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Abstract  
 
Research is the development of the communication technology for detection of gestures of 
Ukraine sign alphabet. Basis of neural network with mobilenet architecture was improved with 
a new deep learning architecture – mobilenetv3. Another improvement lies in the field of the 
dataset – additional portion of train dataset was collected, and test dataset became more diverse, 
also due to improved data augmentation techniques. Deep learning model was improved with 
three dimensional convolution and data processing technique in a form of temporal frames. A 
lot of experiments to have a consistent improvement in model performance with better data 
augmentation, novel mobilenetv3 architecture as a basis and spatio-temporal frame are 
demonstreted the effectiveness proposed approach. 
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1. Introduction 

The research is based on previous work in the field of gesture detection, specifically Ukrainian sign 
language [1]-[3]. The previous work introduced a new communication technology, both for studying 
and testing of Ukrainian sign language, with possibility to scale with other languages. One of the most 
prominent features was cross-platform of the technology [4]-[6].  

Sign language is a frequently used method of communication among people with special 
communication needs. Those with hearing disabilities may utilize supplemental software to connect 
with society and within their own group. The dactyl alphabet should be learned utilizing gesture 
recognition technology. 

With development of deep learning network and hardware which is a sufficient fit to train such a 
network, the gesture detection was implemented using a convolutional neural network using novel 
architecture mobilenet, which allowed to deploy the technology on mobile phones and for it to be a 
truly cross-platform.   

Further improvement to the approach is present in the research, specifically the three-dimensional 
convolutions with the use of spatio-temporal data frame, which in combination with the newer 
mobilenetv3 architecture allows to achieve higher quality of sign recognition, due to ability to detect 
not only static but also dynamic features. Configuration and optimization of the approach are also part 
of the research. 
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2. Existing research  

Sign gesture detection is a complex task, due to human hand being a highly dynamic object, able to 
represent signs with different peculiarities. Also, signs can be observed from different angles in 
different scales and in both axes. Another issue is lighting condition and physical parameters of the 
hand itself and surrounding environment.  

Various algorithms based on conventional computer vision with hand-crafted features, such as the 
histogram of oriented gradients [7], bag-of-features [8], hyperplanes separation [9]. Unfortunately, due 
to mentioned before, peculiarities of the hand and it’s high-dynamic nature, such approaches are not 
robust enough and suffer a lot from changes in environment, background, or quality of the input images. 
Also, they are not scalable with the enlargement of image database of hand gestures samples. 

Current state-of-the-art hand gesture recognition architectures [10], [11], [12] are based on 
convolutional neural networks, because they can overcome the issues with the environment and become 
robust to changes in background and surrounding, scale of the image and hand within it, and quality of 
the image itself. Another prominent feature is the ability of the convolutional neural network to improve 
as the training dataset grows and becomes more diverse.  

3D convolutions allowed the same models to benefit from sequence of pictures, e.g., videos with 
activities. They show high performance with large amounts of data, even in the form of pre-recorded 
videos. (AlexNet [13], Sports-1M [14], Kinetics [15], Jester [16]). No overfitting happens with such 
huge and diverse datasets. 

In order train and deploy deep learning models on low performance devices, such as smartphones, 
a subset of lightweight architectures with typically smaller amount of parameters and more effective 
structure were developed (SqueezeNet[17], MobileNet[18], MobileNetV2 [19], ShuffleNet [20] and 
ShuffleNetV2 [21], MobileNetV3 [22] ). [23] presents Sequential Pattern Mining for tree topologies 
based recognition in their research. 

3. Proposed approach 

The proposed approach lies in two domains: 
 Improving techniques for data augmentation 
 Presenting, improving, and configuring approach of spatio-temporal data. 

Such development allows to make the trained model become more robust to changes in input data, 
without the need to collect more of the datasets manually. On the other hand, it allows to improve the 
approach of detecting a sign on an image sequence (or video), and gestures are mostly a highly 
dynamical object, whilst transitions from one gesture to another could be highly diverse, and a model 
would benefit a lot from training on such transitions. All dataset processing and model training was 
performed using cross-platform framework [24].  

Another improvement is in using a more novel, advanced, and optimized architecture as a basis – 
mobilenetv3. 

3D convolution is used to improved detection with sequence of images (video). Such developments 
[25]-[27] show significant improvement of architectures with such enhancements in tasks with dynamic 
activities. Combination of lightweight architecture with such 3d convolutions allows to improve 
performance with dynamic sign detection on videos and maintain a possibility to deploy cross-platform, 
even on a low-performance device such a smartphone. 

Spatio-temporal detectors can build spatial descriptors that include both spatial and temporal 
information. Both single images and sequences of images can be utilized as input for the model in the 
research. 

It is possible to train the model to be more resistant to change in such a dynamic object as hand by 
analyzing multiple adjacent images in the sequence at once. This allows the network to be taught to 
consider the temporal aspect, i.e., the dynamics of change in movements in multiple input images. If an 
image contains artifacts, bad lighting, is fuzzy, or is obstructed in some manner, spatio-temporal 
approach can be used to smooth things out by utilizing surrounding frames in sequence. 

 



4. Spatio‐temporal frame 

The idea of the of the spatio-temporal frame lies in concepts: to collect all the spacious information 
from the image, needed for the convolutional network to detect gestures, and second, to merge multiple 
frames information, to collect temporal component of the data, meaning dynamic changes from image 
to image. Only three-dimensional convolutions would be able to process such input and thus be able to 
detect patterns in temporal component over a sequence of input images. 

A single image sequence could be treated as a single training sample for a convolutional neural 
network with 3d convolutions. However, is it unclear in such case, which would be the required length 
of the video. Moreover, it would limit somehow the format of the input data, requiring it to be of a 
specific predefined length or duration.  

As a solution to such issues, in the research, instead of setting a requirement to input video, a concept 
of spatio-temporal frame was introduced. 

It is similar to a floating window concept, which is widely used in object detection, when the image 
is passed in a predefined order with a window of a size significantly smaller than size of the image. 
Similarly, the spatio-temporal frame has a predefined size (for instance, 8 frame) and goes through the 
video of arbitrary length in a chronological order. Another major concept is the overlapping of the 
spatio-temporal frame, in other words, how many last frames in previous frame and first frames in next 
frame are the same. Having this parameter set too high, the result will be in excessive amount of data 
which will be generated by the preprocessing of training dataset and, finally, the neural network will 
train redundantly huge amount of data, which is mostly the same, also taking longer amount of time to 
train until convergence.  

Thus, we have two hyper-parameters, define at the step of preprocessing of the dataset (splitting 
videos into spatio-temporal frames of fixed length) – size of the frame and number of overlapped 
frames. These parameters affect architecture, speed, and quality of the trained model, so they such be 
tuned carefully, and such tuning process was a part of the research, and optimal parameters were defined 
based on model performance. These hyperparameters also affect model architecture (size of layers). 
 

Therefore, single spatio-temporal frame can be presented as: 

,,1},,...,,...,{ knidddD kiiki          (1) 

where k is the number of previous and subsequent frames from the current, from which a sequence of 
images is formed (Fig. 1). 

 
Figure 1: Two subsequences created from a single video stream 
 

Figure 2 shows the schema in which one video is divided into spatio-temporal frames with optimal 
parameters. 

Also, during split into train set and test set, a distribution of the data should be maintained in terms 
of size, quality, focal length, lighting, background, artifacts, blur and etc. 

A uniform data processing approach was designed to convert them to a generic form for further 
computations inside the specified recognition model, both at the training and recognition stages. 

As a result, from one video with a sign it is possible to obtain multiple sub sequences. 
 

The process of tuning such hyper-parameters requires a pipeline, which consists of 
 dataset preprocessing 



 model architecture selection 
 model training 
 testing on a predefined test set (for the testing to be in fair conditions)  

 

 
Figure 2: Schema in which one video is divided into spatio‐temporal frames with optimal 
parameters. 

 
There are three steps of dataset preprocessing:  

 denoising 
 resizing 
 normalization 

The schema of a pipeline which was used in the research is show at Figure 3. 
The new MobileNetV3 architecture (Fig. 4) is an improvement of it’s previous versions – mobilenet 

and mobilenetv2. Previous work used mobilenetv2 as a basis for convolutional neural net architecture, 
which was afterwards enhanced with 3d convolutions. As a part of previous work development, novel 



mobilenetv3 architecture is used in the research, also enhanced with 3d convolutions. Newest mobilenet 
reincarnation also has two versions – large and small, oriented on high and low hardware resource 
respectively. Also, a redesign of expensive layers took place, which allowed to further improve 
performance speed on all platforms. 

 

 
Figure 3: Schema of a pipeline for tuning spatio‐temporal frame parameters. 

 

 
Figure 4: Architecture of MobileNetv3‐small 

 
In MobileNetv3 there have been two strategies to improve the network: 

 Platform-aware NAS for block-wise search 
 NetAdapt for layer-wise search 

 
Introducing a dynamic and temporal component into the technology presented new challenges into 

the results interpretation. One of the issues which appeared in the process became instability of the 
prediction on dynamic data. In other words, a sequence of frames produces a sequence of predictions, 
but there can be wrong predictions, or the prediction could start frantically change from frame to frame.  

As a part of improvement of the technology for such cases, an approach for stabilization of 
predictions was presented and implemented. The are two components of such solution: smoothing of 
the prediction probabilities and accumulation of probabilities from previous spatio-temporal frames. 
Also additional anomaly-detection approach is used to neglect predictions within a frame which are 
highly different from the context. 

With such approach, first prediction of the first frame is considered as baseline. Further predictions 
on next frames start accumulating with the previous prediction, an in case if it’s highly different from 
a history of multiple predictions before – such an anomaly is neglected.  

Predictions from earlier subsequences are used to build up the model, which then uses that 
information to update the current recognition result only when the total number of predictions surpasses 
a certain threshold. 



 









nt

ntt

kt

kti
i thresholdp ,      (2) 

where: pi - the probability of a gesture in the frame; i - frame number on the current subsequence; t - 
number of the current subsequence; k - the size of the subsequence in both directions; n - number of 
accumulated subsequences.  

5. Dataset of sign images and their augmentations 

In previous work a dataset of 50000 images was collected, with different sign, corresponding to 
Ukrainian sigh alphabet (Fig. 5). During creation of such a dataset, it was aimed at to make it diverse 
in terms of lighting conditions (20 % of data in bad of light conditions, 30 % in mediocre light conditions 
and 50 % in good quality lighting). Almost 10% of data was is poor quality, with noise and very blurry. 

 

 
 

Figure 5: Dataset subsample 
 

In order to increase the dataset size, a list of data augmentation techniques from previous work was 
enlarged, thus next data augmentation techniques were used: 

 rotation 
 random cropping 
 flipping 
 brightness adjustment 
 noise addition 
 salt and pepper (replaces pixels in images with salt/pepper noise (white/black-ish color)) 
 coarse dropout - sets rectangular areas within images to zero. 
 gamma contrast - adjust image contrast by scaling pixel values to 
 affine 
 blur 
 emboss 

 



As a result, the train dataset was increased in 5 times and a final amount of 250,000 pictures was 
generated. 20% of the data was used as testing subset for pipeline for spatio-temporal hyperparameter 
tuning. Some additional data augmentation techniques were used exclusively to the test dataset (of size 
50,000 pictures). This was done in order to verify that the technology will stay robust even in unseen 
before conditions and environment. 

Figure 6 shows examples of original images and their augmented counterparts. 
 
 

 

 

 
Figure  6:  Original  images  (left)  and  augmented  images  (right).  Topmost  –  heavy  augmentation 
(multiple at once), middle – dropout, bottom – salt and pepper. 

 
Figure 7 shows percentage of images with different light conditions in the train and test split datasets, 

divided into such conditions: bad, mediocre and good. 
 

 
Figure 7: Distribution of light quality on the train and test datasets. 



 
It is also important not to overfit the model with artificial patterns present in the dataset, thus it 

must maintain statistically significant variety. Also, there should not be major shifts in train dataset 
comparing to test dataset. All these conditions were met in the train dataset conducted and augmented 
as a part of research. 

6. Experiments 

During dataset augmentation of test split with techniques, which were not used in the train split, 
performance of the model dropped, naturally, due to higher complexity of the testing data. However, 
still it showed performance comparable with state-of-the-art approaches (for instance, squeeze-nets). 
Figure 8 shows performance increase in using more novel mobilenetv3 model as a basis, and also 
increase in performance with three dimensional convolutions. All measurements show macro-averaged 
f1-score.  

 
Figure 8: Comparison of models 

 
During models training, hyperparameters of spatio-temporal frame were tuned first. After those 

parameters fixed, multiple model architectures varieties were considered, with mobilenetv3 as a basis 
for all of them. Mobilenetv3-small was preferred over mobilenetv3-large due to cross-platform 
considerations, with ability of such model to perform with relatively same gesture recognition 
performance but on a lower performance hardware, such as smartphones. Experimental results proved 
small version to be sufficient for gesture model. At least five different modifications of mobilenetv3-
small architecture were tuned and evaluated during the experiments. It is important to analyze confusion 
matrix of model prediction. This also helped to select the best approach and best configuration. All of 
these measures allowed to design a balanced neural network that was both small and effective on the 
test data set. 

Hyperparameters form a grid, which contains a configuration for model architecture, training 
hyperparameters and spatio-temporal hyperparameters. 

Example grid: 



⎩
⎪
⎨

⎪
⎧

learning_rate: ሾ0.001, 0.0001ሿ,
batch_size: ሾ8,16,32ሿ,

layers_config: ሾconfig1, config2,config3ሿ,
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑟𝑎𝑚𝑒𝑠: 2,

𝑓𝑟𝑎𝑚𝑒_𝑠𝑖𝑧𝑒: 5,
𝑑𝑒𝑐𝑎𝑦: 1

    (3) 

 
Each model train was performed with common techniques for fighting overfitting. Model’s 

prediction time is sufficient for real-time (24 fps) performance using Nvidia K80 GPU. 

7. Conclusions 

As a result of research, a technology for gesture communication was developed and improved within 
multiple domains. A novel architecture of mobilinetv3 was used as a lightweight neural network model, 
which allows both to get a high level of gesture recognition performance with ability to run on a low-
performance hardware, such as smartphones. To overcome recognition issues with such a high dynamic 
object as hand and gesture animation, a three-dimensional convolution technique was used to enhance 
the neural network architecture. As a solution to use as input videos of different length, a spatio-
temporal frame concept was introduced and implemented as a part of research. Having its own 
hyperparameters, such as number of overlapping frames and size of the frame, it needed configuration. 
As a part of research, best hyperparameters were tuned, both for spatio-temporal frame and for the 
neural network itself. A special pipeline was built for tuning hyperparameters for spatio-temporal frame. 
Additional data augmentation techniques were used to increase the train dataset, also some techniques 
were used only for test split of dataset, to prove robustness of the model to unseen conditions. 

It was proved with experiments to have a consistent improvement in model performance with better 
data augmentation, novel mobilenetv3 architecture as a basis and spatio-temporal frame approach, 
which resulted in 0.93 macro-score f1. 
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