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Abstract  
As connectivity constantly increases, business processes are vulnerable to external cyber-

attacks, which may hamper their continuity. As the frequency and derived impacts of these 

attacks increase, there is a need to prioritize and mitigate risks, considering their impact on 

business processes, in order of importance to the business. Addressing this need arises several 

challenges, starting with how to quantify the cyber-security risk over the infrastructure abstract 

level, map it to the business abstract level, and then propagate it across all process 

dependencies, and ending with how to prioritize issues to be addressed first. We identified that 

a holistic approach to answer these challenges in a process-aware manner is still missing. 

Therefore, the research aims to develop the following framework. First, we will form a process-

aware attack-graph that stands for the potential behavior of an attacker within an industrial 

infrastructure and its impact over the business processes. Second, we will develop a risk 

inferencing method to quantify the risk over the infrastructure level, map it to the business 

level and propagate it across different process dependencies. Finally, we will develop a method 

to identify the risk root causes and recommend for risk mitigation steps. The framework will 

be evaluated based on real-life event logs and simulated settings of a smart manufacturing 

factory. The resulted artifacts will be evaluated by a panel of subject matter experts from the 

areas of cyber-security and business process management.  

Keywords  1 
Process-Mining, Attack-Graph, Risk management 

1. Introduction 

Today, enterprises in general and industrial infrastructures in particular, are increasingly connected 

to external networks. As such, business processes that were once isolated, are now vulnerable to external 

cyber-attacks. As the frequency and derived impact of these attacks increase, there is a need to prioritize 

and mitigate risks in order of importance to the business [1]. However, this need arises several 

challenges. First, how to quantify the cyber-security risk over the different assets within the industrial 

infrastructure. Second, how to map this risk to the business abstract level and then, how to propagate it 

across all the dependencies associated with process elements. Finally, how to recommend and prioritize 

which issues should be addressed to mitigate the risk over the different process elements.  

Cyber-security risk quantification and mitigation is a well-researched area, usually based on a 

representation of the potential adversary behavior within a system [2], [3]. Recently, an emerging effort 

is being invested to assess the impact of a cyber-attack over a higher abstract concept, such as a mission 

[4] or a business process [5]. This is usually done by encoding the dependencies among the different 

abstract levels into the attack graph in a manner that enables propagating the impact from the 

infrastructure level to the higher abstract level. We identified that the existing literature is missing of 

methods that support all the above challenges holistically, and in a complete process-aware manner. 

We define process-awareness in this context, as the ability to represent the potential adversary behavior 
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within a system, augmented by its impact and dependency on the different business process 

perspectives, including: control flow, data flow, resources, and time. In this work we aim to address the 

identified gaps by developing a process-aware framework for risk quantification and mitigation in 

industrial infrastructures. 

The remainder of the paper is structured as follows: section 2 provides an analysis of the related 

work, then research questions are posed in section 3. Section 4 depicts the methodology and the 

proposed approach. Finally, current state of research and conclusions about expected contribution are 

drawn. 

2. Related Work 

Cyber-security risk quantification and mitigation is generally based on an attack graph, which 

simulates an adversary potential behavior within a system. [2], [3] presented MulVAL, an approach to 

build an attack graph based on a logical reasoning method that uses collected evidence, and inference 

rules gathered by cyber-security experts to infer what logical steps an adversary should perform to reach 

a pre-defined target. Then the resulted graph could be used to quantify the cyber-security risk of a 

system. For instance [6] proposed a methodology to prioritize security-controls implementation to 

mitigate the system’s risk. They used graph centrality measures to rank target nodes’ importance in the 

attack graph, then quantified the cyber-security risk as a function of target nodes’ importance, and the 

difficulty rank of an adversary to reach these nodes. Then they simulated which security controls would 

reduce the risk effectively. 

Even though cyber-security risk quantification is a well-researched topic in the information 

technology (IT) discipline, this topic is new in the industrial infrastructures landscape (which is based 

on operational technology - OT). While IT assets deal with information flow, OT assets deal with the 

operation of physical processes and machinery used to carry them out. Accordingly, IT and OT assets 

differ by their hardware, software, functionality, network architecture, and communication patterns, and 

as a result, by their potential adversarial tactics and countermeasures (from offensive and defensive 

point of view respectively). 

[7] collected techniques to detect safety and security risks within industrial infrastructures, [8]–[10] 
proposed further risk quantification methods. However, that area lacks methods for assessing the impact 

of cyber-security risks over the higher-level processes, and their organizational business impact. 

Recently the research topic of cyber mission impact assessment (CMIA) [4] raised to address this need, 

by projecting the cyber impact measured in the infrastructure level to the abstract level of a mission 

(e.g. a business activity, a business domain/functionality, etc.). [11] provided a mathematical model for 

bias and context-free mission impact assessment based on both missions and resources dependency 

models. [12] used a similar approach to select mitigation actions based on operational and financial 

impact assessment. 

[5] presented an approach to assess cyber-attack impact on business processes by generating an 

interconnected graph of the dependencies between vulnerabilities on hosts, relations between services 

to hosts, and tasks to services. The authors encoded the above dependencies with a Datalog[13] as facts 

and rules and used MulVAL to generate the graph. Then they presented a method to calculate the impact 

score by propagating the impact generated by the vulnerabilities to the impacted hosts, services, and 

tasks. [14]–[16] used a similar approach to assess mission impact of cyber-attacks on energy delivery 

systems, cyber-physical systems, and enterprise applications, respectively. We identified the following 

limitations in this approach. First, by using a dependency graph or a BPMN model as an input to 

MulVAL, the business process level facts and rules are limited to short-term control flow dependencies. 

This approach lacks an ability to identify other dependencies between process elements, which might 

affect the resulting impact. These include long-term control flow dependencies (as eventually followed 

by), data flow dependencies, and time constraints. Second, this approach formalizes only the impact of 

the attacker’s behavior concerning the infrastructure layer, and propagates it to the business process 

layer. However, this impact could be bidirectional, namely, the business process behavior could affect 

the attacker’s capability to compromise infrastructure assets. For example, a vulnerable file could be 

transferred between multiple endpoints according to some business logic, while some of the endpoints 

hold existing pre-conditions that enable the attack, and some do not. Third, while this approach provides 



a method to quantify the impact over the business abstract level, it does not provide methods to analyze 

its root cause and recommend risk mitigation actions accordingly. Finally, the impact quantification 

over the business abstract level keeps the infrastructure perspectives and lacks inferring of the process 

perspectives. For example, considering an infrastructure impact perspective of an asset’s availability, 

which, according to the proposed approach, triggers an impact over business process availability. 

However, this approach lacks inferring the expected impact over the process KPIs. For example, an 

impact over an asset’s availability triggers an impact over a KPI of production quantity. 

Recent research by [17] presented a method to propagate the risk within a network of business 

processes and IT services, by transforming the operational risk over the underling IT services to a 

financial risk over their related business processes. However, the cyber risk quantification is not cyber 

security exclusive and lacks aspects such as confidentiality and safety. Furthermore, the risk 

quantification is based on historical events and lacks consideration of events that have not been 

observed or have only recently emerged, which is a very common phenomenon in the cyber security 

landscape. 

Based on the above, we conclude that there is a need to develop a holistic and a process-aware 

approach to address the above challenges within the industrial infrastructure domain. This approach 

will be able to form a process-aware representation of the potential adversary behavior within an 

industrial infrastructure, quantify the cyber-security risk based on a potential adversary behavior, map 

it to the process abstract level, propagate it across its dependencies, and prioritize risk mitigation actions 

according to their business importance. 

3. Research Questions 

To address the above challenges, we pose the following high-level research question: How should 

organizations measure cyber-security risk and prioritize risk mitigation steps to protect their industrial 

infrastructures, and assure business process continuity? To make the question more concrete, we derive 

the following  research questions. 

RQ1: How to form a process-aware representation of the potential adversary behavior within 

an industrial infrastructure? To answer this question, we first need to identify the relevant types of 

dependencies among process elements, considering control-flow, data-flow, resources, and time 

perspectives. Second, we need to consider how these dependencies could be discovered in an event log. 

Third, we need to investigate how these dependencies affect the capability of an attacker to compromise 

infrastructure assets and business process goals. Finally, we intend to express these dependencies as 

facts and rules to be used as part of an attack-graph inference engine, and need to formalize them as 

such. 

RQ2: How to infer what is the cyber-security risk over the business abstract level? To answer 

this question, we first need to determine how to quantify the cyber-security risk over the different assets 

within the industrial infrastructure. Second, we need to establish a mapping between the cyber-security 

risk and the business abstract level. Finally, we need to develop a method for propagating the risk across 

all process dependencies. 

RQ3: How to identify the root causes of a risk, prioritize the issues, and suggest a relevant plan 

for remediation actions? This question will be addressed by considering the following risk mitigation 

strategy dimensions. First, we will consider different business objectives for the risk mitigation task 

(reducing the risk for a single activity, a single process, a production line, a factory, and more). Second, 

we will examine different configurations of risk aspects for the risk mitigation task (reducing the risk 

for a single risk aspect (e.g., availability), multiple risk aspects, or considering an overall risk measure). 

Third, we will assess different objective functions for risk reduction (e.g., minimal cost). Finally, we 

need to address different possible remediation strategies. 

4. Methodology 

Towards answering the research questions, we take a design science approach, with a main 

envisioned artifact: a process-aware framework for a cyber-security risk quantification and mitigation 



in industrial infrastructures, as depicted in Figure 1. This framework gets as an input an event log of the 

business process, instances of cyber-security facts of an industrial infrastructure, and a knowledge base 

that holds inference rule templates. First, we intend to develop a method to create a process-aware 

attack-graph, answering RQ1. Based on the process-aware attack-graph we propose to develop a risk 

inferencing method to answer RQ2, and methods for a root cause analysis and risk mitigation 

recommendation to answer RQ3. 

The rest of the section is structured as follows. First, we will describe the proposed approach for 

addressing each of the research questions. Then, we will describe the proposed evaluation method.  

 

 
Figure 1: a process-aware framework for a cyber-security risk quantification and mitigation in 
industrial infrastructures 

4.1. RQ1: A Process-Aware Attack-Graph 

As described in the related work section, attack-graphs are usually based on MulVAL as a tool that 

models the interaction between software vulnerabilities, the system, and network configuration. It uses 

Datalog [13] to model the interaction of various system components to the form of interaction rules 

(denoted with ellipses in Figure 2). Each interaction rule has preconditions and a derivation. A 

derivation stands for a new information that is discovered when all preconditions of a rule are met. A 

precondition of a rule could be either a primitive evidence (denoted with boxes in Figure 2, can be 

referred to as a fact) or a derivation (denoted with diamonds in Figure 2, can be referred to as an impact) 

that was discovered before, satisfying a prior interaction rule in the attack-graph. The reasoning process 

is completed when a predefined impact is discovered, and this impact is denoted as an attack goal. 

Figure 2. shows a simple example attack-graph containing 10 nodes. If host1 has a malware and his 

antivirus is not updated (nodes 1,2), the attacker can run a code on host1 (node 3). Since host1 and 

activity1 hold a resource-activity dependency (node 4), the attacker can cause a direct denial of service 

over activity1 (node 5). Finally, since activity1 and activity2 holds a precedence dependency (node 6), 

an indirect denial of service will affect activity2 (node 7). 

 

 
Figure 2: an attack-graph example 



We intend to construct a process-aware attack-graph based on the MulVAL approach, as follows. 

First, we aim to develop a model (denoted as a knowledge base) which will hold information regarding 

cyber-security and business process fact and impact types, and their corresponding inference rules. We 

expect to formulate three types of inference rules: 

• Cyber-attack rules (e.g., RULE1), based on public knowledge as ATT&CK® for ICS2. 

• Dependencies between the infrastructure and the business level (e.g., RULE2). 

• Different process dependencies (e.g., RULE3), considering the perspectives of control-flow, 

data-flow, resources, and time constraints. 

Second, we intend to use a Datalog solver (denoted as an inference engine) to extract the attack-graph 

given inference rules, business process fact instances (as nodes 4,6), and cyber security fact instances 

(as nodes 1,2). We aim to develop a method to discover instances of business process facts within an 

event log (denoted as event log to facts). We propose to achieve that using decelerative process 

discovery techniques [18]–[20]. Instances of cyber-security facts could be collected via multiple 

systems (e.g., Nozomi3,  Forescout4, etc.,), thus, we assume that this information is given and will be 

simulated as part of the industrial environment settings. 

4.2. RQ2: A Process-Aware Risk Inferencing 

This part takes a process-aware attack-graph and quantifies the risk per each objective process 

element, considering all perspectives of process dependencies. This could be achieved via the following 

approaches. 

First, by using graph abstraction and traversal algorithms to transform the process aware attack-

graph to a probability network (e.g., a Bayesian network [21]). The network will represent a movement 

of an attacker within the industrial infrastructure, and its resulting impact and dependencies on the 

business process. Once we have this representation, we could explicitly calculate the risk associated 

with an attacker causing an impact within the infrastructure, using transition probabilities and their 

related impact score. Then risk could be calculated for each cyber asset and be propagated accordingly 

to the business process level. While the above approach might have a high time complexity at runtime, 

we suggest to use it to label a training set, and then train a graph neural network (GNN) [22], [23] model 

or any other probabilistic graph model (PGM) [24] to predict the risk (as a regression problem). 

4.3. RQ3: A Process-Aware Risk Root-Cause, and Mitigation Analyses 

This part takes a process-aware attack-graph and risk prediction results and searches for cyber-

security issues whose remediation would reduce the graph size (and the cyber risk accordingly), 

considering the dimensions described in RQ3. This could be achieved with the following approaches. 

First, by using graph theory algorithms to measure importance of nodes (which represent issues 

within the graph), such as a reachability analysis [25] , a page-rank analysis [26], an eigenvector 

centrality analysis [27], and more. Second, by developing a causality-graph-based approach for root 

cause analysis [28], [29]. Third, by performing a greedy-search simulation that iteratively searches for 

issues whose risk loss is maximal, then eliminates them from the graph, and recalculates the risk until 

it reaches a steady state. Finally, by training a reinforcement learning [30] model to optimize the 

simulation performed in the third approach. 

4.4. The Proposed Evaluation 

The framework will be evaluated in the following settings. The business abstract level will be 

discovered based on a real-life public event logs of manufacturing processes, as in [31]. The industrial 

infrastructure abstract level will be simulated in correspondence to the real-life event log. In addition, 

 
2 https://collaborate.mitre.org/attackics/index.php/Main_Page 
3 https://nozominetworks.com/ 
4 https://forescout.com/ 



it will hold a sufficient coverage of attack types as specified at ATT&CK® for ICS2. Then we intend 

to implement a prototype of the proposed framework and test its applicability in the described settings. 

The resulted artifacts (as the attack-graph, and methods for risk inference, root-cause, and mitigation 

analyses) will be evaluated by a panel of subject matter experts from the areas of cyber-security and 

business process management, based on the following criteria. First, the extent to which the attack-

graph is process-aware. Second, the support given by the proposed framework in obtaining a precise 

inference of risk, in identifying the root causes of risks, and recommending a risk mitigation plan 

accordingly.    

5. Current State of The Research 

To this point, we completed a literature review, and concluded an exploration of existing tools in the 

scope of the identified problem. Furthermore, we conceptualized the proposed framework and created 

a research agenda towards answering the research questions. Next steps include: a setup of the research 

environment, and development of the proposed framework according to the described methodology. 

6. Conclusions 

While the need for a business centric cyber-security risk management arises, the existing literature 

is lacking a holistic process-aware approach. We aim to address this need by developing a process-

aware framework for a cyber-security risk quantification and mitigation in industrial infrastructures. 

The expected contribution includes the following. A knowledge base of process-aware attack-graph 

inference rules, and a method to extract business process facts from an event log. Methods for risk 

inferencing, root-causes, and mitigation analyses. 
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