural network with one intermediate 
layer containing N0 neurons in the input layer and N2 neurons in the output layer, with  N2 = N0 = n. 
The network is characterized by the number of neurons N1 in the inner layer (layer 1) [28]. The 
structure of a multilayer neural network is shown in fig. 9. 
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Figure 9: Structure of the neural network of a self‐tuning system regulation 



The input layer (layer 0) consists of nodes – signal receivers ei ( 1i ,n ), the output layer – of 

neurons – signal sources ui ( 1i ,n ). Signals ei are fed to the input of the neural network of a discrete 
moment of time t (t = 0, 1, 2, ...), which are converted by the network into control signals ui. The 
discrete time t is related to the continuous time Θ as follows: Θ = δ ꞏ t, where δ – quantization step. 
Each i neuron of the l-th layer ( 1 2l , ) transforms the input vector into the original scalar value. At 
the first stage, the superposition of the input signals of the neuron is calculated: 
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where l
ijw  – weight coefficient, which is an adjustable parameter and characterizes the connection of 

the j-th neuron (l – 1) of the layer with the i-th neuron of the l-th layer; l
i  – shift amount. 

Assuming that 0
l l
i iw    and 1

0 1lo   , expression (30) is rewritten as: 
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Next, the value of z is converted to the initial value of the neuron: 

 l l
i io f z .       (32) 

The nonlinear transformation (32) is defined by an activation function, often defined as a sigmoid 
function: 

  1

1 z
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e
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
      (33) 

An important property of this function is the simplicity of determining the derivative of this function, 
i.e. 

      1f z f z f z .         (34) 

With the accepted notation, the mathematical description of the neural network is written using the 
system of equations: 
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During the operation of a self-adjusting neural network control system, the system settings – the 
weight coefficients of the neural network change in such a way that the value 0E  e , while the 

value of 2

1

1

2

n

i i
i

E e


   , where αi – coefficients that determine the weight of each control channel of 

the total error E, is taken as the norm of the vector E. 
Correction of neural network weight coefficients l

ijw  (training of the neural network) is carried out 

in the block for correcting the weight coefficients by backpropagation error method [29, 30]. The 
main calculated ratios in this case have the form: 

   1l l
ij ij l

ij

E
w t w t .

w
  

    


     (36) 

For the weight coefficients of the neuron of the original layer (layer 2), the values  2
ij

E

w




 are 

determined according to the expression: 
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where ek – control error for the k-th initial variable; αk – weight coefficient for the k-th output 

variable; k

i

y

u




 – derivative of the k-th output variable of the object with respect to the i-th input action; 

  2
if z  – derivative of the activation function for the i-th neuron of the second (initial) layer;  1

jo  – 

initial value of the j-th neuron of the first layer. 

For the inner layer (layer 1), the values  1
ij

E

w


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 are determined by the scalar product: 
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where α  – matrix of weight coefficients of variable adjustments; e – adjustment error vector; Yu – 
matrix of derivative variables of regulation with respect to incoming control actions;  1

ijw
U  – vector of 

derivatives of the output signals of the neural network by the weight  1
ijw  of the layer 1 neuron; α e  

– vector product of matrix α  and vector e;  1
ij

u w
Y U  – vector product of matrix Yu and vector  1

ijw
U . 

The presented vectors and matrices look like this: 
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With the machine implementation of the presented learning algorithm, the matrix Yu will be a matrix 
consisting of a set of zeros and ones, and the ones will be equal to the element corresponding to the main 
(direct) control channels. For an object with n inputs and outputs, the Yu matrix might look like this: 
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The vector  1
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U  elements  1
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 are determined according to the expression: 
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Before the start of the self-adjusting control system, the system parameters are set: in the weight 
correction block – weight coefficients setting parameter γ, in the neural network block – number of 
neurons in the inner layer N1 and the weight coefficients  l

ijw  of the neurons of layers 1 and 2. 

Coefficients  l
ijw  are selected by a random sensor [–1, 1] according to the uniform distribution law. 

 



7. Simulation  studies  of  the  neural  network  control  system  of  helicopters 
aircraft turboshaft engines 

TV3-117 aircraft TE, which is part of the power plant of Mi-8MTV helicopter with two inputs (nTC, *
GT ), 

one output (GT) and the presence of significant cross-links (fig. 10) [17–19], was used as research object. 
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Figure 10: Structural diagram of control object (TV3‐117 aircraft TE) 
 

On fig. 11, the diagrams of transient processes in the system during testing set the impact without 
preliminary self-tuning according to the model (curves 1, 2) and with preliminary self-tuning (curves 
3, 4). Quite often, at the initial stage of self-adjustment (when the neuroregulator is first switched on 
in the control loop), large outliers of controlled values from the set values are observed (fig. 11, 
curve 1). This is due to the fact that when the neuroregulator is turned on, the weight coefficients of 
the neural network are initialized randomly. In this case, there is a possibility of organizing positive 
feedbacks, which are the source of too large deviations of controlled values at the initial stage of self-
tuning. The occurrence of such a situation can lead to emergency situations on the helicopter. 

 
Figure 11: Influence of preliminary self‐tuning according to the model on the quality of the control process 
 

The availability of a priori information about helicopter aircraft TE, its dynamic and static 
characteristics will significantly reduce the deviation of controlled values in the process of self-tuning. 
This is ensured by the fact that at the previous stage the self-tuning of the system is carried out 
according to the approximate model of the gas turbine engine. Then there is a switch to work with the 
control object (helicopter aircraft TE), the channels of which can be described by aperiodic links of the 
first order with a delay. The parameters of TE model are determined approximately. An error in 
estimating the parameters within ± 100 % has little effect on subsequent self-tuning results, with the 
highest sensitivity observed behind the gain. The parameters of the control system built using a neural 
network are the neurons number in the hidden layer N1 and the correction parameter of neural network 
weights coefficient γ. On fig. 12 show the influence of the tuning parameters N1 and γ on the quality of 
the regulation process. With an increase in the values of the parameters N1 and γ, the speed of the system 
increases, but the values of the overshoot and dynamic error also increase, and the value of the degree of 
extinction of transient processes decreases. With a significant increase in the values of the tuning 
parameters, undamped oscillations and instability of the control process may occur. 



 
      a                     b  

Figure 12: Influence diagrams: a – number of neurons N1 in the intermediate layer on the quality of the 
regulation process; b – weight correction factor for the quality of the control process 
 

Neural network control system for helicopters aircraft TE works out quite well both external 
disturbing influences (fig. 13, a), and setting influences (fig. 13, b), as well as antiphase setting 
actions (fig. 13, c).  

 
          a                 b  

 
          c                 d  

Figure 13: Process diagrams:  a  –  square wave perturbations; b  – one master  influence;  c  –  two 
setting  influences going out of phase; d – setting  influences when changing the gain coefficients of 
TV3‐117 aircraft TE channels 



In a neural network control system, as in classical systems, cross channels have a significant 
impact on the quality of regulation. With a decrease in the influence of cross-links (a decrease in the 

coupling coefficient 12 21

11 22

K K

K K
), the quality of regulation improves significantly. An important property 

of a neural network control system is the possibility of its effective adaptation to changes in the 
properties of the control object. In the course of simulation studies, the influence of changing the 
properties of the control object on the quality of the regulation process in the system was considered. 
On fig. 13, d shows the transient process in the system during the development of two setting actions 
and in the form of square waves. At the same time, during the process, the gain factors along the 
channels of the control object changed: the coefficients K11 and K22 linearly decreased from 2.0 to 1.0 
and from 1.5 to 1.0, respectively, and the coefficients K12 and K21 linearly increased from 0.3 to 0.5 
and from 0.4 to 0.6, respectively. As can be seen from fig. 13, d, the high quality of regulation is 
maintained with a sufficiently large variation (30...100 %) of the gains of the object's channels, that is, 
the neural network control system adapts to changes in the gains of the object's channels. 

The proposed neural network automatic control system of helicopters aircraft TE adapts well to 
changes in time constants and delays – changing them even by two or three times does not have a 
significant effect on changing the quality of regulation in the system. 

8. Neural network training results 

The input data for training the neural network is massive of nTC and *
GT  parameters recorded on 

board the helicopter. Accuracy, Precision, Recall, F-measure metrics are used to assess the quality of 
neural network training. Precision can be interpreted as the proportion of parameters that the neural 
network called positive and at the same time are really positive, and Recall shows what proportion of 
the parameters of the positive class of all objects of the positive class was found by the algorithm 
[31]. The results of training the neural network according to the Accuracy and Loss indicators are 
shown in fig. 14. As can be seen from fig. 14, the Accuracy indicator approaches one, and Loss 
indicator – tends to zero, which indicates the high accuracy of the model and its minimal error. 

 
     a                     b 

Figure 14: Neural network classifier training results (1 – test; 2 – train): a – Accuracy indicator; b – 
Loss indicator 

9. Results and discussion 

To assess the quality of ACS helicopters aircraft TE control, we introduce the following 
requirements: 

– amplitude stability margin: not less than 20 dB; 



– phase stability margin: from 35 to 80°; 
– overshoot: no more than 5%; 
– static error: no more than ±5% (±0.05); 
– regulation time: no more than 5 s. 
When modeling the system (fig. 15, b), it was found that only with the values of the time constant 

(T) for the transfer functions of the FMU and TE: T = 0.7 s, T = 0.5 s, T = 1 s and transfer coefficient 
k = 1 the system works optimally, meeting the requirements of control quality and system stability. 
This indicates that the system changes parameters when operating in other modes, the quality of 
control of which may not meet the requirements. Therefore, we will take for ACS helicopters aircraft 
TE value of the time constant T = 0.7 s and the gain k = 1, and we will consider the system ideal, 
taken as a standard in the forthcoming study. Using the experimental data obtained during various 
passages of the routes, the points associated with the change in altitude and flight speed were selected: 
for a time of 50, 200, 500 s. According to [32], using the experimental data at the selected points, the 
values of the time constant and gain for the FMU and TE were obtained. When modeling in the ACS 
scheme of helicopters aircraft TE, the models of FMU and TE changed alternately with the obtained 
experimental parameters of the wind turbine and gas turbine engine, which made it possible to 
analyze the system according to the requirements described above. In the future, we will use the 
simulation time of 50 s, since it will be enough for the study. 

 
           a                      b 

 
              c 

Figure 15: Results of the simulation of helicopters aircraft turboshaft engines automatic control system 
during  the  simulation  time  of  50  s:  a  –  transient  process  of  helicopters  aircraft  turboshaft  engines 
automatic control system with experimental data (1), helicopters aircraft turboshaft engines automatic 
control system with models of FMU and TE (2); b – ideal ACS TE; c – ACS TE with models 
 

The results of simulation of ACS TE for 50 s are shown in fig. 15. Modeling of the system was 
carried out in three stages: for an ideal scheme, with the parameters used in the design of helicopters 
aircraft turboshaft engines automatic control system, as well as for the system with experimental data 
and the system using the above approach with mathematical models of FMU and TE to adjust the 
operation of the entire system. As can be seen from the fig. 15, the transient process with ideal transfer 
function parameters for FMU and TE is established during the regulation time, which is 5 s; the system 
with experimental values is quite inertial and does not meet the requirements of control quality and 
stability, to adjust the helicopters aircraft turboshaft engines automatic control system, mathematical 
models of FMU and TE were introduced, which reduced the control time and began to meet the 
requirements. As can be seen from fig. 15, c, the transient process of the proposed ACS TE is inferior in 
quality: the value does not reach unity. Thus, in order to increase the accuracy of the transient process, it 
is proposed to introduce an LB based on fuzzy logic, the knowledge base and membership functions of 
which for input and output parameters will correspond to the graph of the dependence of errors on the 
control signal (fig. 16). 



 
Figure 16: Dependence of model and ADT errors  (ξmod, ξFMU) on control signal divided  into zones: 1 – 
minimum, 2 – average, 3 – maximum 
 

To ensure an acceptable nature of the transition process of the proposed ACS TE, it is proposed to 
introduce one more regulator: an integrating link. Experimental modeling showed that for the integrator 
the value of the gain (k) equal to 150 became sufficient to increase the quality of the output parameters. 
On fig. 17 shows such a transient process, and several points are plotted on the graph, characterizing the 
ideal process. Such a parametric and structural change made it possible to qualitatively change the 
output parameters of the system with experimental data and approach the ideal parameters chosen in the 
article. 

 
Figure 17: Transient  processes  of  ACS  TE  with models  and  introduction  of  an  integrator  into  the 
structure (1), ideal TE (2) 
 

In [17, 18], the modeling of transient processes in steady-state operating modes (for nominal and 
emergency modes) was carried out using a multi-mode neural network controller based on a 
perceptron. In this paper, a similar study was carried out using the developed ACS TE based on a self-
tuning neural network control system. Input data similar to [7, 8] are given in table 3. 
Table 3 
Input data of TV3‐117 aircraft engine operating modes 

TV3‐117 aircraft engine operating modes  ТCn   *
GT   TG  

M1 (Nominal mode)  0.709  0.769  0.096 
M2 (Emergency mode)  1.092  1.087  0.334 

 
Fig. 18 shows the results of modeling the automatic control system for TV3-117 gas turbine 

engine based on a self-adjusting neural network control system, from which it follows that the use of 



the developed automatic control system increases the accuracy of modeling transient processes in the 
gas turbine engine control system, the graphs of which are close to the standard. 

 
a 

 
b 

Figure 18: Results of modeling the automatic control system of TV3‐117 aircraft engine: a – mode M1; b 
– mode M2; 1 –  reference model; 2 – model with a multi‐mode neural network  controller based on 
perceptron; 3 – model with self‐tuning neural network control system 

10. Conclusions 

The automatic control system of helicopters aircraft engines of has been improved, in which the 
division of the control object into actuating mechanism and gas turbine engines makes it possible to 
take into account the dynamics of the executive part of the system and the engine, it becomes possible 
to use the mismatch between parts of the structural diagram of the automatic control system, thereby 
increasing the reliability and stability of the system in various modes. 

The method for constructing a mathematical model of the automatic control system for helicopters 
aircraft engines, based on the selector of control channels according to the engine’s 
thermogasdynamic parameters, was further developed by modifying the transfer functions, which 
made it possible to adapt the developed automatic control system for helicopters aircraft engines to a 
change in time constants and delays, namely, changing them even by two or three times does not have 
a significant effect on changing the quality of regulation in the system. 

The self-adjusting neural network control system for multiply connected dynamic objects was 
further developed, the adaptation of which as a modified neural network controller of helicopters 
aircraft engines (by introducing an integrator into the system structure) made it possible to bring the 
graph of the real transient process in the engine closer to the ideal one, thereby increasing the 
reliability and stability of the system at various modes. The intelligent approach made it possible to 



form a logical block, which qualitatively improved the output parameters of the system and made it 
possible to approach the ideal ones with a sufficient degree of accuracy. 
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