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Abstract. Acquiring and maintaining Semantic Web rules is very de-
manding and can be automated though partially by applying Machine
Learning algorithms. In this paper we show that the form of Machine
Learning known under the name of Inductive Logic Programming (ILP)
can help. In particular, we take a critical look at two ILP proposals based
on knowledge representation frameworks that integrate Description Log-
ics and Horn Clausal Logic and draw from them general conclusions that
can be considered as guidelines for further ILP research of interest to the
Semantic Web.

1 Introduction

The logical layer of the Semantic Web architecture is currently one of the major
sources of research challenges in the field. Indeed, whereas the mark-up language
OWL for ontologies is already undergoing the standardization process at W3C,
the debate around a unified language for rules is still ongoing. Proposals like
SWRL1 extend OWL with constructs inspired to Horn Clausal Logic (HCL)
in order to meet the primary requirement of the logical layer: ’to build rules
on top of ontologies’. Since the design of OWL has been based on Description
Logics (DLs) [1] (more precisely on the SH family of very expressive DLs [9]),
rule languages for the Semantic Web will most likely follow the tradition of old
hybrid Knowledge Representation (KR) systems such as AL-log [7] and Carin
[11] that integrate DLs and HCL.

Acquiring and maintaining Semantic Web rules is very demanding and can
be automated though partially by applying Machine Learning (ML) algorithms.
The ML approach known under the name of Inductive Logic Programming (ILP)
[22] seems particularly promising for the following reasons. ILP was born at the
intersection of Concept Learning [19] and Logic Programming [17]. Thus it has
been historically concerned with rule induction from examples within the KR
framework of HCL and with the aim of prediction. The distinguishing feature
of ILP, also with respect to other forms of Concept Learning, is the use of
prior knowledge during the induction process. We claim that learning Semantic
Web rules can be reformulated as learning rules by having ontologies as prior
1 http://www.w3.org/Submission/SWRL/



knowledge. This may motivate an interest of the Semantic Web community in
ILP. In this paper we take a critical look at the only two ILP attempts at learning
rules within hybrid DL-HCL KR frameworks, the one for Carin [28] and the
other for AL-log [12]. From the comparative analysis of the two we shall draw
general conclusions that can be considered as guidelines for further ILP research
of interest to the Semantic Web.

The paper is organized as follows. Section 2 provides the basic notions of DLs
and HCL. Section 3 briefly describes different forms of integration of DLs and
HCL. Section 4 first provides background information on the ILP methodological
apparatus for non informed readers, then compares the two ILP proposals for
hybrid DL-HCL formalisms. Section 5 concludes the paper with final remarks.

2 Logics behind Semantic Web Ontologies and Rules

Ontologies and rules for the Semantic Web are logically founded on Description
Logics (DLs) and Horn Clausal Logic (HCL) respectively.

2.1 Description Logics

DLs are a family of decidable FOL fragments that allow for the specification
of knowledge in terms of classes (concepts), binary relations between classes
(roles), and instances (individuals) [2]. Complex concepts can be defined from
atomic concepts and roles by means of constructors (see Table 1). E.g., concept
descriptions in the basic DL AL are formed according to only the constructors of
atomic negation, concept conjunction, value restriction, and limited existential
restriction. The DLs ALC and ALN are members of the AL family. The for-
mer extends AL with (arbitrary) concept negation (also called complement and
equivalent to having both concept union and full existential restriction), whereas
the latter with number restriction. The DL ALCNR adds to the constructors
inherited from ALC and ALN a further one: role intersection (see Table 1).

A DL knowledge base (KB) can state both is-a relations between concepts
(axioms) and instance-of relations between individuals (resp. couples of indi-
viduals) and concepts (resp. roles) (assertions). Concepts and axioms form the
so-called TBox whereas individuals and assertions form the so-called ABox2.
The semantics of DLs is defined through a mapping to FOL. An interpretation
I = (∆I , ·I) for a DL KB consists of a domain ∆I and a mapping function ·I . In
particular, individuals are mapped to elements of ∆I such that aI 6= bI if a 6= b
(Unique Names Assumption (UNA) [25]). Also the KB represents many different
interpretations, i.e. all its models. This is coherent with the Open World Assump-
tion (OWA) that holds in FOL semantics. The main reasoning task for a DL
KB is the consistency check that is performed by applying decision procedures
based on tableau calculus.
2 When a DL-based ontology language is adopted, an ontology is nothing else than a

TBox. If the ontology is populated, it corresponds to a whole DL KB, i.e. encom-
passing also an ABox.



Table 1. Syntax and semantics of the DL ALCNR.

bottom (resp. top) concept ⊥ (resp. >) ∅ (resp. ∆I)
atomic concept A AI ⊆ ∆I

(abstract) role R RI ⊆ ∆I ×∆I

(abstract) individual a aI ∈ ∆I

concept negation ¬C ∆I \ CI

concept intersection C1 u C2 CI
1 ∩ CI

2

concept union C1 t C2 CI
1 ∪ CI

2

value restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}
existential restriction ∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}

at least number restriction ≥ nR {x ∈ ∆I | |{y|(x, y) ∈ RI}| ≥ n}
at most number restriction ≤ nR {x ∈ ∆I | |{y|(x, y) ∈ RI}| ≤ n}

role intersection R1 uR2 RI
1 ∩RI

2

concept equivalence axiom C1 ≡ C2 CI
1 = CI

2

concept subsumption axiom C1 v C2 CI
1 ⊆ CI

2

concept assertion a : C aI ∈ CI

role assertion 〈a, b〉 : R (aI , bI) ∈ RI

2.2 Horn Clausal Logic

The basic element in HCL is the atom of the form p(ti, . . . , tki) such that each
p is a predicate symbol and each tj is a term. A term is either a constant or a
variable or a more complex term obtained by applying a functor to simpler term.
Constant, variable, functor and predicate symbols belong to mutually disjoint
alphabets. A literal is an atom either negated or not. A clause is a universally
quantified disjunction of literals. Usually the universal quantifiers are omitted
to simplify notation. Alternative notations are a clause as set of literals and a
clause as an implication. A definite clause is an implication of the form

α0 ← α1, . . . , αm

where m ≥ 0 and αi are atoms, i.e. a Horn clause with exactly one positive literal.
The right-hand side α0 and the left-hand side α1, . . . , αm of the implication are
called head and body of the clause, respectively. Note that the body is intended
to be an existentially quantified conjunctive formula ∃α1∧ . . .∧αm. Furthermore
definite clauses with m > 0 and m = 0 are called rules and facts respectively.

Definite clauses are at the basis of logic programming [17] and deductive
databases [4]. In particular, the language Datalog for deductive databases does
not allow functors and recursion. A Datalog program D is a set of Data-
log clauses. The predicates occurring in D are partitioned into two sets: the
extensional predicates (EDB-predicates) and the intensional predicates (IDB-
predicates). It is required that the predicate in the head of each rule in D be
an IDB-predicate. Based on this distinction between extensional and intensional



predicates, a Datalog program D can be divided into two parts, called ex-
tensional and intensional. The extensional part, denoted as EDB(D), is the set
of facts of D involving the extensional predicates, whereas the intensional part
IDB(D) is the set of all other clauses of D.

The model-theoretic semantics of Datalog is based on the notion of Her-
brand interpretation. Let D be a Datalog program. The Herbrand base HB
of D is the set of all atoms of the form p(c1, . . . , ck) such that p is a predicate
of D and all the ci are constants of D. We write EHB (resp. IHB) to denote
the atoms of HB whose predicates are extensional (resp. intensional). An Her-
brand interpretation for D is a subset of the Herbrand base HB. Let H be an
Herbrand interpretation for D. A positive ground literal l is satisfied by H if
l ∈ H. A negative ground literal ¬l is satisfied by H if l 6∈ H. An Herbrand
interpretation H for D is said to be a model of D if for every clause γ of D, for
every ground instance γ′ of γ, at least one of the literals of γ′ is satisfied by H.
The meaning of a Datalog program D is the set of its models. The intersection
of all the models of D is itself a model of D, and in particular is the so-called
least Herbrand model, i.e. it is the subset of each Herbrand model of D. The cor-
responding proof-theoretic semantics of Datalog is based on the Closed World
Assumption (CWA).

Deductive reasoning with HCL is formalized in its proof theory. In clausal
logic resolution comprises a single inference rule which, from any two clauses hav-
ing an appropriate form, derives a new clause as their consequence. Resolution
is sound: every resolvent is implied by its parents. It is also refutation complete:
the empty clause is derivable by resolution from any set S of Horn clauses if S is
unsatisfiable. The main reasoning task in Datalog is query answering. A query
Q to a Datalog program D is a Datalog clause of the form

← α1, . . . , αm

where m > 0, and αi is a Datalog atom. An answer to a query Q is a substitu-
tion θ for the variables of Q. An answer is correct with respect to the Datalog
program D if D |= Qθ. The answer set to a query Q is the set of answers to
Q that are correct w.r.t. D and such that Qθ is ground. In other words the
answer set to a query Q is the set of all ground instances of Q which are logical
consequences of D. Answers are computed by refutation.

3 Combining Ontologies and Rules

The integration of Ontologies and Rules for the Semantic Web follows the tradi-
tion of KR research on hybrid systems, i.e. those systems which are constituted
by two or more subsystems dealing with distinct portions of a single KB by per-
forming specific reasoning procedures [8]. The motivation for investigating and
developing such systems is to improve on two basic features of KR formalisms,
namely representational adequacy and deductive power, by preserving the other
crucial feature, i.e. decidability. Indeed DLs and HCL are FOL fragments in-



comparable as for the expressiveness [2] and the semantics [26]3 but combinable
under certain conditions. In particular, combining DLs with HCL can easily yield
to undecidability if the interface between them is not reduced (safeness). A safe
interaction between the DL and the HCL part of an hybrid KB allows also to
solve the semantic mismatch between DLs and HCL [20,27].
AL-log [7] is a safe hybrid KR system that integratesALC [29] and Datalog

[4]. In particular, variables occurring in the body of rules may be constrained with
ALC concept assertions to be used as ’typing constraints’. This makes rules ap-
plicable only to explicitly named objects. Reasoning for AL-log knowledge bases
is based on constrained SLD-resolution, i.e. an extension of SLD-resolution with
a tableau calculus for ALC to deal with constraints. Constrained SLD-resolution
is decidable and runs in single non-deterministic exponential time. Constrained
SLD-refutation is a complete and sound method for answering ground queries.

A comprehensive study of the effects of combining DLs and HCL (more
precisely, Horn rules) can be found in [11]. Here the family Carin of hybrid lan-
guages is presented. Special attention is devoted to the DL ALCNR. The results
of the study can be summarized as follows: (i) answering conjunctive queries over
ALCNR TBoxes is decidable, (ii) query answering in a logic obtained by ex-
tending ALCNR with non-recursive Datalog rules, where both concepts and
roles can occur in rule bodies, is also decidable, as it can be reduced to com-
puting a union of conjunctive query answers, (iii) if rules are recursive, query
answering becomes undecidable, (iv) decidability can be regained by disallowing
certain combinations of constructors in the logic, and (v) decidability can be
regained by requiring rules to be role-safe, where at least one variable from each
role literal must occur in some non-DL-atom. As in AL-log, query answering is
decided using constrained resolution and a modified version of tableau calculus.
As opposite to AL-log, the hybridization in Carin is not safe.

4 Learning Rules on top of Ontologies with ILP

4.1 The methodological apparatus of ILP

ILP was born at the intersection between Logic Programming and Concept
Learning. From Logic Programming it has borrowed the KR framework. From
Concept Learning it has inherited the inferential mechanisms for induction, the
most prominent of which is generalization. In Concept Learning generalization is
traditionally viewed as search through a partially ordered space of inductive hy-
potheses [19]. According to this vision, an inductive hypothesis is a clausal theory
and the induction of a single clause requires (i) structuring, (ii) searching and
(iii) bounding the space of clauses. To serve the purposes of this paper we focus
on (i) by clarifying the notion of ordering for clausal spaces. One such ordering
is θ-subsumption [23]: Given two clauses C and D, we say that C θ-subsumes D

3 Remind that the OWA holds for DLs whereas CWA is valid in HCL. Note that the
OWA and CWA have a strong influence on the results of reasoning.



if there exists a substitution θ, such that Cθ ⊆ D. In θ-subsumption the back-
ground knowledge that figures prominently in ILP problem settings is left out of
consideration. Yet combining the examples with what we already know often al-
lows for the construction of a more satisfactory theory that can be glanced from
the examples by themselves. Given the usefulness of background knowledge, or-
ders have been proposed that reckon with it, e.g. Plotkin’s relative subsumption
[24] and Buntine’s generalized subsumption [3]. Relative subsumption applies to
arbitrary clauses and the background knowledge may be an arbitrary finite set of
clauses. Generalized subsumption only applies to definite clauses and the back-
ground knowledge should be a definite program. Each of these orders is related to
some form of deduction. It can be shown by using these two forms of deduction
that generalized subsumption is a weaker quasi-order than relative subsumption.
Also, it can be shown that both relative and generalized subsumption reduce to
ordinary subsumption in case of non-tautologous clauses and empty background
knowledge. Generalized subsumption is of major interest to this paper. It is
called semantic generality in contrast to θ-subsumption which is a purely syn-
tactic generality. In the general case, semantic generality is undecidable and does
not introduce a lattice on a set of clauses. Because of these problems, syntactic
generality is more frequently used in ILP systems. Yet for Datalog generalized
subsumption is decidable and admits a least general generalization.

Once structured, the space of hypotheses can be searched (ii) by means of
refinement operators. The definition of refinement operators presupposes the in-
vestigation of the properties of the various quasi-orders. In Shapiro’s sense [30],
a refinement operator is a function which computes a set of specializations of a
clause. Specialization is suited for the direction of search in his approach. His
kind of refinement operator has been therefore called a downward refinement
operator in ILP. Dually, operators can be also defined to compute generaliza-
tions of clauses. These can be applied in a bottom-up search, so they have been
named upward refinement operators. A good refinement operator should sat-
isfy certain desirable properties [32]. We shall illustrate these properties for the
case of downward refinement operators but analogous conditions are actually
required to hold for upward refinement operators as well. Ideally, a downward
refinement operator should compute only a finite set of specializations of each
clause - otherwise it will be of limited use in practice. This condition is called
local finiteness. Furthermore, it should be complete: every specialization should
be reachable by a finite number of applications of the operator. Finally, it is
better only to compute proper specializations of a clause, for otherwise repeated
application of the operator might get stuck in a sequence of equivalent clauses,
without ever achieving any real specialization. Operators that satisfy all these
conditions simultaneously are called ideal. It has been shown that ideal upward
and downward refinement operators do not exist for both full and Horn clausal
languages ordered by either subsumption or the stronger orders (e.g. implica-
tion). In order to define a refinement operator for full clausal languages, it is
necessary to drop one of the three properties of idealness. Locally finiteness and
completeness are usually considered the most important properties. This means



that locally finite and complete, but improper refinement operators can be de-
fined for full clausal languages. On the other hand, in order to retain all the three
properties of idealness, it seems that the only possibility is to restrict the search
space. Hence, the definition of refinement operators is usually coupled with the
specification of a declarative bias for bounding the space of clauses (iii). Bias
concerns anything which constrains the search for theories [31]. Following [21] we
will distinguish three kinds of bias: (a) Language bias that specifies constraints
on the clauses in the search space; (b) Search bias that has to do with the way
an ILP system searches its space of permitted clauses; (c) Validation bias that
concerns the stopping criterion of the ILP system.

Induction with ILP generalizes from individual instances/observations in the
presence of background knowledge, finding valid hypotheses. Validity depend on
the underlying setting. At present, there exist several formalizations of induction
in clausal logic. Two orthogonal dimensions are usually taken into account when
classifying these formalizations [6]: the scope of induction (discrimination versus
characterization) and the representation of observations (ground definite clauses
versus ground unit clauses). Discriminant induction (also called predictive induc-
tion) aims at inducing hypotheses with discriminant power as required in tasks
such as classification. In classification, observations encompass both positive and
negative examples. Characteristic induction (also called descriptive induction) is
more suitable for finding regularities in a given set of unclassified examples. This
corresponds to learning from positive examples only. For a thorough discussion
of differences between discriminant and characteristic induction see [18]. The
second dimension affects the notion of coverage, i.e. the condition under which
a hypothesis explains an observation. In learning from entailment (also called
learning from implications), hypotheses are clausal theories, observations are
ground definite clauses, and a hypothesis covers an observation if the hypothesis
logically entails the observation. In learning from interpretations, hypotheses are
clausal theories, observations are Herbrand interpretations (ground unit clauses)
and a hypothesis covers an observation if the observation is a model for the hy-
pothesis. A deeper investigation of learning from entailment and learning from
interpretations can be found in [5].

4.2 ILP and DL-HCL formalisms

Learning in DL-HCL hybrid languages has very recently attracted some attention
in the ILP community. Two ILP frameworks have been proposed that adopt a
hybrid representation for both hypotheses and background knowledge.

In [28], the chosen language is Carin-ALN . The framework focuses on dis-
criminant induction and adopts the ILP setting of learning from interpretations.
The target concept is a unary Datalog predicate, therefore hypotheses are rep-
resented as Carin-ALN rules with a Datalog literal in the head. The coverage
relation of hypotheses against examples and the generality relation between two
hypotheses are based on the existential entailment algorithm of Carin. In par-
ticular, the generality relation is defined as an extension of Buntine’s generalized
subsumption [3]. Following [28], Kietz studies the learnability of Carin-ALN ,



thus providing a pre-processing method which enables ILP systems to learn
Carin-ALN rules [10].

In [12], the representation and reasoning means come from AL-log. Hypothe-
ses are represented as constrained Datalog clauses that are linked, connected
(or range-restricted), and compliant with the bias of Object Identity (OI)4. Note
that this framework is general, meaning that it is valid whatever the scope of in-
duction (description/prediction) is. Therefore the literal in the head of hypothe-
ses represents a concept to be either discriminated from others (discriminant
induction) or characterized (characteristic induction). The generality relation
for one such hypothesis language is an adaptation of generalized subsumption
[3], named B-subsumption, to the AL-log KR framework. It gives raise to a
quasi-order and can be checked with a decidable procedure based on constrained
SLD-resolution [14]. Coverage relations for both ILP settings of learning from
interpretations and learning from entailment have been defined on the basis of
query answering in AL-log [13]. As opposite to [28], the framework has been
implemented in an ILP system [16]. More precisely, an instantiation of it for
the case of characteristic induction from interpretations has been considered.
Indeed, the system supports a variant of a very popular data mining task - fre-
quent pattern discovery - where rich prior conceptual knowledge is taken into
account during the discovery process in order to find patterns at multiple levels of
description granularity. The search through the space of patterns represented as
unary conjunctive queries in AL-log and organized according to B-subsumption
is performed by applying an ideal downward refinement operator [15].

5 Final remarks

Building rules on top of ontologies for the Semantic Web poses several challenges
not only to KR researchers investigating suitable hybrid DL-HCL formalisms but
also to the ML community which has been historically interested in application
areas where the Knowledge Acquisition bottleneck is particularly severe. In this
paper, we have provided a brief survey of ILP literature dealing with hybrid
DL-HCL formalisms. From the comparative analysis of [28] and [12], a common
feature emerges. Both proposals resort to Buntine’s generalized subsumption,
being it a semantic generality relation. Note that in both the extension of [3]
to hybrid DL-HCL formalisms is not trivial. Following the guidelines of [28] and
[12], new ILP frameworks can be designed to deal with more expressive hybrid
DL-HCL languages. The augmented expressive power may be due to a more
expressive DL (than ALC and ALN ), or a more expressive HCL fragment (than
Datalog), or a looser integration between the DL and the HCL parts. We would
like to emphasize that the safeness and the decidability of these formalisms are
two desirable properties which are particularly appreciated both in ILP and in
the Semantic Web application area.
4 The OI bias can be considered as an extension of the UNA from the semantic level

to the syntactic one of AL-log. It can be the starting point for the definition of either
an equational theory or a quasi-order for constrained Datalog clauses.
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