
A Lightweight Ontology for Rating Assessments

Cristiano Longo1⋆ and Lorenzo Sciuto2

1 TVBLOB s.r.l. Milano Italy
2 Università di Catania, Dipartimento di Ingegneria Informatica e delle

Telecomunicazioni

Abstract. Various recommender systems and trust engines use appli-
cation specific formats to store and exchange data. Such data are used
for statistical purposes, or to produce recommendations about items or
users. This paper introduces Ratings Ontology, a semantic web format
for ratings and related objects. This ontology aims to be lightweight, in
the sense of minimising the physical size of data stored or sent over the
network for a given ratings set. Moreover, we presents a tools suite based
on this ontology to find out statistical information from a ratings data
set.

1 Introduction

A big part of on-line services keeps track in different ways of users’ taste and
satisfaction. Usually this information is collected in form of ratings assessed by
users about items of the system itself. Amazon.com[1] for example is an on-
line book store, that collects user preferences about books. Saved ratings could
be used to deduce several kind of statistical information, i.e. to measure user
satisfaction about the whole system, or to know best and least liked items. Rec-

ommender Systems use these ratings to suggest items they may like to the users.
As pointed out in [2], recommender system performances increase proportionally
to the amount of available information. For this reason, in order to produce good
recommendations, it should be convenient to share ratings collected by different,
but similarly purposed, on-line services via a common ratings exchange format.
Such a format also implies other advantages. It would allow to separate the
ratings collection task from the collected data processing, i.e.recommendations
production. As a consequence tools and recommender systems could be devel-
oped independently from ratings collection engines.

This paper introduces Ratings Ontology, a Semantic Web format to store
and share ratings. This ontology aims to be lightweight, in the sense of minimis-
ing the physical size of data stored or sent over the network for a given ratings
set. The rest of this paper is structured as follows : Section 2 contains a brief
description of semantic web intent and languages; Section 3 describes two ontolo-
gies with similar intents to ours, but with more limitations; Section 4 describes
the features provided by ratings ontology; Section 5 describes a use-case of this
ontology by introducing some tools we developed which are able to process data
sets in this format.
⋆ Thanks to G. Di Blasi, P.Oliveto and B.Vintrici for their lexical contribution.

2 Semantic Web Ontologies

Semantic Web provides a common framework to share and reuse data across
applications. It provides languages to express information in a machine process-
able way. The Semantic Web core language is RDF[3]. An rdf document can be
seen as a graph in which nodes are linked to each other by properties. Nodes
and properties can be labelled by a Uniform Resource Identifier(URI)[4]. An rdf
graph can be seen as a set of triples (source, property, target), that corresponds
to graph edges. Such a triple represents a relation identified by property that
goes from source to target. The big part of rdf storage engines uses such triples
as internal representation of rdf graphs. So the number of triples can be used
as a metric to measure the size of an rdf document. The RDF Vocabulary
Description Language(RDF Schema)[5] is a semantic extension of RDF. It
provides mechanisms for describing groups of related resources(RDFS classes)
and the relationship between them. It allows to define vocabularies in terms of
classes and properties. Web Ontology Language(OWL)[6] enriches the RDF
Schema with various constructs and constraints for properties and classes. It de-
fines also some meta-level properties to describe relations between properties and
classes. As an example, given two properties p and q, we can state that p is the
inverse of q via the owl : inverseOf property. OWL also allows to define cardi-
nality and value constraints, useful to check if instances of a class are consistent;
i.e. we can say that a boy has at most one father using owl : minCardinality.

3 Related Works

Trust Ontology[7] is an extension of the Friend Of A Friend ontology[8], that
defines properties about user profiles. Trust Ontology adds features for user-to-

user trust assessments. It provides eleven properties, one for each trust value in
a zero to ten scale. As a result, trust information is stored in a very compact way
into an rdf graph because for each trust assertion just one triple is stored. On the
other hand, this ontology allows to express only ratings in a zero to nine scale,
and offers no capabilities for other rating spaces. For example, Movie Lens [9]
uses a five point scale, so Trust Ontology is not suitable for ratings collected by
this engine.

Review Ontology[10] has more power. For each rating assessment a corre-
sponding Review is defined, with a rating and two properties to describe the
ratings range: maxRating and minRating. This ontology suits all systems with
discrete finite equispaced rating ranges. However, it is not yet enough, because
some engines, i.e. Moleskiing[2], allow users to enter ratings in a continuous in-
terval. Moreover, the presence of maxRating and minRating for each rating
entered by a unique engine is redundant and it causes a growth of data storage
size.

Ratings Ontology aims to cover the entire ratings spectrum and, at the same
time, to reduce the amount of data stored for a given set of ratings.

4 Ratings Ontology

Ratings ontology is an OWL based format that provides classes and properties to
represent in an exhaustive and machine processable way ratings collected by web
sites, automated agents and other engines. The Ratings Ontology specification
is available at [11]. Ratings collected by different engines could be saved in the
same storage, in order to increase the accuracy of recommendations, or to get
statistics from a larger data set. On the other hand, the engine that collected a
rating and the context in which this rating was produced is an important piece of
information. For this reason, our ontology provides features to bind a rating with
the engine that collected it, and to describe how this rating has been collected.
The next sections describe the classes and properties introduced by the Ratings
Ontology.

4.1 Rating Class

A rating represents a sort of preference, or judgement, assessed by a user or a
software agent about a generic item. For such ratings, Ratings Ontology provides
the Rating class. Rated items are expressed in terms of RDF resources. This
allows to provide a full description of rated items using suitable elements from
other ontologies. The rating asserter must be an Agent, where the Agent class
is defined in the foaf [8] ontology. We chose the Agent class instead of the
more restrictive Person to cover situations in which a rating assessment was
not caused, directly or not, by a physical person, but by an intelligent agent.
As an example, [12] describes how trust assessments among grid nodes could
be used to improve the performance of the whole computational grid. Attention
should be paid for understanding that this is not the case of ratings collected by
an automated agent that measures in some way how much a user likes an item,
i.e. a browser that keeps track of the amount of time you spent on a web page.
In such a situation we say that the rating was collected in an IMPLICIT way
and the person whose behaviour has been observed to produce the rating should
be considered as the asserter of the rating itself.

A rating can have a value. It is an additional information, whose interpreta-
tion depends on the context in which the rating has been produced. The browser
of the previous example could value ratings by counting the number of times a
user visited a certain web page. The great part of engines that collect explicit

ratings ask the user to enter a preference about an item. In this case, the value

property is appropriate to store such a preference. To assure processability and
uniformity for third parties software, a rating value must be numerical, in the
sense that it must be a typed literal with a numeric data type. In a context where
no values are assigned to ratings, a rating should be considered as a positive as-
sertion, but the the absence of a rating should be considered like an unknown
value, and not as a negative assertion. The Following section contains some code
fragments as usage examples of the Ratings Ontology classes and properties.
In order to improve readability, we decided to use entity references instead of

full name-spaces in URIs. We use rat as a shortcut for the ratings ontology
name-space, and xsd for the XML Schema one.

4.2 Ratings Collection Engines

Information about the rating context and the engine responsible for the collec-
tion is encoded by the RatingsCollector class instances. It is appropriate to
create an instance for each engine, in order to keep track of who is responsible
for the collection of a rating. For example, if two web sites use the same soft-
ware to produce and store ratings, they should be represented by two distinct
RatingsCollector instances. For each rating collector the mode in which this en-
gine works has to be specified. In the EXPLICIT mode the asserter is explicitly
asked to enter a rating about a resource, i.e. by using a form. The IMPLICIT

mode was introduced in Sect.4.1, and it covers all scenarios in which the user is
not asked explicitly to assess a rating, but ratings are produced observing her
behaviour. The following code fragment is the definition of a ratings collector
that works in explicit mode.

<rat:RatingsCollector rdf:about="http://example.collector1.org">

<rat:mode rdf:resource="&rat;EXPLICIT_MODE" />

....

</rat:RatingsCollector>

The most common way to collect explicit ratings is to ask users to choose
a preference value for an item from a set of available ratings. For example,
at the end of a movie, the user could be asked to choose a rating in the set
{GOOD, BAD}. As pointed out in Sec.4.1, these two values must be saved into
our rating data base as numerical values, i.e. using 1 for GOOD and 0 for BAD.
The set of available ratings can vary for each collection engine. For example
MovieLens [9] allows users to enter preferences in the range from 1 to 5 stars.
Moreover, there is some system in which available rating values are not a discrete
finite set, as in previous examples, but a continuous interval(Moleskiing[2]). Rat-
ings ontology provides two different ways to define the range of available ratings.
The first one models a discrete finite ratings set via exhaustive enumeration
of available rating values. For this purpose Ratings Ontology offers the property
hasAllowedRatingV alue, that allows to specify one by one allowed rating val-
ues. The following code fragment shows how to encode a Ratings Collector with
mode set to explicit and 1, 2, 3 as available rating values.

<rat:RatingsCollector rdf:about="http://example.collector2.org">

<rat:mode rdf:resource="&rat;EXPLICIT_MODE" />

<rat:hasAllowedRatingValue rdf:datatype="&xds;integer">

1

</rat:hasAllowedRatingValue>

<rat:hasAllowedRatingValue rdf:datatype="&xds;integer">

2

</rat:hasAllowedRatingValue>

<rat:hasAllowedRatingValue rdf:datatype="&xds;integer">

3

</rat:hasAllowedRatingValue>

</rat:RatingsCollector>

The second mechanism is more general but less expressive. At first an interval
can be bounded or unbounded, in one or both directions. The hasRatingV aluesRangeLowerBound

and hasRatingV aluesRangeUpperBound properties respectively allow to define
an upper and a lower bound for a ratings range. The following code fragment
shows how to encode intervals [5, +∞[⊂ IR and [1, 1.5] ⊂ IR.

<rat:RatingsCollector rdf:about="http://example.collector3.org">

<rat:mode rdf:resource="&rat;EXPLICIT_MODE />

<rat:hasRatingValuesRangeLowerBound rdf:datatype="&xds;integer">

5

</rat:hasRatingValuesRangeLowerBound>

</rat:RatingsCollector>

<rat:RatingsCollector rdf:about="http://example.collector4.org">

<rat:mode rdf:resource="&rat;IMPLICIT_MODE />

<rat:hasRatingValuesRangeLowerBound rdf:datatype="&xds;integer">

1

</rat:hasRatingsLowerRangeBound>

<rat:hasRatingValuesRangeUpperBound rdf:datatype="&xds;float">

1.5

</rat:hasRatingValuesRangeUpperBound>

</rat:RatingsCollector>

A range defined in this manner is assumed to be continuous. If we have a
finite or not finite ratings range, in which available values are equally spaced we
can encode it with the ratingsEquispacedWithDistance property. Obviously,
such a range consists of a set of discrete values. The following code fragment
shows how to define the set of even numbers as the ratings range.

<rat:RatingsCollector rdf:about="http://example.collector5.org">

<rat:mode rdf:resource="&rat;EXPLICIT_MODE />

<rat:hasRatingValuesRangeLowerBound rdf:datatype="&xds;integer">

0

</rat:hasRatingValuesRangeLowerBound>

<rat:ratingsEquispacedWithDistance rdf:datatype="&xds;integer">

2

</rat:ratingsEquispacedWithDistance>

</rat:RatingsCollector>

Please note that a discrete finite set of equally spaced available ratings could
be defined using both of these two mechanisms. In order to increase readability

and minimise the storage size, the definition via enumeration should be used
only when the amount of available values is not too large.

4.3 Ratings Collector Class Diagram

These two ways to define the set of available ratings are mutually exclusive,
so you can’t mix them to create an hybrid ratings range. This constraint was
made explicit in the ontology definition creating two disjointed classes for rating
collectors, one for each range definition mechanism. The RatingsCollector class
is defined as the union of these two classes, with the additional mode property.
Figure 1 outlines ratings ontology classes and properties.

Fig. 1. Ratings Ontology class diagram

4.4 Invalid Ratings

OWL provides features to include into the ontology definition the most of the
constraints needed for rating data sets. In example cardinality constraints are
used to specify that a rating must have just one asserter. The only additional
constraint needed is about rating values related to the set of available ratings
provided by the engine. If we found a rating whose value is not allowed by the
engine that collected it, this rating should be considered invalid and discarded
by tools that process the data set this rating belongs to. The presence of such
a rating in the data set probably was caused by an error during the collection
task, or by some other processing of the data set itself.

On the other hand, you can define a ratings collector with a ratings range
lower bound greater than the upper bound, producing a meaningless definition.
We decide to leave unspecified how to handle such a situation, delegating this
task to implementations.

5 Applications : Data Set Statistics

As pointed out in Sect.1, a universal format to deal with ratings, as Ratings
Ontology aims to become, allowed us to develop software tools that process
ratings independently from the engine which collected them. In this section we
introduce a set of tools able to find out various statistical information from a set
of ratings, stored via the ratings ontology. These tools have been developed using
the Jena[13] api for RDF and OWL processing, and the SPARQL[14] support
provided by the ARQ engine for queries. The tools are available as set of api
together with the command line tools based on the api itself. We have planned to
release a graphical version in the near future and to make the api also available
as a web service.

5.1 Validity Checker

The first tool performs the rating validation described in Sect.4.4. Given a re-
source into an rdf model, the first feature is to detect whether it is a valid rating
or not. Moreover we provide a Jena reasoner to discover all errors in a model,
signalling also invalid ratings.

5.2 Collection Engines

As pointed out in Sect.4, a common data set could be used to store ratings
collected by different engines. The second tool extracts all ratings engines defined
into an rdf model, providing also basic information about them like the mode
and the set of available ratings.

5.3 Asserters and Items

Our suite also provides features to retrieve the following information from a
rating data set :

1. number of rating asserters;
2. number of rated items;
3. the list of all asserters;
4. the list of all rated items;
5. total number of ratings;
6. total number of distinct ratings;
7. ratings density.

It can happen that a user assesses two different ratings for the same item
at two different times. The System that keeps track of this fact should store
additional information to distinguish these two different events (for example a
timestamp). We say that two ratings are distinct if they differ for asserter, rated
item or both.

Density measures the amount of available information provided by a ratings
set. It coincides with the density of the bi-dimensional matrix labelled with
asserters and items, and with rating values into cells. We use the formulation of
density that can be found in [15]:

Density =
IU

I ∗ U
(1)

where U is the total number of asserters, I is the total number of rated items,
and IU is the total number of distinct ratings. All of these calculations can be
restricted to a single collection engine. So, given a collection engine E we can
retrieve the number of asserters which have at least one rating collected by E,
the number of items with at least one rating collected by E, and so on.

5.4 Statistics on rating values

We can find out various statistics from a set of ratings collected by the same,
well known, engine. For example we can get:

1. frequency distribution of available rating values;
2. average and variance of ratings;
3. average rating for an item;
4. the list of more rated items.

Dealing with ratings collected by different engines is a more subtle task,
because the raw numerical value of a rating is meaningless without any infor-
mation about its collector ratings range. Given two different collector engines
E1 and E2 with a limited ratings range(a rating range with an upper and a
lower bound), ratings collected by these two engines could be normalised into
the interval [0, 1] in order to be processed in a uniform way. For this reason, our
suite allows to find out statistics about ratings collected by two or more engines
with finite rating ranges.

6 Conclusions And Future Works

This paper introduces Ratings Ontology, an OWL based format to deal with
ratings and related matters. This ontology also provides elements to describe
collection contexts, that contain all information needed to give a correct inter-
pretation of a rating and of its value. In Sect.5 we presented some tools that work
on documents in this format, showing how a uniform exchange format could be
useful to develop collection engine independent tools. We have planned to de-
liver two different applications that deal with data sets with elements described
through Ratings Ontology. At first, to help researchers and companies we want
to develop a full test suite for collaborative filtering and trust algorithms. This
task involves the definition of a common format to describe test results, and
the development of some tools for statistical results visualisation. Another appli-
cation of this ontology could be a generic framework for recommender systems.
We are considering to use SWAMI[16] as starting point.

References

1. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item col-
laborative filtering. In: Internet Computing. Volume 7., IEEE (2003) 76– 80

2. Avesani, P., Massa, P., Tiella, R.: A trust-enhanced recommender system ap-
plication: Moleskiing. In: Proceedings of the 2005 ACM symposium on Applied
computing SAC ’05. (2005)

3. Herman, I., Swick, R., Brickley, D.: Resource description framework (rdf) (2004)
http://www.w3.org/RDF/.

4. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform resource identifier (uri):
Generic syntax. In: Request For Comments. Number 3986. IETF

5. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
(2004) http://www.w3.org/TR/rdf-schema/.

6. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview (2004)
http://www.w3.org/TR/owl-features/.

7. Golbeck, J.: The Trust Ontology. http://trust.mindswap.org/trustOnt.shtml.

8. Brickley, D., Miller, L.: The friend of a friend (foaf) project. (2007)
http://www.foaf-project.org/.

9. Miller, B., Albert, I., Lam, S., Konstan, J., Riedl, J.: Movielens unplugged:
Experiences with a recommender system on four mobile devices. In: 17th
Annual Human-Computer Interaction Conference, GroupLens Research (2003)
http://movielens.umn.edu/.

10. Ayers, D.: Review vocabulary http://dannyayers.com/xmlns/rev/.

11. Longo, C.: Ratings ontology http://www.tvblob.com/ratings/.

12. Farag, A., Muthucumaru, M.: Evolving and managing trust in grid computing
systems. In: Canadian Conference on Electrical Computer Engineering. (2002)

13. McBride, B.: Jena: Implementing the RDF Model and Syntax Specification. In:
Semantic Web Workshop, WWW2001. http://jena.sourceforge.net/.

14. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2007)
http://www.w3.org/TR/rdf-sparql-query/.

15. Caldern-Benavides, M.L., Gonzlez-Caro, C.N., de J. Prez-Alczar, J., Garca-Daz,
J.C., Delgado, J.: A comparison of several predictive algorithms for collaborative
filtering on multi-valued ratings. In: ACM symposium on Applied computing.
(2004)

16. Fisher, D., Hildrum, K., Hong, J., Newman, M., Thomas, M., Vuduc, R.: SWAMI:
a framework for collaborative filtering algorithm developmen and evaluation. In:
Research and Development in Information Retrieval. (2000) 366–368

