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Abstract. Recent research showed the benefits of adopting formal on-
tologies as a means for accessing heterogeneous data sources. The use of
an ontology not only provides a uniform and flexible approach for inte-
grating and describing these sources, but it can be used to improve the
usability of an integrated system by guiding the final user to formulate
his/her information needs. More precisely, the task of formulating queries
can be supported by an intelligent use of the ontology describing the in-
formation sources. In fact, it has been proved that an appropriate use
of automated reasoning techniques can support a user in formulating a
precise query —which best captures her/his information needs— even in
the case of complete ignorance of the vocabulary of the underlying infor-
mation system holding the data. Previous work has been carried out on
intelligent interfaces for query formulation and this paper describes how
to improve usability of such systems by reducing the calls to reasoning
services.

1 Introduction

In this paper we introduce the reader to the features of an intelligent query
interface. We simply call it Query Tool and it was devised to enable users to
access heterogeneous data sources by means of an integrated ontology. The Query
Tool supports the users in formulating a precise conjunctive query, where the
intelligence of the interface is driven by reasoning services running over a given
logic-based ontology.

The ontology, which describes a given domain, defines a vocabulary which
is richer than the logical schema of the underlying data, and it is meant to be
closer to the user’s wide vocabulary. The user can exploit the ontology’s entities
to formulate the query, and she is guided by such a richer vocabulary in order
to understand how to express her information needs more precisely, given the
knowledge of the system. This latter task —called intensional navigation— is
the most innovative functional aspect of our interface. Intensional navigation
can help a less skilled user during the initial step of query formulation, thus
overcoming problems related to the lack of schema comprehension and enabling
her to easily formulate meaningful queries. Queries can be specified through an
iterative refinement process supported by the ontology via intensional naviga-
tion. The user may specify her request using generic terms, refine some terms



of the query or introduce new terms, and iterate the process. All details are
thoroughly described in the coming sections.

Furthermore we draw the attention of the reader towards the optimisation
techniques we are applying to the Query Tool in order to improve the usability of
the system. Improvements are made working on three fronts: reducing as much
as possible the calls to the reasoner, storing the taxonomy, and caching query
information.

The paper is organised as follows. First of all we describe the technologies
and techniques underlying the system, then we present the actual system (Query
Tool) from the user perspective, with a complete exposition of the functionali-
ties of the interface. Afterwards we illustrate the interaction with the reasoning
services followed by a section on the optimisations of such a system. Finally,
in the discussion section, we show how we are also leveraging natural language
generation technologies to enhance user interaction with the interface.

2 Background

2.1 Ontology mediated access to data sources

The purpose of the presented Query Tool is to support query formulation in
the context of information access mediated by ontologies. More specifically, the
scenario in which we consider the deployment of the tool consists of one or more
data sources providing their own query language (e.g. they can be relational
sources). The information provided by the sources is described by means of a
global ontology together with mappings relating the ontology vocabulary to the
vocabulary of the data sources. We do not impose any constraint on the kind of
mappings and/or architecture underlying the integration system.

The Query Tool relies on the availability of an ontology providing the vo-
cabulary for the queries and a query engine capable to retrieve the data. These
minimal requirements enable the Query Tool to be used in simple cases in which
data are retrieved from a knowledge base (see [10]) as well as more complex
architectures in which query answering requires complex processing (e.g. using
rewriting [2]).

The ontology language adopted by the tool is OWL-DL (see [6]), therefore the
conceptual model exposed to the user centres around the concept of classes and
properties. While the user is guided to the construction of queries structured in
terms and properties which can be refined (see the next sections for details), the
system generates conjunctive queries composed by unary (classes) and binary
(attribute and relation) predicates.

2.2 Queries

The Query Tool represents queries to the user as trees, in which nodes are
labelled by classes and edges by properties. Each node of the tree correspond to
a different variable and properties (edges) constitute the joins between a node



and the rest of the query. In this way the conjunctive queries generated by the
system are acyclic.1

Users interact with the system to refine the query by a set of operations which
can be performed on nodes of the query tree. Once selected, a node becomes the
focus for the operations which can be divided into substitution (when a class
is substituted by more general or specific one) and incremental refinement by
addition of compatible classes or properties. Additionally, the system allows the
deletion of part of the query.

For each focus the tool suggests the terms and/or properties which can be
used to refine the query. This step requires the interaction with an OWL-DL
reasoner in order to establish which properties or classes are “compatible” with
the current query. This must be done in real time when the user interacts with the
tool, since both the query and the focus affect the responses from the reasoner.

For more details on the query language and the user perspective over the
tool, the reader is referred to [4]; in this paper we concentrate on showing how
we increased the responsiveness of the system by optimising the use of the OWL
reasoner.

2.3 Reasoning services

An OWL reasoner is employed to derive the information required to drive the
interface. These information range from the taxonomical position of an OWL
expression w.r.t. the terms of the ontology, to the satisfiability of an expression.

To allow for the maximum flexibility, the tool communicates with the rea-
soner by means of the DIG API (see [1]). To one side this enables the possibility
of using any compliant reasoner; but on the other side the use of HTTP as under-
lying transport introduces additional overhead in terms of network connections.

For this reason, one of the first goal we wanted to achieve is to minimise the
number of calls to the reasoner (see Section 5).

2.4 An Example

Now we want to present an example that will be referred throughout the paper
to better understand the operations involving the reasoner. To do so, we employ
an excerpt of the Wine Ontology which is shown in Fig. 1. We adopted the UML
notation to represent the is-a relationships among terms and we introduced
constraints of disjointness where needed.

We have Wine Descriptor as root concept and Wine Taste and Wine Colour
as specialisations of Wine Descriptor.The concept Wine has a property has Colour
towards concept Wine Colour; the inverse of this property is colour Of when
seen from concept Wine Colour. Wine Colour specialises in Red and White while
Wine in Red Wine, White Wine, and Table Wine respectively. Because of lack
of space, we are not going to present the axioms of this sample ontology that
can anyway be represented in OWL-DL.
1 From the technical point of view cyclic queries wouldn’t pose any problem; however,

usability tests conducted in the context of a previous project suggested that the
users don’t find co-references intuitive enough.



Wine_Descriptor

Wine_Taste Wine_Color

<<disjoint>>

Wine

Red_Wine White_Wine

<<disjoint>>

Red White

<<disjoint>>

has_Colour ≡ colour_Of- 

Table_Wine

<<disjoint>>

Fig. 1. An excerpt of the Wine Ontology.

3 Query Tool

In this section we present a brief description of the end user system. It is a
Java-based application adopting the Standard Widget Toolkit (SWT) [11] for
creating the graphical user interface. The system requires at least JRE 1.4 and
a DL reasoner providing a DIG 1.x interface.

The query interface is provided with four Tabs:

– Admin: administrative interface used to load the ontology and connect to
the reasoner.

– Compose: main query composition interface.
– Query: displays the actual query, mainly for debugging purposes.
– Results: displays the results of the query evaluation.

Initially the user is presented with the Admin Tab (see Figure 2). Here, some
preliminary operations necessary for the query formulation have to be executed:

1. Connection setup: one of the operations the user has to carry out consists
in testing the reasoner connection. A reasoner with reference to the ontol-
ogy is used by the system to drive the query interface: in particular, it is
used to discover the terms and properties which are proposed to the user to
manipulate the query.

2. Loading and managing ontology files: all the operations the system
provides cannot be accomplished without loading an ontology. The interface
allows the user to specify an ontology in DIG 1.x format to be loaded into the
system. Once the ontology is loaded into the system, the user has also the
possibility to adjust the content of that ontology, depending on her needs;
if the user wants that the modifications take a permanent effect, she can
save them back to the file. As a matter of fact, users might frequently have
the necessity to extend an ontology in order to obtain different results or to
correct it as a consequence of unexpected behaviour.

3. Loading a metadata file: the interface gives the possibility to the user
to specify a metadata file to be loaded into the system. Metadata files con-
tain valuable information about the terms in the ontology; that information
concerns essentially the lexicalisations of those terms. Actually, as the terms



contained in the ontology could be expressed by a sort of shorthand, their
lexicalisations are provided so that the user can deal with clearly under-
standable terms.

4. Customising lexicalisations: given the metadata file, the interface offers
to the user the opportunity to apply desired variations to the lexical infor-
mation of the terms. Those variations can be saved back to a metadata file
or just saved temporarily in the system. The query to be generated should
be as unambiguous as possible: if the user can assign to the terms the lexical-
isations which best give significant importance to her, the query formulation
will be transparent and therefore the really intended result will be retrieved.

Fig. 2. Administrative interface of the Query Tool.

As you can see in Figure 2, the reasoner connection has been tested by means
of the “Connect” button. An ontology has been loaded (“Load” button) and also
a metadata file (“Browse” button). Subsequently, the “Create Schema” button
has been clicked and all the lexicalisations of the ontology terms are presented
in the “Lexical Information” table. Here the user can change the lexicalisations
by clicking on the cell corresponding to the lexicalisation she wants to modify.

In the Compose Tab (see Figure 3) the user can formulate the query by
means of pop-up menus presenting the possible operations. Initially the user
is presented with a choice of different starting terms (all the concepts in the
ontology or a subset defined by means of the metadata file): she selects the first
term to be added in the query. Subsequently, the interface gives the possibility
to perform the following operations:



– Add compatible terms: other terms specified in the ontology can be added
to the query. The compatible terms are automatically suggested to the user
by means of appropriate reasoning tasks on the ontology describing the data
sources. Indeed, the system suggests only the operations which are compat-
ible with the current query expression.

– Substitute terms: the system gives the opportunity of substituting the
selected term of the query with a more specific or more general term. It can
also be the case that in the ontology there are terms which are equivalent to
the selected one: in this case the user is offered to replace the selection with
an equivalent term.

– Delete terms: as the query is specified through an iterative refinement
process, it could be the case that the user needs to delete some terms from
the query.

– Add or delete properties: analogously, the user can add properties to the
query. A property can be a relation or an attribute. The interface suggests
a list with the possible alternatives. The user can specify some restriction
values to attributes.

Fig. 3. Query composition interface.

The first operation to compose a query consists in selecting the starting term.
By clicking on a pop-up menu (“Choose starting term”) the user is presented
with a windows showing all the terms that can be used as starting term.

Once the user has selected the starting term, it is possible to refine the query
using again the pop-up menu. The operations allowed are listed in the pop-up



menu; the user can add a compatible term, add a property (relation or attribute),
substitute the term or delete it.

If the user selects an attribute, it is possible to set it as distinguished variable
or to add a restriction to the attribute. The user can also delete properties or
terms from the query and select new ones.

Once the user has formulated the query, the Query tab shows the query in
XML and DIG formats (the menu bar “Options” allows also to view the query
in the corresponding SQL code). Finally, in the Results tab the user can retrieve
the results (if any) corresponding with the formulated query.

In the menu bar, by clicking on “View” menu, the user can have a look to
the log file (“View” log) of the application and also a concise description of the
schema with all the taxonomy (“View” schema).

4 Reasoner interaction

In this section we describe all the operations (w.r.t. the reasoner) that users can
perform during the query formulation process. Refinement of the query expres-
sion can be done by the following operations:

– addition of a compatible term;
– addition of a property;
– substitution of a term with an equivalent, more specific or more general term.

In primis we present the approach which enables the system to interact with the
reasoner and then the formalisation of the above operations.

4.1 Query rolling-up

Before discussing the actual operations in terms of their use of logical deductions,
we need to introduce a fundamental manipulation of the queries which enables
us to exploit the reasoning services provided by a DIG reasoner. This operation
is the so called rolling up of an acyclic conjunctive query (see [8]).

Roughly speaking, the rolling up transforms an arbitrary query without cy-
cles into an equivalent DL expression. The key idea behind is the fact that a
(sub)query of the form P (x, y), R(y) is equivalent to the DL expression (∃P.R)(x).
Any variable can be selected as the root of the tree (since we consider acyclic
queries) and the rest of the query can be “rolled-up” starting from the leaves.2

To analyse the properties of a given query focused on a specific variable, say
qx, we roll-up the query using the focus as the root (with variable x associated
with concept F ) and then we interrogate the reasoner using the resulting complex
concept QF (x). In the following sections we describe in detail the procedure we
employ.
2 Inverse roles provide the possibility of collapsing queries of the form P (y, x), R(y) as

well. If the ontology doesn’t include transitive roles and nominals, cyclic queries can
be handled in the same way (see [7]). We’re considering techniques to allow more
expressive languages.



4.2 Addition of a compatible term

This operation requires the list of terms “compatible” with the given query. In
terms of conjunctive queries, it corresponds to add a new term to the query.
The term is compatible and can be added to the query if the resulting query
is satisfiable. Let us formally define a compatible term w.r.t. a query. Given an
ontology Σ and a focused query QF (x) we want to find all the terms Y ∈ C
(where C are all the unary atomic terms) such that:

Σ 6|= QF (x) u Y v ⊥ Y is not disjoint with QF (x)

Σ 6|= QF (x) v Y Y is not among ancestors of QF (x)

Σ 6|= Y v QF (x) Y is not among descendants of QF (x)

The reasoning service makes use of satisfiability to check which predicates
in the ontology are compatible with the current focused query. This check cor-
responds simply to the addition of the term Y to the focused query QF (x),
and verify that the resulting query is satisfiable. Actually, this operation is very
expensive because the number of reasoner calls matches the number of unary
predicates.

Going back to the example of Sec. 2.4, if we have a query with concept
Red Wine and we want to find all the concepts which are compatible with it,
it will turn out that concept Table Wine is compatible with the query while
concept White Wine is incompatible since it is disjoint with Red Wine.

4.3 Addition of a property

The addition of a property requires the discovery of both a binary term and its
restriction (or range). The system should check all the different binary predicates
from the ontology for their compatibility. Formally, a property P is compatible
with a focused query QF (x) if

Σ 6|= QF (x) u ∃P.> v ⊥,
where > represents any possible concept of the domain.

This is practically performed by verifying the satisfiability of the query
QF (x)u∃P.>, for all atomic binary predicates P in the signature. Once a binary
predicate is found to be compatible with QF (x), repeated satisfiability is used to
select the least generic unary predicate Y ∈ C such that the query QF (x)u∃P.Y
is satisfiable. In other terms, the operation would consist in determining which
are the compatible properties first, and then establishing which are the restric-
tions applicable to P . To discover all compatible properties, we need a number
of reasoner calls equal to the number of properties in Σ. In addition, for each
property found, to determine its restriction, we need as many reasoner calls as
the number of unary predicates.

Again, returning to the example (see Sec. 2.4), this time we want to discover
the properties which are compatible with the query Wine Descriptor. As com-
patible properties propagate upwards in the hierarchy, property colour of would
be among the compatible properties of Wine Descriptor. If the user instead
composes a query with the concept Wine Taste, the property colour of would



be incompatible because the concept Wine Taste is disjoint with the concept
Wine Colour.

4.4 Substitution of a term

Here we want to substitute a focused term of the query with an equivalent, more
specific or more general term. Let us examine the substitution with a more spe-
cific term. In this case we need to perform a containment test of two conjunctive
queries. Given a query focussed on concept F (QF (x)), we are interested in the
unary terms Y subsumed by QF (x), where Y must be the most general concept
among the terms found (i.e. there is no other concept Y subsumed by QF (x) and
containing Y ). Formally, given an ontology Σ and a query QF (x), we want to
find all the terms Y ∈ C such that:

Σ |= Y v F,¬∃Z ∈ C | (Z v F, Y v Z,Z 6= Y ).
Σ 6|= F uQF (x) u Y v ⊥.

From Figure 1 it is possible to see that if the query is composed by concept Wine
and we want to substitute it with a more specific term, we would get Red Wine,
White Wine, and Table Wine as candidates for the substitution since they are
direct children of concept Wine.

The cases of substitution with more general and equivalent terms are analo-
gous.

For the sake of clarity we report the sequence of operations needed to retrieve
the substituting terms:

– query rolling-up;
– retrieval of incompatible classes: the descendants of negation of the query;
– retrieval of parents and children of the substituting term;
– filtering using incompatible terms.

We will see in Section 5.1 that a similar procedure is adopted to reduce the
calls to the reasoner when looking for compatible terms.

5 Optimisation

As discussed in Section 2.3, the system relies on a DL reasoner to drive the query
interface. If on one hand reasoning services with satisfiability and classification
allow only to formulate consistent queries, on the other hand they introduce
performance issues. Reasoner calls are expensive and should be therefore min-
imised as much as possible. The expensiveness of reasoner calls depends both
on complexity and the fact that DL reasoners exploit the HTTP protocol to
communicate.

In the following we present some optimisation techniques which can improve
the usability of the system via a more responsive interface. Aim of the optimi-
sation is to reduce the transitions between the query interface and the reasoner.
Some techniques have already been exploited to reduce the number of reasoner



calls especially in the retrieval of compatible terms to be added to the query. An-
other important improvement comes from the storage of the taxonomy. Finally,
information concerning the query can be cached during the query formulation
process in order to extract some deductions to reduce reasoner calls.

5.1 Reducing reasoner calls

Concerning the refinement of the query by compatible terms, the basic policy
to retrieve the compatible terms is to use the satisfiability reasoning service to
check which unary predicates in the ontology are compatible with the current
query. This check corresponds simply to the addition of the term to the current
query, and to verify that the resulting query is satisfiable. Actually, this kind of
operation is very expensive because the number of reasoner calls corresponds to
the number of unary predicates in the ontology.

We adopted a different implementation in the current system. We classify
the query and retrieve the its equivalents, ancestors, and descendants; then we
classify the negation of the query and retrieve the descendants which are in-
compatible. The remaining unary predicates are the compatibles (see Section
4.2).

In reference to the addition of a property, as we discussed in Section 4.3, this
operation requires the discovery of both a binary term and its restriction. One of
the advantages of OWL-DL is the possibility of expressing the inverse of a role
which is extremely useful for determining compatibility of binary terms. Hence,
to discover the restriction of a property we use classification instead of repeated
(and expensive) satisfiability. The idea is to classify the inverse of the property
restricted to the query.
For example, to discover the restriction of property has Colour applied to the
query expression

{x1 |Red Wine(x1),Table Wine(x1)},
we classify the expression ∃has Colour−(Red Wine u Table Wine).
The reasoner returns the list of concept names more general and equivalent
as range candidates of the relation has Colour, when restricted to the domain
(Red WineuTable Wine). This method, not only lets us discover the least general
predicate(s) which can be applied to the property in the given context, but also
allows us to discard those properties which are incompatible with the query,
i.e. bottom (⊥) is returned as range whenever a given property is incompatible
with the query. Summarizing, we are able to both check the compatibility of a
property with the query and find out the property’s range by means of one single
reasoner call.

5.2 Taxonomy storage

The taxonomy of the ontology provides static information concerning primitive
concepts. If we store the taxonomy before starting to compose a query, initial
operations like substituting a concept, would not involve the reasoner, thus im-
proving efficiency.



The taxonomy is actually a partial order ’<’ from Top (>), the whole domain,
to Bottom (⊥), the empty set, where the partial order relation is subsumption.
The partial order can be represented by a directed acyclic graph (DAG), i.e. a
directed graph that contains no cycles. An edge is drawn from a to b whenever
a < b. A partial order satisfies the following properties:

– transitivity, a < b and b < c implies a < c;
– non-reflexive, not(a < a).

These condition prevent cycles because a < b < ... < z < a would imply that
a < a, which is false. The only exception where the property a < a holds is for
the equivalent concepts.

The idea is to save not only the taxonomy but also other information pertain-
ing each concept such as e.g. its incompatible classes and the list of incompatible
properties.

5.3 Caching query information

The focus plays an important role during the query formulation process; in
particular the system proposes the available operations on the query w.r.t. the
current focus (i.e. the variable which is currently selected). The focus is crucial
also for caching dynamic information concerning the query and the idea is to
cache both the query and its actual classification at the focus level. In other
words, we want to associate to each single variable which gets the focus the
overall status of the query. Of course, cache at the single node level would be
invalidated as soon as the user further refines the query.

An intuitive approach to exploit the cache would consist in modifying the
system in a way that the user can only remove terms by following the exact
inverse order of the one which has been used to formulate the query. This means
that only the last operation can be undone. In this way we could reduce or even
avoid reasoner calls because the information we need has already been cached
at the node.

We know that refinement of the query is monotonic and therefore whenever
the user adds new terms to the query, the domain is going to be restricted.
This property can also lead us to some conclusions for reducing reasoner calls
in further refinements of the query. This property does not hold when the user
deletes a term from the query; in this case all the cache has to be removed.

6 Discussion

Optimising the communication and the quantity of exchanged messages behind
the scenes between the Query Tool and the reasoner is only the first action we
are taking to make the use of the interface more comfortable for the user.

The interaction time we are able to save with these enhancements is partially
re-invested in the demands of a new and more complex interface we are building,
based on state-of-the-art natural language generation (NLG) technologies.



The main challenge is that the query (now with partial verbalisation of single
concepts and roles) is to be presented to the user in natural language with full
verbalisation, and stepwise refinements of the query composed by the user are
presented as natural language refinements that maintain the grammaticality of
the sentences representing the query. Our solution adopts the paradigm called
wysiwym (‘What You See Is What You Meant’), a user-interface technique
which uses (NLG) technology to provide feedback for user interaction [9]. The
differences between our approach and that used by available systems employing
wysiwym are explained in [5], while [3] reports our experiments in terms of
discourse planning strategies of a complex concept description (query).
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