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Abstract. We propose to enhance EPCglobal RFIDs enriching them
with semantic capabilities. Memory organization of tags and the data
exchange protocol are exploited and extended to the purpose. By design,
the proposed enhancements do not alter the basic behavior of protocol
and tag memory organization and are thus fully backward compatible. In
order to store annotated descriptions, a compression algorithm for DIG
syntax has also been devised. We report here results in comparison with
other XML-based compression tools and simulations for enhanced tags
reading and decompression.

1 Introduction

Radio-Frequency IDentification (RFID) is a promising infrastructure-less tech-
nology interconnecting via radio two main components: (1) a transponder carry-
ing data (tag) located on the object to be identified; (2) an interrogator (reader)
able to receive the transmitted data. Traditional RFID applications have been
focused on supply chain management and asset tracking [12]. Nevertheless, at
the state of the art, tags with higher memory capacity and on-board sensors dis-
close new scenarios and enable further applications. Currently, RFID technology
is merely used as a link between physical objects and a “virtual counterpart” [9]
in the digital world. Tags only store an identification code, which is used as a key
to retrieve relevant properties of the object from an information server, through
a networked infrastructure. Two main issues restrain an overall exploitation of
the standard capabilities. First of all, the original identification mechanism only
enables a rudimentary string matching, providing exclusively “yes/no” replies.
Furthermore, RFID-based technology usually relies on stable support infrastruc-
ture and fixed database servers.

We propose an extension of EPCglobal RFID standard [11] supporting logic-
based formalisms for knowledge representation and enabling advanced services.
Semantic-based annotations are stored on RFID tags, exploiting machine un-
derstandable ontological languages originally conceived for the Semantic Web
effort. Noteworthily, protocols to read/write tags are preserved in the proposed
extension, maintaining the original code-based access, thus keeping a backward
compatibility with basic applications practically without any modification.

According to W3C recommendations for mobile applications [7], our ap-
proach copes with limited storage and computational capabilities of mobile and



embedded devices, and with reduced bandwidth provided by wireless links. Issues
related to the verbosity of semantic annotation languages cannot be neglected.
Compression techniques become essential to enable storage and transmission of
semantically annotated information in mobile contexts. Hence, in order to make
our approach sustainable in reality, we devised and exploited a novel efficient
XML compression algorithm, specifically targeted for DIG 1.1 [1] document in-
stances.

2 Motivation

The main idea of our approach is that a semantic-based extension of current
RFID technology supporting formalisms for knowledge representation, allows
semantically rich and unambiguous information to follow an object in each step
of its life cycle. Products then auto-expose their description to whatever RFID-
enabled computing environment they are dipped in. This favors decentralized
approaches for context-aware applications in pervasive computing environments,
based on less expensive and more manageable mobile ad-hoc networks. Product
and process information can be queried, updated and integrated during manufac-
turing, quality control, packaging and supply chain management, thus allowing
full traceability up to sales, and intelligent and de-localized querying of prod-
uct data. Semantic-enhanced RFID object discovery can be leveraged also for
sales and post-sale services, by assisting customers in using the products they
purchased more effectively.

Beyond manufacturing and commerce, other application areas can benefit
from adding accurate semantic-based object description to traditional RFID
identification and tracking capabilities. For example, in tourism settings such
as museums or archaeological sites, visitors could perform interactive knowledge
discovery by approaching tagged items with an RFID-enabled mobile device and
querying the system for further resources of interest. In the healthcare sector,
relevant information can be embedded within RFID tags attached to patient
accessory (e.g., wristband) and to drug packages. Since no further infrastructure
is needed, support can be provided for patient diagnosis and therapy at the
hospital as well as for follow-up at home.

3 Proposed Enhancements

3.1 EPCglobal RFID standards

In our framework we refer to RFID transponders conforming to the EPC (Elec-
tronic Product Code) standard for class I - second generation UHF tags [11]. We
assume the reader be familiar with basics of this technology.

The practical feasibility of a proposal for advanced usage of RFID technolo-
gies must take into account some important constraints. First of all the severe
bandwidth and memory limitations of current RFID systems, in order to meet
cost requirements for large-scale adoption. Due to technological advances and



Table 1. SELECT command able to detect only semantic enabled tags

PARAMETER Target Action MemBank Pointer Length Mask
VALUE 1002 0002 012 000101012 000000102 112

DESCRIPTION SL flag set (if match) EPC bank initial address bit to be compared bit mask

growing demand, passive RFID tags with greater memory amounts are expected
to be available [2]. Nevertheless, XML-based ontological languages like OWL
(http://www.w3.org/TR/owl-features/) and DIG (http://dl.kr.org/dig/) are far
too verbose for a direct storage on RFID tags. A further goal is to preserve the
original EPCglobal RFID technology standards as much as possible, in order
to ensure compatibility and smooth coexistence of new semantic-based object
discovery applications and legacy identification and tracking ones.

In order to enable the outlined enhancements, RFID tags and the air interface
protocol must provide read/write capabilities for semantically annotated prod-
uct descriptions w.r.t. a reference ontology, along with additional data-oriented
attributes. Neither new commands nor modification to existing ones have been
introduced. Moreover, a mechanism is clearly required to distinguish semantic
enabled tags from standard ones, so that semantic based applications can exploit
the new features without interfering with legacy applications. In order to accom-
plish that, we extend the memory organization of tags compliant with the above
referenced standard. We exploit two bits in the EPC tag memory area currently
reserved for future purposes. The first one –at 15hex address– is used to indicate
whether the tag has a user memory (bit set) or not (bit reset). The second one
–at 16hex address– is set to mark semantic enabled tags. In this way, a reader can
easily distinguish semantic based tags by means of a SELECT command with pa-
rameter values as in Table 1. Values for the triple 〈MemBank, Pointer, Length〉
identify the two-bit memory area starting at 15hex address in the EPC memory
bank. The reader commands each tag in range to compare those two bits with
bit mask 112. The match outcome will be positive for semantic enabled tags only.
The Target and Action parameter values mean that in case of positive match the
tag must set its SL flag and clear it otherwise. The following inventory step will
skip tags having SL flag cleared, thus allowing a reader to identify only semantic
enabled tags. Protocol commands belonging to the inventory step have not been
described, because they are used in the standard fashion.

The EPC standard requires the content of TID memory up to 1Fhex bit
is fixed. TID bank can be extended to store optional information, generally
consisting of tag serial number or manufacturer data. Hence we use the TID
memory area starting from 1000002 address to store a 128-bit Ontology Uni-
versally Unique Identifier (OUUID) marking the ontology w.r.t. the description
contained within the tag is expressed [10]. In order to retrieve the OUUID stored
within a tag, a reader will exploit a READ command by adopting parameter val-
ues as in Table 2. MemBank parameter identifies the TID memory bank and the
WordPtr value specifies that the reading must start from the third 16-bit mem-
ory word, i.e., from 20hex address. Finally, the WordCount parameter indicates
that 128 bits (eight 16-bit words) have to be read.



Table 2. READ command able to extract the OUUID from the TID memory bank

PARAMETER MemBank WordPtr WordCount
VALUE 102 0000000102 000010002

DESCRIPTION TID memory bank starting address read up to 8 words (128 bit)

Table 3. READ command able to extract the semantically annotated description from
the User memory bank

PARAMETER MemBank WordPtr WordCount
VALUE 112 0000000002 000000002

DESCRIPTION User memory bank starting address read up to the end

Contextual parameters (whose meaning may depend on the specific applica-
tion) are stored within the User memory bank of the tag. There, we also store
the semantically annotated description of the product the tag is clung to (com-
pressed with the algorithm described later on). An RFID reader can perform
extraction and storing of a description from/on a tag by means of one or more
READ or WRITE commands, respectively. Both commands are obviously com-
pliant with the RFID air interface protocol. Table 3 reports parameter values
of the READ command for extracting the full contents of the User memory,
comprising both contextual parameters and the compressed annotation.

The EPCglobal standard also provides a support infrastructure for RFID
applications by means of the so called Object Naming Service (ONS) [3]. In our
approach the ONS mechanism is considered as a supplementary system able to
grant the ontology support. If a reader does not manage the ontology the de-
scription within the tag refers to, we may retrieve it exploiting the ONS service.
The EPCglobal Network Protocol Parameter Registry maintains all the registered
service suffixes (ws for a Web service, epcis for a EPCglobal Information Ser-
vice (providing authoritative information about objects associated with an EPC
code), html for a Web Page of the manufacturer). We hypothesize to register the
new dig suffix to indicate a service able to retrieve ontologies with a specified
OUUID value.

In case of EPC derived from the GS1 standard1, we assume that the pair
of fields used for ONS requests –and referred to the manufacturer and to the
merchandise class of the good– will correspond to a specific ontology. In fact that
pair identifies exactly the product category. Two goods with the same values for
that field parameters will be surely homogeneous or even equal. Nevertheless the
vice versa is not verified.

3.2 Compression algorithm

A compression algorithm specifically targeted to the packing of standard DIG
1.1 format has been devised in our framework. The general approach, however, is
easily adaptable to any other ontological language based on XML, such as OWL.
Each DIG document instance conforms to DIG XML Schema, which comprises
1 GS1 (originally EAN.UCC) is the international organization that introduced the bar

code identification of products and services.



Fig. 1. Structure of the proposed DIG compression tool

at most 40 different tags. In a DIG document, no value is set inside any tag;
only tag attributes can be specified, within a well defined finite set of types.

We propose a simple DIG compression solution particularly suitable for per-
vasive applications, whose structure is shown in Figure 1. Three fundamental
phases can be identified: (1) data structures packing ; (2) attribute values pack-
ing ; (3) zlib packing. We exploit the peculiarity of the DIG format having few,
well defined and limited tag elements.

(1) Data-structures packing. The proposed compression algorithm is based
on two fundamental principles. First of all, pure data have to be divided from
data structures; furthermore data and data structures have to be separately
encoded in order to obtain a higher compression rate. Data structures are ba-
sically XML elements with possible related attributes, whereas data simply are
attribute values. As noted above, data-structures in DIG syntax are fixed and
well defined by DIG XML Schema, whereas data are different from document to
document. XML elements are coded by associating an unambiguous 8-bit code
to each structure in a static fashion. Consider that DIG files adopt either ISO
8859-1 or UTF-8 character encodings, which use 1 byte for each character (spe-
cial characters requiring more than 1 byte in UTF-8 do not belong to the DIG
symbol set): so an early size saving is achieved. The association between XML
structures and the corresponding code is fixed and invariable. This is a further
advantage because, unlike general purpose XML compressors, it is unnecessary
to include a header containing the decoding table within the compressed file.

(2) Attribute-values packing. Most recurrent words are identified in the pre-
viously distinguished data section. They will be coded with a 16-bit sequence. A
header for the compressed file is thus built, containing correspondences between
each text string and the related 16-bit code. It is dynamically created and ex-
clusively belongs to a specific DIG document instance. The provided header will
be exploited in the decompression phase.

Assigned codes differ by their second byte, because the first octet is adopted
as padding in order to distinguish the attribute value coding from regular ASCII
characters. This second compression stage allows to obtain a further size saving,
particularly in ontologies with very frequent concepts and roles. On the other
hand, the use of the header could compromise compression performances for
short files, as the space consumption for the header itself reduces savings ob-
tained with compression. Hence the encoding of all the string values of a DIG
file without any a-priori distinction has to be definitely avoided.



A correct compression procedure should properly take into account both the
length of an attribute string and its number of occurrences within the file. The
minimum length of strings to encode can be trivially calculated by comparing
the size consumption needed to store string–code correspondences and the saving
obtained with the encoding: in the proposed approach only text attributes with
a length of at least three characters will be encoded.

Furthermore we must evaluate the number of occurrences of each attribute
i (from now on nr occurencesi). We set an optimal minimum value we call
nr occurences min and we will encode only i attribute values where results
nr occurencesi > nr occurences min. We have performed statistical evaluations
trying the compression of 72 sample DIG documents and evaluating obtained
compression rates varying nr occurences min. Results show that the best com-
pression rates are produced by nr occurences min values within the range [2–8]
with an average of 4.03 and a standard deviation in the range [0–0.3]. Thus we set
nr occurences min = 4, so only attribute strings with at least three characters
and recurring at least four times will be encoded.

(3) zlib packing. Finally zlib library based on the Ziv-Lempel compression
algorithm [13] is exploited to apply an eventual third compression level, opti-
mizing the overall result. Ziv-Lempel algorithm does not perform particularly
well when compressing a partially coded input (it is difficult to find more occur-
rences of the same character sequence). The use of zlib, however, resulted useful
in our approach specially for large files, where it produces the compression of
words excluded by previous compression steps and of the file header.

4 Evaluation

A generic evaluation of the proposed approach has been carried out taking
into account two different aspects. First of all, performances of the compres-
sion/decompression algorithms have been investigated and furthermore reading
and decompression times of software simulated semantic-enhanced RFID tags
were evaluated, in order to provide an initial assessment of the impact that our
approach may have on RFID systems performances.

Regarding the compression and decompression performances three funda-
mental parameters have been estimated: (1) compression rate, (2) turnaround
time, (3) memory exploitation. Two tools were developed in C language im-
plementing our compression and decompression algorithms. They were named
DIG Compressor and DIG Decompressor, respectively. Currently, Windows and
Linux platforms are supported, leveraging the freely available zlib compression
library. Tests for compression rate and running time were performed using: (1)
a PC equipped with an Intel Pentium 4 CPU (3.06 GHz clock frequency), 512
MB RAM at 266 MHz and Windows XP operating system; (2) a PC equipped
with a Pentium M CPU (2.00 GHz clock frequency) and 1 GB RAM at 533
MHz, running Gentoo GNU/Linux with 2.6.19 kernel version and Valgrind [6]
profiling toolkit.
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Fig. 2. Obtained compression rates

70,0%

75,0%

80,0%

85,0%

90,0%

95,0%

100,0%

Original DIG file size (byte)

C
o
m

p
re

ss
io

n
 r
at

e 
   

gzip 76,9% 81,2% 82,6% 87,6% 92,9% 94,3% 91,7%

XMill 75,2% 80,7% 82,0% 88,9% 95,0% 96,4% 94,9%

DIG Compressor 87,5% 89,2% 89,2% 92,5% 95,5% 96,5% 94,9%

instance1 instance2 instance3 ontology1 ontology2 ontology3 ontology4

2035 3445 4079 12801 66247 111384 190685

 

Fig. 3. Performance comparison on a representative sample of DIG documents – Com-
pression rate

Firstly, compression rates achieved by the proposed algorithm were consid-
ered. We carried out tests with 70 DIG documents of various size. Our aim was
to evaluate compression rates for both smaller instance descriptions and larger
ontologies. Figure 2 shows average compression rates and standard deviations
for different size ranges of DIG input data. Overall average compression rate is
92.58 ± 3.58%. As expected, higher compression rates were achieved for larger
documents. Even for very short DIG files (less than 2 kB), however, average
compression rate is 87.05± 2.80%, which is surely satisfactory for our purposes.

A comparative evaluation was carried out using as benchmarks the general
purpose XML compressor XMill [5] and gzip (http://www.gzip.org/) generic
compressor. Testing the compression rate, the proposed system allowed to obtain
smallest resulting files, as shown in Figure 3. For each DIG file, the original size
in bytes is reported. It should be noticed our algorithm performed significantly
better for small DIG documents. This result is very encouraging, since in our
mobile scenarios we usually deal with small XML documents representing the
annotations of available resources.

In order to evaluate the turnaround time, each test was run 10 times con-
secutively, and the average of the last 8 runs was taken. Results are presented
in Figure 4. It can be noted that DIG Compressor has higher turnaround times
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than other tools, though absolute values are still quite acceptable. Such a result
suggests we need further optimizations for execution speed.

Finally, memory usage analysis was performed using Massif tool of Valgrind
debugging and profiling toolkit. Massif measures stack and heap memory profile
throughout the life of a process. For our comparison, only the memory occupancy
peak was considered. DIG Compressor memory usage is only slightly higher than
the one of gzip, with high correlation (r = 0.96) between the two value sets. This
result could be expected, since our algorithm relies on Ziv-Lempel compression in
its last phase. On the contrary, XMill showed a more erratic behavior. Outcomes
can be reputed as encouraging because memory-efficient implementations of zlib
library are currently available for all major mobile platforms.

A thorough experimental evaluation of all aspects of framework performance
requires its complete implementation into a testbed with real semantic-enabled
RFID devices. That would only be possible through partnership agreements with
device manufacturers/integrators, that we are currently pursuing. At this stage,
a prototypical semantic-enhanced RFID infrastructure has been simulated by
extending IBM WebSphere RFID Tracking Kit middleware solution for RFID
applications. RFID simulations and tests have been performed on that testbed,
which is deployed on a laptop PC equipped with Pentium M processor (2.00 GHz
clock frequency), 1 GB RAM at 533 MHz and Microsoft Windows XP operating
system. Compressed semantic annotations of 40 different products were used.
Their average size is 266± 104 B (range 91-440 B). Simulated RFID data access
from each tagged item was repeated 100 times, recording the sum of reading and
decompression time. For each item the mean value was then considered.

Results are reported in Figure 5. Average access time is 2.02 ± 0.36 ms,
corresponding to a theoretical tag read rate of approximately 500 tags/s. Since
tests were run on a software-simulated RFID platform, exact numerical values are
not significant as their order of magnitude. The latter can be sensibly compared
to performance of RFID systems compliant with EPCglobal standards for Class
1 Generation 2 UHF RFID systems.



Fig. 5. Simulated RFID tag reading and decompression time for 40 resource descrip-
tions. Regression line is plotted.

It is known that RFID system performance in the field highly depends on the
particular application, environmental conditions (electromagnetic noise, RFID
reader density) and local regulations affecting the available bandwidth. Early
simulations and tests carried out by independent research laboratories estimated
reading rates in a range of 7-100 tags/s in typical conditions [8, 4]. Our simulation
results are quite above these with such data. Hence, a very preliminary evidence
that adoption of compressed semantic annotations on RFID tags does not im-
pair performances in the field w.r.t. traditional ones is so provided. The latter,
in turn, will not suffer any direct performance degradation from the newly intro-
duced features, as they will read the EPC only. Finally, the access time showed
a moderate positive correlation (r = 0.60) with annotation size. This may sug-
gest that structure of a DIG annotation (i.e., exploited logic constructors and
frequency of attribute names) has also an impact over the decompression.

5 Conclusions

Our approach can support a range of use cases, involving different stakeholders
in each step of a product life cycle. During product manufacturing and distrib-
ution, a wide-area support network interconnecting commercial partners is not
strictly needed. This is a significant innovation w.r.t. common RFID supply chain
management solutions. By means of their semantic-enabled RFID tags, prod-
ucts are always accompanied by structured and rich description of their char-
acteristics, endowed with unambiguous and machine-understandable semantics.
Beyond improved traceability, a semantic-based approach may provide unique
value-added capabilities. In particular, query flexibility and expressiveness are
much greater than both keyword-based information retrieval and standard ser-
vice/resource discovery protocols, which support code-based exact matches only.
Non-exact match types are prevalent in real scenarios, involving a large number
of resources by many different sources. Semantic-based techniques can support
non-exact matches and ranking, further providing means for results explanation.
This enables an effective query refinement process and can strengthen user trust
in the discovery facility.
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