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Abstract. Ontologies are pervading many areas of knowledge represen-
tation and management. To date, most research efforts have been spent
on the development of sufficiently expressive languages for the represen-
tation and querying of ontologies; however, querying efficiency has re-
ceived attention only recently, especially for ontologies referring to large
amounts of data. In fact, it is still uncertain how reasoning tasks will scale
when applied on massive amounts of data. This work is a first step toward
this setting: based on a previous result showing that the SPARQL query
language can be mapped to a Datalog, we show how efficient querying
of big ontologies can be accomplished with a database oriented exten-
sion of the well known system DLV, recently developed. We report our
initial results and we discuss about benefits of possible alternative data
structures for representing RDF graphs in our architecture.

1 Introduction
The Semantic Web [4, 11] is an extension of the current Web by standards and
technologies that help machines to understand the information on the Web so
that they can support richer discovery, data integration, navigation, and au-
tomation of tasks. Roughly, the main ideas behind the Semantic Web aim to (i)
add a machine-readable meaning to Web pages, (ii) use ontologies for a precise
definition of shared terms in Web resources, (iii) make use of KR technology
for automated reasoning on Web resources, and (iv) apply cooperative agent
technology for processing the information of the Web. The development of the
Semantic Web proceeds in layers of Web technologies and standards, where every
layer stays on top of lower layers.

There is currently much research work on the three consecutive RDF(S),
Ontology and Rule (listed from bottom to top) layers. The RDF(S) layer was
initially conceived as a basic framework for defining resources available on the
Web and their connections. In this vision, RDF(S) should have little or no se-
mantics, and focuses only on the logical format of information, which is based
on an encoding of data as a labeled graph (or equivalently, a ternary relation,
commonly called RDF triplestore or RDF graph).



The Ontology layer should be built on top of RDF(S) and should provide the
necessary infrastructure for describing knowledge about resources. An ontology
can be written using one of the three official flavors of the OWL language [18],
currently accepted as a W3C Standard Recommendation. An OWL knowledge
base is written in RDF(S), where some of the keywords of the language are now
given additional semantics.

OWL is based on decidable flavors of description logics and features rich ex-
pressiveness which, unfortunately, introduces high computational costs for many
of the reasoning tasks commonly performed over an ontology. Nonetheless, a va-
riety of Web applications require highly scalable processing of data. This puts
the focus back to the lower RDF(S) data layer. In this context, RDF(S) should
play the role of lightweight ontology language. Indeed, RDF(S) has few and sim-
ple descriptive capabilities (mainly, the possibility to describe and reason over
monotonic taxonomies of objects). One can thus expect from RDF(S) query sys-
tems the ability of querying very large datasets with excellent performance, yet
allowing limited reasoning capabilities on the same data.

As a candidate W3C recommendation [8], the SPARQL language is reaching
consensus as query language of election for RDF(S) data. In this scenario, an
RDF(S) triplestore plays the role of a database, but, as an important difference,
a triplestore might contain information not explicitly stored, obtainable by log-
ical inference. Allowed logical inference rules are given by the official RDF(S)
semantics specification, whereas SPARQL plays the role of query language.

Although SPARQL-enabled triplestores are many [3, 20, 2, 21] their scalabil-
ity or querying capabilities are still far from maturity, having one or more of the
following drawbacks:

– RDF(S) semantics is implemented by materializing all the inferred data a
priori. This latter option can not be adopted in practice if massive amount of
data are involved in the inferencing process, since inferred information is usually
much bigger in size than explicit information.

– The basic reasoning machinery of RDF(S) prescribes heavy usage of transi-
tive closure (recursive) constructs. Roughly speaking, given a class taxonomy,
an individual belonging to a leaf class must be inferred to be member of all the
ancestor classes, up to the root class. This prevents a straightforward implemen-
tation of RDF(S) over RDBMSs, since RDBMSs usually feature very primitive,
inefficient implementations of recursion in their native query languages.

But, interestingly, in Datalog, recursion is a first class citizen. Also, most of
the SPARQL features can be mapped to a rule based language with stable model
semantics [19]. Intuitively, a large fragment of the RDF(S) semantics can thus
be implemented by means of a translation to an equivalent Datalog program.

Thus, one may think to adopt a Datalog based language language for imple-
menting RDF(S). Value invention constructs, as those introduced in [6] (where it
is defined a form of Answer Set Programming with external predicates and value
invention), allow, in practice, the manipulation of infinite universes of individuals
(as in the RDF(S) scenario) in a finite model setting.

Many important efforts in the Semantic Web community aim to integrate
Ontologies with Rules under stable model semantics (e.g. [9, 16]), considering



both OWL and RDF(S). In this context, the possibility to exploit a Datalog-
like language to express both the ontology and the query/rule language would
provide important benefits.

However, it is well known in the research community that current (extended)
Datalog based systems present important limitations when the amount of data
to reason about is large; in fact: (i) reasoning is generally carried out in main-
memory and, hence, the quantity of data that can be handled simultaneously is
limited; (ii) the interaction with external (and independent) DBMSs is not trivial
and, in several cases, not allowed at all, but in order to effectively share and
elaborate large ontologies these must be handled with some database technology;
(iii) the efficiency of present datalog evaluators is still not sufficient for their
utilization in complex reasoning tasks involving large amounts of data.

In the following we refer to a recently proposed database-oriented extension
of the well known Answer Set Programming system DLV, named DLVDB [22],
which presents the features of a Deductive Database System (DDS) and can
do all the reasoning tasks directly in mass-memory; DLVDB does not have, in
principle, any practical limitation in the dimension of input data, is capable of
exploiting optimization techniques both from the DBMS field (e.g., join ordering
techniques [12]) and from the DDS theory (e.g., magic sets [17]), and can easily
interact (via ODBC) with external DBMSs.

DLVDB turned out to be particularly effective for reasoning about massive
data sets (see benchmark results presented in [22]) and supports a rich query
and reasoning language including stratified recursion, true negation, negation as
failure, and all built-in and aggregate functions already introduced in DLV [10].
As a consequence, DLVDB seems to be a good candidate also as an ontology
querying engine.

To accomplish this goal, several building bricks are missing: (i) a mapping
from RDF(S) semantics to Datalog; (ii) the translation of SPARQL queries in
Datalog; (iii) the connection of massive RDF(S) data to a suitable system such
as DLVDB ; (iv) the evaluation of queries directly on a given triplestore using
DLVDB .

The present paper concentrates on points (iii) and (iv). About point (i),
(ii) and (iii) the reader may refer to [13],[5] and [19]. In particular, it aims to
represent a first step toward the reconciliation of expressiveness with scalability
for ontology querying, by means of deductive database technology.

The paper is organized as follows. In the next Section we briefly introduce
the main peculiarities of the DLVDB system. The Section 3 is devoted to present
our experimental results, whereas in the section 4 we discuss about alternative
data structure better suited to handling RDF data. Finally, in Section 5 we draw
some conclusions.

2 DLVDB

DLVDB [22] is an extension of the well known ASP system DLV [14] designed
both to handle input and output data distributed on several databases, and
to allow the evaluation of logic programs directly on databases. It combines the
expressive power of DLV with the efficient data management features of DBMSs
[12].



The detailed description of DLVDB is out of the scope of the present paper;
here we briefly outline the main peculiarities which make it a suitable Datalog-
based ontology querying engine. The interested reader can find a complete de-
scription of DLVDB and its functionalities in [22].
The system, along with documentation and some examples, are available for
download at http://www.mat.unical.it/terracina/dlvdb.

Generally speaking, DLVDB allows for two typologies of execution: (i) direct
database execution, which evaluates logic programs directly on database, with
a very limited usage of main-memory but with some limitations on the expres-
siveness of the queries, and (ii) main-memory execution, which loads input data
from different (possibly distributed) databases and executes the logic program
directly in main-memory. In both cases, interoperation with databases is pro-
vided by ODBC connections; these allow handling, in a quite simple way, data
residing on various databases over the network.

For the purposes of this paper, it is particularly relevant the application
of DLVDB in the direct database execution modality for the querying of large
ontologies. In fact, usually, the user has his data stored in (possibly distributed)
triplestores and wants to carry out some reasoning on them; however the amount
of such data can be such that the evaluation of the query can not be carried out
in main-memory. Then, it must be evaluated directly in mass-memory.

Moreover, DLVDB turned out to be particularly effective for reasoning about
massive data sets (see benchmark results presented in [22]) and supports a suf-
ficiently rich reasoning language for querying ontologies (see also Section 3).

Three main features characterize the DLVDB system in the direct database
execution modality: (i) its ability to evaluate logic programs directly and com-
pletely on databases with a very limited usage of main-memory resources, (ii)
its capability to map program predicates to (possibly complex and distributed)
database views, and (iii) the possibility to easily specify which data is to be
considered as input or as output for the program. In the application context
considered in this paper, these characteristics allow the user to have a wide
flexibility in querying available ontologies.

In order to properly carry out the evaluation, the system needs to know the
mappings between input/output data and program predicates, as well as whether
the temporary relations possibly needed for the mass-memory evaluation should
be maintained or deleted at the end of the execution. The user can specify this
information by some auxiliary directives which must be fed to the system beside
the logic program.

3 Experiments

In this section we present the results of our experiments aiming at comparing
the performance of DLVDB with several state-of-the-art triplestore. The main
goal of our experiments was to evaluate both the scalability and the the query
language expressiveness of the tested systems. All tests have been carried out on
a Pentium 4 machine with a 3.00 GHz CPU and 1.5 Gbytes of RAM.



3.1 Compared Systems

In our tests we compared DLVDB with three state-of-the-art triplestores, namely:
Sesame, ARQ, and Mulgara. The first two systems allow both in-memory and
RDBMS storage and, consequently, we tested them on both execution modalities.
In the following we shall refer the in-memory version of Sesame (resp., ARQ) as
Sesame-Mem (resp. ARQ-Mem) and the RDBMS version as Sesame-DB (resp.
ARQ-DB). For each system we used the latest official available release. We next
briefly describe them.
Sesame [20] is an open source Java framework with support for storage and
querying of RDF(S) data. It offers to developers a flexible access API and several
query languages; however, its native language (which is the one adopted in our
tests) is SeRQL – Sesame RDF Query Language. In fact, the current stable
release of Sesame does not support the SPARQL language yet. Some of the query
language’s most important features are: (i) expressive path expression syntax
that match specific paths through an RDF graph, (ii) RDF Schema support, (iii)
string matching. Furthermore, it allows simplified forms of reasoning on RDF
and RDFS. In particular, inferences are performed by pre-computing the closure
R(G) of the input triplestore G. The latest official release currently available is
the version 1.2.7.
ARQ [3] is a query engine implementing SPARQL under the Jena framework3.
ARQ includes a rule-based inference engine and performs non materialized in-
ference. As for Sesame, ARQ can be executed with data loaded both in-memory
and on a RDBMS. We executed SPARQL queries from Java code using the
Jena’s API (version 2.5) in both execution modalities.
Mulgara [2] is a database system specifically conceived for the storage and re-
trieval of RDF(S). Mulgara is an Open Source active fork of the Kowari project4.
The adopted query language is iTQL (Interactive Tucana Query Language), a
simple SQL-like query language for querying and updating Mulgara databases.
A compatibility support with SPARQL is declared, yet not implemented. The
Mulgara Store offers native RDF(S) support, multiple databases (models) per
server, and full text search functionality. The system has been tested using its
internal storage data structures (XA Triplestore). The latest release available for
Mulgara is mulgara-1.0.0.

3.2 Benchmark Data Set

We adopted as reference benchmark data the DBLP database [15]. DBLP con-
tains a large number of bibliographic descriptions on major computer science
journals and proceedings; the server indexes more than half a million articles and
several thousand links to home pages of computer scientists. Recently, an OWL
ontology has been developed for DBLP data and the corresponding RDF can
be downloaded at the web address http://sw.deri.org/∼aharth/2004/07/dblp/.
The main classes represented in this ontology are Author, Citation, Document,
and Publisher, where a Document can be one of: Article, Book, Collection, In-
proceedings, Mastersthesis, Phdthesis, Proceedings, Series, WWW.

3 http://jena.sourceforge.net
4 http://www.kowari.org/



In order to test the scalability of the various systems we considered several
subsets of the entire database, each containing an increasing number of state-
ments and constructed in such a way that the greater sets strictly contain the
smaller ones. Generated data sets contain from 50000 to 2000000 RDF state-
ments5.

3.3 Tested Queries

As previously pointed out, the expressiveness of the query language varies for
each tested system. In order to compare both scalability and expressiveness,
we designed for kind of queries of increasing complexity, ranging from simple
selections to queries requiring different forms of inferences over the data.

In more detail, we selected the following for queries which will be referred to
as Q1, Q2, Q3 and Q4, respectively.

– Q1: Select the names of the Authors and the URI of the corresponding Articles
they are author of;

– Q2: Select the names of the Authors which published at least one Article in
year 2000;

– Q3: Select the names of the Authors which are creators of at least one document
(i.e. either an Article, or a Book, or a Collection, etc.);

– Q4: For each Author in the database, select the corresponding name and count
the number of Articles he published.

Here, queries Q1 and Q2 are simple selections; Q3 requires a simple form of
inference; in fact articles, books, etc. must be abstracted into documents. Query
Q4 requires the capability to aggregate data, which is not provided by all query
languages.

It is worth observing that queries Q1, Q2, and Q3 can be executed by all
the evaluated systems. As for Q3, we exploited the Krule engine for Mulgara,
the inferencing repository in Sesame and the inferencing Reasoner in ARQ. Note
that Sesame-DB materializes the possible inferenced data just during the loading
of the RDF dataset in the database; however, in our tests, we measured only the
query answering time for it. Query Q4 can not be evaluated neither by ARQ nor
by Sesame because both SPARQL and SeRQL query languages do not support
aggregate operators.

Due to space constraints, we can not show here the details of all the queries.
Just to show an example, we next present the encodings used for Q1 in the var-
ious systems. Syntax is self-intuitive.

DLVDB encoding for Q1

q1(NAME, RES) :– triple(RES, “rdf:type”, “Article”),
triple(RES, “dc:creator”, PERS),
triple(PERS, “foaf:name”, NAME).

5 An RDF statement is a small cluster of RDF triples usually not larger than 10 within
our datasets.



Q1 Q2

Q3 Q4

Fig. 1. Results for queries Q1, Q2, Q3, Q4

Sesame encoding for Q1

select name, res
from {res} <rdf:type> {type},

{res} <dc:creator> {pers}, {pers} <foaf:name> {name},
where type =<Article>

ARQ encoding for Q1 (SPARQL syntax)

select ?name ?res
where {?res <rdf:type><Article>.

?res <dc:creator> ?pers. ?pers <foaf:name> ?name}
Mulgara encoding for Q1

select $name, $res
from <rmi://localhost/server1#triple>
where $res <rdf:type><Article> and

$res <dc:creator> $pers and $pers <foaf:name> $name;

3.4 Results and Discussion
Figure 1 shows the results we have obtained for the five queries described above.
In the figure, the chart of a system is absent whenever it has not been able to
solve the query due to some system’s fault or if its response time was greater
than 3600 seconds (1 hour). Moreover, if a system’s query language was not
sufficiently expressive to answer a certain query, it has not been included in the
graph. From the analysis of the figure we can draw the following observations.

Mulgara has, after DLVDB , the more expressive query language and, for
the simple queries Q1 and Q2 the best performance along DLVDB and, in some



cases, Sesame-Mem. However, when the queries involve the more advanced parts
of the language, the efficiency of Mulgara quickly drops; in fact, both in query
Q3 and in query Q4 its response time exceeded the limit set in our tests already
after 15000 RDF statements.

Sesame-Mem turned out to be competitive in all considered data sets only
for queries Q1 and Q3; in fact, it has not been able to solve query Q4 due to lack
of expressiveness in the query language; moreover, in query Q2, its performance
degraded when the input data sets increased. Sesame-DB always had significantly
worse performance than Sesame-Mem.

ARQ always presented the worst performances (except in one case); more-
over, as occurred for Sesame, also the database version of ARQ revealed worse
performance than its in-memory version. The expressiveness of ARQ’s query
language prevented to encode queries Q4.

Finally, DLVDB revealed both the best performance (in almost all the data
sets and queries) and the highest expressiveness of the query language, thus
demonstrating its good potential to be exploited as ontology querying engine.

It is worth pointing out that both Sesame and ARQ performance are nega-
tively influenced by the usage of a DB (see, in particular, results of queries Q1

and Q2); this can be probably motivated by the fact that they carry out (at
least parts of) their computations in main memory anyway and, consequently,
transferring data from disk to memory produces just overhead. On the contrary,
DLVDB and Mulgara exploit the database technology directly for their reasoning
tasks and, consequently, are more effective.

4 Experiments with alternative data structures

In the context of real-world applications it becomes crucial the choice of a data
schema for the relational database handling RDF data model, since this has a
direct impact on the performance and scalability issues. The discussed solution
assumes to store the RDF(s) graph at hand, using a straightforward represen-
tation, where a single 3-columns table contains one row for each statement of
the form 〈subject, predicate, object〉. This representation, though flexible, is not
efficient when several self-joins are required to sweep over this single large table.
A first step in order to improve the performance of the database, maintaining
this simple schema, is to reduce the execution time required by the join’s oper-
ations. A solution largely adopted in similar applications and discussed in [1],
is to avoid to store explicitly string values referring to URIs and literals in the
main table, replacing them with an hash value. Indeed, integer matching is in-
tuitively much faster than string matching. Each URIs/literal string is mapped
to and integer: the main tables stores triples in form of integer values, while ad-
ditional tables store the association from URI/Literals to integer, which is used
for a post-normalization. Several experiments that we reproduced on this new
configuration show the validity of this approach with respect to the first one.
Finally, we have considered other suggestions for alternative data structures
better suited for handling RDF data, called property tables technique ([1],[23]).
These aim at denormalizing RDF tables by storing them in a flattened represen-
tation, trying to encode triples according to the hidden ”schema” of RDF data,



similarly to a traditional relational schemas. The idea is to define a set of prop-
erty tables containing (cluster of) properties that tend to be defined together
(and then storing the triples from the RDF dataset whose properties belong to
the selected attributes), or to cluster similar sets of subjects together, group-
ing them in a property-class table. There is a variety of storage schemes and
several variations of these which have also been implemented in existing RDF
stores, using hybrid representation that combine features of both. The most im-
portant advantage of these choices is the possibility of accessing directly all the
triples having the same property value. However, these configurations can be ex-
tremely sparse (by the presence of NULL values in the table) and not well suited
for supporting multi-valued attributes. Thus, while such techniques usually im-
prove performance of queries involving a single property table, it is required to
properly cluster the property values occurring in the dataset.
Inspired by these considerations we extended our representation schema imple-
menting a fully decomposed storage model in which the triples table is rewritten
into n two column tables where n is the number of unique properties in the
dataset. This approach (discussed in [1], [23]) support succinct representation
of multi-valued attributes and heterogeneous records (subjects not defining a
particular property). Moreover, this data scheme allows to access directly as-
sertions related to the same property value. Unfortunately, for a query which
quantifies over property values, several tables have to be merged. This overhead
seems reasonable (as we verified testing performance on query ranging on vari-
able predicates). Furthermore, insert and update operations can be slower, since
for operation on statements related to the same subject, more tables need to be
accessed.
We carried out several experiments on these new data structures to compare the
execution time of the queries for the same dataset used in previous test. Clearly,
this implies the translation of queries to queries over the new representations.
The results obtained shows that the solution using triples table storing identifiers
instead of strings performs better than the simple one, but the best choice (actu-
ally) is to use a fully decomposed storage schema. Especially, this seems to give
more benefit as the number of triples grows. For example, the query Q1 (run on
the biggest dataset) takes 74 seconds running on the single table representation,
46 seconds running using hash representation of URIs/literals and 28 seconds
running on the fully decomposed schema configuration with hash representation.

5 Conclusions
In this paper we presented a first step toward efficient and reliable ASP-based
querying of ontologies. We experimentally proven that our solution, based on
a database oriented implementation of ASP, improves both scalability and ex-
pressivity of several state-of-the-art systems. Although, currently, RDF data
are stored in the standard triple format, the first experiments with alternative
data structures are very promising. The representation of data in some more
structured form (as already some of the tested systems do) could significantly
improve performance. Another promising research line consists in using database
integration techniques in the ontology context such as in [7].
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