

Fourth Italian Workshop on

Giovanni Semeraro, Eugenio Di Sciascio, Christian Morbidoni, Heiko Stoermer (Eds.)

UNIVERSITA’ POLITECNICA
DELLE MARCHE

SEMEDIA

Digital Enterprise

Organized by:

Sponsored by:

With the support of: In collaboration with:

G. Semeraro, E. Di Sciascio, C. Morbidoni, H. Stoermer (Eds.)

4th Italian Semantic Web Workshop
SEMANTIC WEB APPLICATIONS
AND
PERSPECTIVES (SWAP 2007)

Bari, December 18-20, 2007
Proceedings

ISBN: 978-88-902981-1-0. T — Dip. di Informatica, Università di Bari, 2007.

Preface

The Semantic Web initiative, since its launch by Tim Berners-Lee in
2001, has raised increasing attention and is nowadays one of the most inter-
esting challenges the Computer Science community faces. Several technolo-
gies and standardized languages have been the initial outcome of the efforts
of a number of researches and projects.

While such languages and technologies move towards maturity, various
lessons have been learned; among them is that we will probably never have
a single and unified ”Semantic Web” but, depending on the issues, different
Semantic Web technologies should be used.

Usefulness of Semantic Web technologies is now commonly acknowledged
and the offsprings of the basic initiative are increasingly widespread in a va-
riety of application fields, encompassing information retrieval, ubiquitous
computing, e-commerce, Web service discovery and composition, data inte-
gration, multimedia, social networking, healthcare, among many others.

The contribution of Semantic Web researches to these various fields basi-
cally lies in making information structured and interoperable and therefore
really machine understandable, thus providing means for machines to some-
how automatically ”reason” on such information.

As Semantic Web technologies permeate increasingly large application
fields, new issues emerge. They include easily creating and managing Se-
mantic Web content, making applications more robust and scalable, devising
innovative and useful reasoning services.

To discuss these and other challenges several Italian and foreign re-
searchers gathered in Bari for the fourth edition of the ”Semantic Web
Applications and Perspectives” workshop (SWAP 2007).

This book collects the papers presented at the workshop, and we are
confident both the newcomer and the expert will find it an interesting read-
ing. We received 37 submissions from Italy and several foreign countries,
and the Program Committee members selected 24 papers for presentation.

The conference program offered also a tutorial day with five extremely
timely topics covered, two invited talks, an FP-7 info-day held in collabora-
tion with ARTI Puglia (Agenzia Regionale per la Tecnologia e l’Innovazione),
and an industrial/academic panel on emerging Semantic technologies.

SWAP 2007 was jointly organized by the Department of Informatics of
Università di Bari, and SisInfLab of Politecnico di Bari, in collaboration

i

with ARTI-Puglia, W3C Office in Italy, Semedia group (DEIT, Università
Politecnica delle Marche), University of Trento.

We wish to thank all authors that submitted their work to SWAP 2007,
the program committe members for their fruitful activity. We are indebted
with the members of the Local Committee that worked hard for the success
of this event, and grateful to the sponsoring and collaborating companies
and entities that provided economical and organizational support.

Giovanni Semeraro,
Eugenio Di Sciascio,
Christian Morbidoni,
Heiko Stoermer

ii

Organization

Workshop Chair

Giovanni Semeraro, University of Bari

Programme Co-Chair

Eugenio Di Sciascio, Politecnico di Bari
Christian Morbidoni, Universita’ Politecnica delle Marche
Heiko Stoermer, University of Trento

Local Organization

Pierpaolo Basile, University of Bari
Marco de Gemmis, University of Bari
Anna Lisa Gentile, University of Bari
Leo Iaquinta, University of Bari
Pasquale Lops, University of Bari
Agnese Pinto, Politecnico di Bari
Domenico Redavid, University of Bari
Michele Ruta, Politecnico di Bari
Eufemia Tinelli, University of Bari

SWAP series steering committee

Paolo Bouquet, University of Trento
Oreste Signore, W3C Office in Italy/CNR
Giovanni Tummarello, DERI, Galway, Ireland

Program Commitee

Roberto Basili - University of Roma Tor Vergata
Sonia Bergamaschi - University of Modena and Reggio Emilia
Silvana Castano - University of Milano
Marco de Gemmis - University of Bari
Tommaso Di Noia - Politecnico di Bari
Francesco Donini - Università della Tuscia Viterbo
Floriana Esposito - University of Bari
Aldo Gangemi - LOA-CNR
Roberto Garca Gonzalez - Universitat de Lleida
Fausto Giunchiglia - University of Trento
Francesco Guerra - University of Modena and Reggio Emilia
Pascal Hitzler - AIFB, University of Karlsruhe
Pasquale Lops - University of Bari
Massimo Marchiori - University of Padova
Massimo Martinelli - ISTI-CNR
Daniel Olmedilla - L3S Reseach Center and Hannover University
Maria Teresa Pazienza - University of Roma Tor Vergata

iii

Paolo Romano - National cancer Research Institute of Genoa, IST
Leo Sauermann - DFKI
Luciano Serafini - IRST-Fondazione Bruno Kessler
Sergej Sizov - University of Koblenz
Umberto Straccia - ISTI-CNR
Sergio Tessaris - Free University of Bozen - Bolzano
Giovanni Tummarello - DERI, Galway, Ireland
Guido Vetere - IBM Advanced Internet Technologies

Additional Reviewers

Pierpaolo Basile, Fabio Calefato, Simona Colucci, Stefano David, Nicola
Fanizzi, Anna Lisa Gentile, Juan Manuel Gimeno, Leo Iaquinta, Marta
Oliva, Mirko Orsini, Agnese Pinto, Azzurra Ragone, Domenico Redavid,
Michele Ruta, Antonio Sala, Eufemia Tinelli.

Webmasters

Massimo Bux, Cataldo Musto, Fedelucio Narducci (University of Bari)

In collaboration with:

ARTI Puglia (Agenzia Regionale per la Tecnologia e l’Innovazione)

with the support of:

AI*IA - Associazione Italiana per l’Intelligenza Artificiale

Sponsors:

FCRP - Fondazione Cassa di Risparmio di Puglia
CELI s.r.l.
Cézanne Software
Confindustria Bari
DERI Galway
D.O.O.M. s.r.l.
Exhicon ICT S.r.l.
FimeSan S.p.A.
GST S.p.A.
I.B.M.
Imola s.r.l.
IntelliSemantic s.r.l.
I2K Information to Knowledge s.r.l.
KIT-Knowledge and Information Technologies s.r.l.

iv

v

Table of Contents

UFOme: An User-Friendly Ontology Mapping Environment …………………
Giuseppe Pirrò, Domenico Talia

1

A Lightweight Ontology for Rating Assessments ……………………………..
Cristiano Longo, Lorenzo Sciuto

11

Links and Cycles of Web Databases ……………………………………………
Masao Mori, Tetsuya Nakatoh, Sachio Hirokawa

21

Ontology-Driven Generation of a Federated Schema for GIS …………………
Agustina Buccella, Domenico Gendarmi, Filippo Lanubile, Alejandra Cechich,
Attilio Colagrossi

31

Software Semantic Provisioning: actually reusing software …………………...
Savino Sguera, Philippe Ombredanne, Maria Teresa Pazienza

41

OWL-S Atomic services composition with SWRL rules ………………………
Domenico Redavid, Luigi Iannone, Terry Payne

51

The JUMP project: domain ontologies and linguistic knowledge @ work ……
Pierpaolo Basile, Marco de Gemmis, Anna Lisa Gentile, Leo Iaquinta,
Pasquale Lops

61

The HMatch 2.0 Suite for Ontology Matchmaking ……………………………
Silvana Castano, Alfio Ferrara, Davide Lorusso, Stefano Montanelli

71

Semantic Nearest Neighbor Search in OWL Ontologies ………………………
Nicola Fanizzi, Claudia d'Amato, Floriana Esposito

81

Talia: a Framework for Philosophy Scholars …………………………………..
Michele Nucci, Stefano David, Daniel Hahn, Michele Barbera

91

Towards Social Semantic Suggestive Tagging ………………………………...
Fabio Calefato, Domenico Gendarmi, Filippo La nubile

101

Okkam4P - A Protege Plugin for Supporting the Re-use of Globally Unique
Identifiers for Individuals in OWL/RDF Knowledge Bases …………………...
Paolo Bouquet, Heiko Stoermer, Liu Xin

110

vi

Building Rules on top of Ontologies? Inductive Logic Programming can help!
Francesca A. Lisi, Floriana Esposito

120

Foaf-O-Matic - Solving the Identity Problem in the FOAF Network ………….
Stefano Bortoli, Heiko Stoermer, Paolo Bouquet, Holger Wache

130

Semantic Content Annotation and Ontology Creation to Improve Pertinent
Access to Digital Documents …………………………………………………..
Rocío Abascal-Mena, Béatrice Rumpler

140

RELEVANT News: a semantic news feed aggregator …………………………
Francesco Guerra, Sonia Bergamaschi, Mirko Orsini, Claudio Sartori,
Maurizio Vincini

150

An Approach to Decision Support in Heart Failure ……………………………
Sara Colantonio, Massimo Martinelli, Davide Moroni, Davide Moroni,
Domenico Conforti

160

Applying Semantic Web Services ……………………………………………...
Stefania Galizia, Alessio Gugliotta, Carlos Pedrinaci, John Domingue

170

Improving Responsiveness of Ontology-Based Query Formulation …………...
Ivan Zorzi, Sergio Tessaris, Paolo Dongilli

180

Using WordNet to turn a folksonomy into a hierarchy of concepts ……………
David Laniado, Davide Eynard, Marco Colombetti

192

Reasoning with Instances of Heterogeneous Ontologies ……………………….
Luciano Serafini, Andrei Tamilin

202

Some experiments on the usage of a deductive database for RDFS querying and
reasoning …………………………………………………………………..
Giovambattista Ianni, Alessandra Martello, Claudio Panetta, Giorgio
Terracina

212

Who the FOAF knows Alice? RDF Revocation in DBin 2.0 …………………..
Christian Morbidoni, Axel Pollares, Giovanni Tummarello

222

Semantic-enhanced EPCglobal Radio-Frequency Identification ………………
Michele Ruta, Tommaso Di Noia, Floriano Scioscia, Eugenio Di Sciascio

232

UFOme: A User Friendly Ontology Mapping
Environment

Giuseppe Pirrò1, Domenico Talia1

1D.E.I.S, University of Calabria
87036 Rende, Italy

{gpirro,talia}@deis.unical.it

Abstract. Recently the Ontology Mapping Problem (OMP) has been identified
as a key factor towards the success of the Semantic Web and related
applications. This problem arises since it is possible for different people to give,
through ontologies, different conceptualizations of the same (or overlapping)
knowledge domain. In order to tackle the OMP several algorithms have been
designed. They aim at discovering correspondences (aka mappings) between
ontology entities. However, these algorithms mostly suffer from the following
shortcomings: (i) do not allow to quickly combine and/or compare different
mapping strategies; (ii) do not offer support for evaluating mapping strategies in
terms of quality of results and performance. In this paper we present a plugin-
based system called UFOme along with its current implementation. We
illustrate how it can be exploited to graphically design mapping tasks by
connecting different types of modules. UFOme provides three categories of
modules. The first one (i.e., visualization) allows to explore the ontologies to be
mapped. The second one (i.e., matching) provides different types of individual
matchers, exploited to discover mappings between ontologies, and a module for
combining them. The third one (i.e., evaluation) enables to evaluate each
module of the mapping task, a sub mapping task, or the mapping task in the
whole w.r.t performance and quality of results.

Keywords: ontology mapping environment, ontology mapping evaluation

1 Introduction
A central factor towards the success of the Semantic Web (SW) and related
applications are ontologies. Ontologies can be exploited to give conceptualizations of
knowledge domains and to make explicit and machine understandable the meaning of
the adopted terminology. The SW aims at exploiting ontologies for providing
resources with semantically meaningful information. However, in distributed
environments (e.g., the Web), it is not feasible having a single (and universally
accepted) ontology describing a knowledge domain. There will be different ontologies
each of which created w.r.t “the point of view” of its designer. That’s because people
see the world differently and these viewpoints inevitably get encoded into data
structures. Therefore, in order to enable reciprocal understanding, such different
representations (i.e., ontologies) have to be brought into “mutual agreement”. This
problem in literature is referred to as the ontology mapping problem (OMP). In order
to overcome the OMP, several ontology mapping algorithms, aimed at discovering

1

correspondences (aka mappings) between ontology entities (e.g., classes, properties),
have been proposed [1,4,11,14,15,17,18]. However, as also pointed out in [7], these
algorithms are often not endowed with adequate cognitive supports for helping users
in the various steps of a mapping task. Often they do not allow to quickly design,
combine and compare different mapping strategies and do not offer support for
evaluating mapping strategies in terms of quality of results and performance. Since, as
pointed out by several evaluation initiatives [16], ontology mapping is not yet a fully-
automated task, it is necessary to enable users to interact with the mapping system in
the different phases of a mapping task, as for example: to suggest initial mapping
candidates as in [15], to accept/reject mapping candidates and to evaluate results. In
particular, we identified three main phases in a mapping task execution:

1. Designing: a user design the mapping task by choosing the different
modules, some of which can require configuration parameters (e.g.,
threshold), to be included in the task. In this phase s/he can also suggest
initial mapping candidates.

2. Running: the mapping task is executed according to the strategy defined in
the Designing phase and values of parameters.

3. Evaluation: results of the mapping task are presented to the user which can
validate them, perform several types of evaluation and possibly restart the
running for discovering additional mapping candidates.

We argue that towards a comprehensive tool for ontology mapping, adequate supports
(e.g., GUIs) in all the abovementioned phases have to be provided.

In order to cope with these requirements, we delevoped the UFOme (User Friendly
Ontology mapping environment) system based on the concept of pluggable module.
UFOme provides three different categories of modules each of which supports the
user in one or more phases of the mapping task. The first category (i.e., visualization)
includes a module that enables exploring the ontologies to be mapped. The second
one (i.e., matching) provides different types of individual matchers, exploited to
discover mappings between ontologies, and a module for combining individual
matchers. The third one (i.e., evaluation) allows to evaluate each module of the
mapping task, a sub mapping task, or the mapping task in the whole w.r.t performance
and quality of results. UFOme also allows to implement both new modules and
categories to be included into the system as plugins. Therefore, it paves the way
towards a user-friendly, effective and extensible ontology mapping environment.

The remainder of this paper is organized as follows. Section 2 describes the
UFOme architecture. Section 3 presents a working example. Section 4 reviews related
work and compares UFOme with similar systems and in particular with the OLA [5]
system. Section 5 concludes the paper.

2 The UFOme architecture
This section describes the UFOme architecture designed taking into account two
important requirements: extensibility and usability. The first requirement is fulfilled
by the concept of module. A module is a generic pluggable component designed to
support one or more phases of a mapping task. The second requirement is fulfilled by
exploiting several GUIs covering specific aspects of the mapping process.

2

2.1 The UFOme two-layer architecture
The UFOme architecture, depicted in Fig. 1, is built upon two layers: logical layer
and graphical layer. The latter represents the layer of interaction with the user
through the mapping task composer. A user can choose the set of modules to be
included in the mapping task and connect them according to the mapping strategy s/he
wants to implement. In this phase (i.e., designing) both incoming and outcoming
module connections are checked in order to verify that modules receive the correct
data to process (e.g., a matching module should receive two ontologies whereas an
evaluation module a set of mappings). If the mapping task has been correctly
composed then it can be executed.

MAPPING TASK ENGINE

(TOPOLOGICAL SORT)

MODULE 1 MODULE 2 MODULE 3 MODULE N………

LOGICAL MAPPING TASK

GRAPHICAL

MODULE 1

……….
GRAPHICAL

MODULE 2

GRAPHICAL

MODULE 3
GRAPHICAL

MODULE N

GRAPHICAL MAPPING TASK

MAPPING TASK COMPOSER

LOGICAL LAYER

GRAPHICAL LAYER

Fig. 1. The UFOme architecture.

A mapping task composed at the graphical layer, in order to be executed (execution
phase), is converted into a mapping task at logical layer. Here the different modules
composing the task process data they received as input. Results are both passed on to
the connected modules and stored within the module for possible subsequent analysis
(UFOme allows to individually evaluate each module). In order to guarantee the
correct execution order, UFOme relies on the topological sort algorithm [2]. The
topological sort of a mapping task, which can be viewed as a Directed Acyclic Graph,
is a linear ordering of its modules. In particular, each node is executed before all
nodes to which it has connections.

2.2 UFOme modules
UFOme modules are the building blocks of the system. A module can be represented
by the architecture depicted in Fig. 2. It has a set of incoming connections that
represent the input, and a set of outcoming connections exploited to collect results. A
module also includes a set of configuration parameters.

GENERIC
MODULE

Incoming
connections

Outcoming
connections

Configuration parameters

Fig. 2. A generic UFOme module.

Currently UFOme includes three categories of modules (i.e., visualization,
matching and evaluation) that will be briefly described in the following. We want to
point out that the aim of this paper is not to describe the modules but to underline the
usefulness and effectiveness of the UFOme system.

3

2.2.1 Visualization
This category of modules includes the OntoLoader module. It, by exploiting the Jena
API [9], allows to visualize an ontology and to obtain useful information such as the
list of classes, properties and instances. The ontology is represented as a graph with
edges representing the relationships between classes. The user can navigate the
ontology and choose different types of visualizations and layouts (see Fig. 4). It is
also possible to visualize in the same GUI both the ontologies to be mapped.

2.2.2 Matching
This is the most important category of modules, since through its modules the
effective ontology mapping is performed. Currently, UFOme includes three individual
matchers: Lucene, String and Wordnet and a module for combing them (i.e., the
Combiner module). Here we provide an overall description of these modules.
Lucene
The Lucene [13] matcher implements the Lucene Ontology Matcher (LOM)
algorithm [18]. The aim of the LOM ontology matcher is to exploit all the sources of
linguistic information (e.g., local name, comments, and labels) present in the
ontologies to be mapped. The LOM matcher aims at discovering mapping between
entities (i.e., concepts, relationships and instances) of a source and target ontologies.
In particular, each source ontology entity is transformed into a virtual document by
exploiting the concept of Lucene Document. Virtual documents are stored into a
Lucene index maintained in the main memory. Mappings are derived by using entities
of the target ontology as search arguments against the index created from the source
ontology. Similarity between virtual documents is computed by the scoring schema
implemented in Lucene.
WordNet Matcher
The WordNet [21] matcher allows comparing ontology entities by considering their
semantic meaning. In particular, for assessing similarities between entities, we adopt
an adaptation of the Jiang and Conrath Metric (J&C) [10]. This metric along with
several others are included in the Java WordNet Similarity Library (JWSL) [8], an
ongoing project which aims at providing a Java API for accessing WordNet.
String Matcher
The string matcher implements three algorithms for comparing strings, that is, I-Sub
[19], Jaro Winkler [20] and Edit Distance [12]. The user when choosing to include
this module in a mapping task can configure the module to use one of the three
implemented strategies.
The Combiner module
This module allows to combine/filter results from different matchers according to
several strategies (e.g., weighting results of the matchers, introducing a threshold).

It is worthwhile pointing out that UFOme allows designing and implementing new
matchers that can be included into the system as plugins. This way UFOme becomes a
comprehensive mapping environment in which developers can implement and plug in
new modules according to their needs.

4

2.2.3 Evaluation
This category of modules includes the Evaluator, Comparer and Performance
Evaluator modules. The Evaluator module allows evaluating the suitability of a
matching strategy in terms of quality of results. In particular, it computes measures of
Precision, Recall and F-measure [3] that are classical Information Retrieval metrics.
These metrics are based on the comparison of an expected result and the result
returned by the system. In the context of ontology mapping, we compare a set of
mappings obtained by a mapping task w.r.t a reference alignment.

The Comparer module allows the comparison of two matching strategies in terms
of Precision, Recall and F-measure. This way the user avoids coding new programs,
but just picking up graphical modules (see Fig. 3) can have an immediate background
on which of these two strategies is the most appropriate.

The Performance Evaluator module allows to evaluate performance (in terms of
time elapsed) of the different modules, of a sub mapping task (by considering a subset
of modules) or of the mapping task in the whole.

3 UFOme : make easy ontology mapping

This section aims at showing the suitability of UFOme in a real ontology mapping
problem. We chose two ontologies (the 101 and the 205) belonging to the OAEI 2006
[16] benchmark test suite. We examine in detail the different phases of the mapping
task execution, and show how UFOme can be profitably exploited.

3.1 Phase 1: Designing
In this phase the user can choose the various modules to be included in the mapping
task (see Fig. 3).

Fig. 3 The UFOme GUI.

An UFOme user can pick up the modules shown in the left hand side of the UFOme
interface (1) and put them into the mapping task composer (2). Parameters of each
module are assigned by exploiting the table (3). Therefore, the modules must be

2

1

3

4

5

connected according to the strategy that the user wants to implement. For instance in
Fig. 3, the results produced by the two OntoLoader modules are passed on to the three
matchers. Notice that the direction of the connections will be exploited by the logical
layer of the UFOme architecture for running the topological sort algorithm (see
Section 2.1). Moreover, the log area (4) provides information about mapping
activities and possible errors.

After composing the mapping task, that can also be saved, the user can choose to
visualize the ontologies to be mapped. That can be done by right-clicking on the
OntoLoader modules and choosing the Load Ontology option (see Fig. 3). The loaded
ontology appears as depicted in Fig. 4. The central part (1) shows a graph
representation of the ontology while the right column (2) the ontology taxonomy. The
dialog (3) allows changing the visualization layout. The toolbar (4) shows other
information such as: instances, other types of relationships (i.e., not isa), domain and
range of properties, and so forth. It is also possible to show the two ontologies to be
mapped in the same JTab thus the user can discover and suggest initial mapping
candidates.

Fig. 4 The UFOme ontology perspective.

3.2 Phase 2: Running
In this phase the mapping task is executed according to the order determined by the
topological sort algorithm. Results produced by each module are both stored in the
module, for allowing individual analysis of the results, and passed on to the modules
to which it is connected. Once executed a mapping task can be evaluated.

3.3 Phase 3: Evaluation
In this phase of the mapping task the user can check results of the task and improve
them by choosing a different mapping strategy (i.e., a different combination of
modules). In particular, while in current ontology mapping systems, designing
different techniques means coding ad-hoc programs, in UFOme it corresponds to
graphically (re)connect a set of modules.

1

2

3
4

6

A user, by right-clicking on a module, can find interesting information related to the
execution. For instance, in Fig. 5, by right-clicking on the Evaluator module, the user
can choose to see the correct, lost or wrong mappings discovered by the (sub)
mapping task identified by the dotted area.

Fig. 5. UFOme evaluation options.

In Fig. 6 the correct mappings are compared to wrong mappings on the basis of a
reference alignment.

Fig. 6. Comparison between correct and wrong mappings.

Notice that the Evaluator module (Fig. 5) takes as input the result of the combination
(obtained by the Combiner module) of the mappings discovered by both the Lucene
and WordNet matcher. It is important pointing out that the strategies implemented by
the Combiner module can be several (e.g., weighted sum of the mappings provided by
each individual matcher, simple merging of results). The user can also choose to
evaluate a mapping task in terms of Precision, Recall and F-Measure. By choosing the
Evaluator Graph option (see Fig. 5) a new GUI will appear (see Fig. 7).

Correct mappings

Wrong mappings

7

Fig. 7. Evaluation of the results of a mapping task in terms of Precision, Recall and F-Measure.

The Comparer module allows the comparison of two matching strategies w.r.t quality
of results produced by each of them. Fig. 8 shows the comparison between the Lucene
matcher and the String matcher on the considered ontologies.

Fig. 8. Comparison between two mapping strategies.

UFOme, differently from other ontology mapping tools that underestimate the
importance of performance evaluation, through the Performance Evaluator allows to
analyze performance (in terms of time elapsed) of a mapping strategy (see Fig. 9).

Fig. 9. Performance evaluation of the modules included in the mapping task and of the overall
mapping process. Times (y axis) are expressed in msec.

8

Fig. 9 shows the times elapsed (on a Pentium IV 3.0 GHz with 2GB memory) by the
different matchers as well as the overall mapping task execution time.

4 Related Work
To the best of our knowledge there are no system that entirely covers all the phases of
a mapping task identified in the Section 1. In Table 1 we compare the main
characteristics of UFOme with those of similar tools.
Table 1. Comparision of UFOme with similar tools.

Designing Evaluation
Ontology

navigation
Graphical
Mapping

Composition

Candidates
Suggestion

Modular
Architecture

Graphic
Evaluation

Support

Graphic
Performance
Evaluation

UFOme Yes Yes Yes Yes Yes Yes
OLA [5] Yes No No No Yes No

Prompt [15] Yes No Yes Yes No No
Alignment

API [6]
No No No Yes No No

As can be noticed, some of the features of UFOme are supported by other tools. For
instance, ontology navigation is supported by both OLA and Prompt which is
implemented as a plugin of Protégé (http://protege.stanford.edu). However, UFOme is
the only tool that provides a support for graphically composing mapping tasks. The
tool closer to UFOme is OLA (Owl Lite Alignment). OLA [5] is a system for
ontology mapping endowed with a GUI. It is built upon the API described in [6]. Both
UFOme and OLA are endowed with a GUI. However, UFOme provides the mapping
task composer that allows to: (i) quickly composing mapping tasks; (ii) combine and
evaluate different alignments strategies. This latter aspect is often underestimated by
mapping algorithms/tools in which designing new strategies correspond to implement
new code. OLA does not support the evaluation of the combination of different
mapping strategies, and in order to evaluate different strategies, batch programs in
Java based on the API [6] need to be implemented. OLA features a tool for alignment
comparison which computes different metrics (e.g. Precision, Recall). UFOme offers
the same functionality but also features a performance evaluation module. In
particular, the time elapsed for each module and the overall time of the entire
mapping process are shown. Finally, UFOme also implements the saving of mapping
tasks along with related results for future reuse.

5 Conclusions and Future Work
This paper described the UFOme system that features a graphical environment for
supporting users in all the phases of a mapping task. To the best of our knowledge
UFOme is the only system provided with a mapping composing interface based on
graphical modules that allows a user to quickly design, combine and compare
different mapping strategies. UFOme gives an effective support in choosing the
correct mapping strategy and avoids users the burden to explicitly code new programs
when changing mapping strategy. We described the architecture of the system and,
through a working example, showed how it can be easily exploited by users.

9

Moreover, we compared it with similar systems. As future work we aim at including
in the system new matching components and performing a more detailed evaluation.

References
1. Choi, N., Song, I., Han, H.: A survey on Ontology Mapping. SIGMOD Record 35(3)

(2006) pp. 34--41
2. Cormen, T., Leiserson, C. E., Rivest, R. L., Stein C.: Introduction to Algorithms.

MIT Press and McGraw-Hill.
3. Do, H., Melnik, S., Rahm E.: Comparison of schema matching evaluations. In Proc.

of GI-Workshop Web and Databases, Erfurt, Germany, (2002)
4. Ehrig, M., Staab, S.: QOM-quick ontology mapping. In Proc. of ISWC 2004,

Hiroshima, Japan, (2004) pp. 683--697
5. Euzenat, J., Loup D., Touzani D., Valtchev D.: Ontology Alignment with OLA. In

Proc. of EON 2004, Hiroshima, Japan, (2004)
6. Euzenat, J.: An API for ontology alignment. In Proc. of ISWC 2004, Hiroshima,

Japan , (2004) pp. 698--712
7. Falconer, S., Noy, NF, Storey, M.: Towards the need of cognitive support for

ontology mapping. In Proc. of OM-2006, Athens, Georgia, USA (2006) pp. 25--37
8. Java WordNet Similarity Library (JWSL) and the Similarity Experiment.

http://grid.deis.unical.it/similarity
9. Jena - The Jena Project. http://jena.sourceforce.net
10. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical

taxonomy. In Proc. of ROCLING X, Taiwan (1997)
11. Kotis K, Vouros GA The HCONE Approach to Ontology Merging. In proc. of ESWS

2004, Heraklion, Greece, (2004) pp. 137-- 151
12. Levenshtein, I.V. Binary Codes Capable of Correcting Deletions, Insertion and

Reversals. Soviet Physics-Doklady 10(8) (1966) pp. 707--710
13. Lucene- The Apache Lucene project. http://lucene.apache.org
14. Mitra, P., Noy, N. F., Jaiswal, A. R.: OMEN: A Probabilistic Ontology Mapping

Tool. In proc. of ISWC 2004, Hiroshima, Japan (2004) pp. 71--83
15. Noy, N.F., Musen, M.A.: The PROMPT Suite: Interactive Tools for Ontology

Merging and Mapping. Int. J. of Human-Computer Studies 59 (2003) 983-1024
16. Ontology Alignment Evaluation Initiative. http://oaei. ontologymatching.org
17. Pan, R., Ding Z., Yu, Y., Peng., Y.: A Bayesian Network Approach to Ontology

Mapping. In Proc. of ISWC 2005, Galway, Ireland (2005) pp. 563--577
18. Pirrò, G., Talia, D.: An approach to Ontology Mapping based on the Lucene search

engine library. In proc. of SWAE ’07, Regensburg, Germany (2007) pp. 407--412
19. Stoilos, G., Stamou, G., and Kollias, S. A String Metric for Ontology Alignment. In

proc. of ISWC 2005,Galway, Ireland, (2005) pp. 623--637
20. Winkler, W. E. The state of record linkage and current research problems. Statistics

of Income Division, Internal Revenue Service Publication (4) (1999)
21. WordNet - WordNet online. http://wordnet.princeton.edu/online

10

A Lightweight Ontology for Rating Assessments

Cristiano Longo1� and Lorenzo Sciuto2

1 TVBLOB s.r.l. Milano Italy
2 Università di Catania, Dipartimento di Ingegneria Informatica e delle

Telecomunicazioni

Abstract. Various recommender systems and trust engines use appli-
cation specific formats to store and exchange data. Such data are used
for statistical purposes, or to produce recommendations about items or
users. This paper introduces Ratings Ontology, a semantic web format
for ratings and related objects. This ontology aims to be lightweight, in
the sense of minimising the physical size of data stored or sent over the
network for a given ratings set. Moreover, we presents a tools suite based
on this ontology to find out statistical information from a ratings data
set.

1 Introduction

A big part of on-line services keeps track in different ways of users’ taste and
satisfaction. Usually this information is collected in form of ratings assessed by
users about items of the system itself. Amazon.com[1] for example is an on-
line book store, that collects user preferences about books. Saved ratings could
be used to deduce several kind of statistical information, i.e. to measure user
satisfaction about the whole system, or to know best and least liked items. Rec-

ommender Systems use these ratings to suggest items they may like to the users.
As pointed out in [2], recommender system performances increase proportionally
to the amount of available information. For this reason, in order to produce good
recommendations, it should be convenient to share ratings collected by different,
but similarly purposed, on-line services via a common ratings exchange format.
Such a format also implies other advantages. It would allow to separate the
ratings collection task from the collected data processing, i.e.recommendations
production. As a consequence tools and recommender systems could be devel-
oped independently from ratings collection engines.

This paper introduces Ratings Ontology, a Semantic Web format to store
and share ratings. This ontology aims to be lightweight, in the sense of minimis-
ing the physical size of data stored or sent over the network for a given ratings
set. The rest of this paper is structured as follows : Section 2 contains a brief
description of semantic web intent and languages; Section 3 describes two ontolo-
gies with similar intents to ours, but with more limitations; Section 4 describes
the features provided by ratings ontology; Section 5 describes a use-case of this
ontology by introducing some tools we developed which are able to process data
sets in this format.
� Thanks to G. Di Blasi, P.Oliveto and B.Vintrici for their lexical contribution.

11

2 Semantic Web Ontologies

Semantic Web provides a common framework to share and reuse data across
applications. It provides languages to express information in a machine process-
able way. The Semantic Web core language is RDF[3]. An rdf document can be
seen as a graph in which nodes are linked to each other by properties. Nodes
and properties can be labelled by a Uniform Resource Identifier(URI)[4]. An rdf
graph can be seen as a set of triples (source, property, target), that corresponds
to graph edges. Such a triple represents a relation identified by property that
goes from source to target. The big part of rdf storage engines uses such triples
as internal representation of rdf graphs. So the number of triples can be used
as a metric to measure the size of an rdf document. The RDF Vocabulary

Description Language(RDF Schema)[5] is a semantic extension of RDF. It
provides mechanisms for describing groups of related resources(RDFS classes)
and the relationship between them. It allows to define vocabularies in terms of
classes and properties. Web Ontology Language(OWL)[6] enriches the RDF
Schema with various constructs and constraints for properties and classes. It de-
fines also some meta-level properties to describe relations between properties and
classes. As an example, given two properties p and q, we can state that p is the
inverse of q via the owl : inverseOf property. OWL also allows to define cardi-
nality and value constraints, useful to check if instances of a class are consistent;
i.e. we can say that a boy has at most one father using owl : minCardinality.

3 Related Works

Trust Ontology[7] is an extension of the Friend Of A Friend ontology[8], that
defines properties about user profiles. Trust Ontology adds features for user-to-

user trust assessments. It provides eleven properties, one for each trust value in
a zero to ten scale. As a result, trust information is stored in a very compact way
into an rdf graph because for each trust assertion just one triple is stored. On the
other hand, this ontology allows to express only ratings in a zero to nine scale,
and offers no capabilities for other rating spaces. For example, Movie Lens[9]
uses a five point scale, so Trust Ontology is not suitable for ratings collected by
this engine.

Review Ontology[10] has more power. For each rating assessment a corre-
sponding Review is defined, with a rating and two properties to describe the
ratings range: maxRating and minRating. This ontology suits all systems with
discrete finite equispaced rating ranges. However, it is not yet enough, because
some engines, i.e. Moleskiing[2], allow users to enter ratings in a continuous in-
terval. Moreover, the presence of maxRating and minRating for each rating
entered by a unique engine is redundant and it causes a growth of data storage
size.

Ratings Ontology aims to cover the entire ratings spectrum and, at the same
time, to reduce the amount of data stored for a given set of ratings.

12

4 Ratings Ontology

Ratings ontology is an OWL based format that provides classes and properties to
represent in an exhaustive and machine processable way ratings collected by web
sites, automated agents and other engines. The Ratings Ontology specification
is available at [11]. Ratings collected by different engines could be saved in the
same storage, in order to increase the accuracy of recommendations, or to get
statistics from a larger data set. On the other hand, the engine that collected a
rating and the context in which this rating was produced is an important piece of
information. For this reason, our ontology provides features to bind a rating with
the engine that collected it, and to describe how this rating has been collected.
The next sections describe the classes and properties introduced by the Ratings
Ontology.

4.1 Rating Class

A rating represents a sort of preference, or judgement, assessed by a user or a
software agent about a generic item. For such ratings, Ratings Ontology provides
the Rating class. Rated items are expressed in terms of RDF resources. This
allows to provide a full description of rated items using suitable elements from
other ontologies. The rating asserter must be an Agent, where the Agent class
is defined in the foaf [8] ontology. We chose the Agent class instead of the
more restrictive Person to cover situations in which a rating assessment was
not caused, directly or not, by a physical person, but by an intelligent agent.
As an example, [12] describes how trust assessments among grid nodes could
be used to improve the performance of the whole computational grid. Attention
should be paid for understanding that this is not the case of ratings collected by
an automated agent that measures in some way how much a user likes an item,
i.e. a browser that keeps track of the amount of time you spent on a web page.
In such a situation we say that the rating was collected in an IMPLICIT way
and the person whose behaviour has been observed to produce the rating should
be considered as the asserter of the rating itself.

A rating can have a value. It is an additional information, whose interpreta-
tion depends on the context in which the rating has been produced. The browser
of the previous example could value ratings by counting the number of times a
user visited a certain web page. The great part of engines that collect explicit

ratings ask the user to enter a preference about an item. In this case, the value

property is appropriate to store such a preference. To assure processability and
uniformity for third parties software, a rating value must be numerical, in the
sense that it must be a typed literal with a numeric data type. In a context where
no values are assigned to ratings, a rating should be considered as a positive as-
sertion, but the the absence of a rating should be considered like an unknown
value, and not as a negative assertion. The Following section contains some code
fragments as usage examples of the Ratings Ontology classes and properties.
In order to improve readability, we decided to use entity references instead of

13

full name-spaces in URIs. We use rat as a shortcut for the ratings ontology
name-space, and xsd for the XML Schema one.

4.2 Ratings Collection Engines

Information about the rating context and the engine responsible for the collec-
tion is encoded by the RatingsCollector class instances. It is appropriate to
create an instance for each engine, in order to keep track of who is responsible
for the collection of a rating. For example, if two web sites use the same soft-
ware to produce and store ratings, they should be represented by two distinct
RatingsCollector instances. For each rating collector the mode in which this en-
gine works has to be specified. In the EXPLICIT mode the asserter is explicitly
asked to enter a rating about a resource, i.e. by using a form. The IMPLICIT

mode was introduced in Sect.4.1, and it covers all scenarios in which the user is
not asked explicitly to assess a rating, but ratings are produced observing her
behaviour. The following code fragment is the definition of a ratings collector
that works in explicit mode.

<rat:RatingsCollector rdf:about="http://example.collector1.org">

<rat:mode rdf:resource="&rat;EXPLICIT_MODE" />

....

</rat:RatingsCollector>

The most common way to collect explicit ratings is to ask users to choose
a preference value for an item from a set of available ratings. For example,
at the end of a movie, the user could be asked to choose a rating in the set
{GOOD, BAD}. As pointed out in Sec.4.1, these two values must be saved into
our rating data base as numerical values, i.e. using 1 for GOOD and 0 for BAD.
The set of available ratings can vary for each collection engine. For example
MovieLens[9] allows users to enter preferences in the range from 1 to 5 stars.
Moreover, there is some system in which available rating values are not a discrete
finite set, as in previous examples, but a continuous interval(Moleskiing[2]). Rat-
ings ontology provides two different ways to define the range of available ratings.
The first one models a discrete finite ratings set via exhaustive enumeration

of available rating values. For this purpose Ratings Ontology offers the property
hasAllowedRatingV alue, that allows to specify one by one allowed rating val-
ues. The following code fragment shows how to encode a Ratings Collector with
mode set to explicit and 1, 2, 3 as available rating values.

<rat:RatingsCollector rdf:about="http://example.collector2.org">

<rat:mode rdf:resource="&rat;EXPLICIT_MODE" />

<rat:hasAllowedRatingValue rdf:datatype="&xds;integer">

1

</rat:hasAllowedRatingValue>

<rat:hasAllowedRatingValue rdf:datatype="&xds;integer">

2

14

</rat:hasAllowedRatingValue>

<rat:hasAllowedRatingValue rdf:datatype="&xds;integer">

3

</rat:hasAllowedRatingValue>

</rat:RatingsCollector>

The second mechanism is more general but less expressive. At first an interval
can be bounded or unbounded, in one or both directions. The hasRatingV aluesRangeLowerBound

and hasRatingV aluesRangeUpperBound properties respectively allow to define
an upper and a lower bound for a ratings range. The following code fragment
shows how to encode intervals [5, +∞[⊂ IR and [1, 1.5] ⊂ IR.

<rat:RatingsCollector rdf:about="http://example.collector3.org">

<rat:mode rdf:resource="&rat;EXPLICIT_MODE />

<rat:hasRatingValuesRangeLowerBound rdf:datatype="&xds;integer">

5

</rat:hasRatingValuesRangeLowerBound>

</rat:RatingsCollector>

<rat:RatingsCollector rdf:about="http://example.collector4.org">

<rat:mode rdf:resource="&rat;IMPLICIT_MODE />

<rat:hasRatingValuesRangeLowerBound rdf:datatype="&xds;integer">

1

</rat:hasRatingsLowerRangeBound>

<rat:hasRatingValuesRangeUpperBound rdf:datatype="&xds;float">

1.5

</rat:hasRatingValuesRangeUpperBound>

</rat:RatingsCollector>

A range defined in this manner is assumed to be continuous. If we have a
finite or not finite ratings range, in which available values are equally spaced we
can encode it with the ratingsEquispacedWithDistance property. Obviously,
such a range consists of a set of discrete values. The following code fragment
shows how to define the set of even numbers as the ratings range.

<rat:RatingsCollector rdf:about="http://example.collector5.org">

<rat:mode rdf:resource="&rat;EXPLICIT_MODE />

<rat:hasRatingValuesRangeLowerBound rdf:datatype="&xds;integer">

0

</rat:hasRatingValuesRangeLowerBound>

<rat:ratingsEquispacedWithDistance rdf:datatype="&xds;integer">

2

</rat:ratingsEquispacedWithDistance>

</rat:RatingsCollector>

Please note that a discrete finite set of equally spaced available ratings could
be defined using both of these two mechanisms. In order to increase readability

15

and minimise the storage size, the definition via enumeration should be used
only when the amount of available values is not too large.

4.3 Ratings Collector Class Diagram

These two ways to define the set of available ratings are mutually exclusive,
so you can’t mix them to create an hybrid ratings range. This constraint was
made explicit in the ontology definition creating two disjointed classes for rating
collectors, one for each range definition mechanism. The RatingsCollector class
is defined as the union of these two classes, with the additional mode property.
Figure 1 outlines ratings ontology classes and properties.

Fig. 1. Ratings Ontology class diagram

16

4.4 Invalid Ratings

OWL provides features to include into the ontology definition the most of the
constraints needed for rating data sets. In example cardinality constraints are
used to specify that a rating must have just one asserter. The only additional
constraint needed is about rating values related to the set of available ratings
provided by the engine. If we found a rating whose value is not allowed by the
engine that collected it, this rating should be considered invalid and discarded
by tools that process the data set this rating belongs to. The presence of such
a rating in the data set probably was caused by an error during the collection
task, or by some other processing of the data set itself.

On the other hand, you can define a ratings collector with a ratings range
lower bound greater than the upper bound, producing a meaningless definition.
We decide to leave unspecified how to handle such a situation, delegating this
task to implementations.

5 Applications : Data Set Statistics

As pointed out in Sect.1, a universal format to deal with ratings, as Ratings
Ontology aims to become, allowed us to develop software tools that process
ratings independently from the engine which collected them. In this section we
introduce a set of tools able to find out various statistical information from a set
of ratings, stored via the ratings ontology. These tools have been developed using
the Jena[13] api for RDF and OWL processing, and the SPARQL[14] support
provided by the ARQ engine for queries. The tools are available as set of api
together with the command line tools based on the api itself. We have planned to
release a graphical version in the near future and to make the api also available
as a web service.

5.1 Validity Checker

The first tool performs the rating validation described in Sect.4.4. Given a re-
source into an rdf model, the first feature is to detect whether it is a valid rating
or not. Moreover we provide a Jena reasoner to discover all errors in a model,
signalling also invalid ratings.

5.2 Collection Engines

As pointed out in Sect.4, a common data set could be used to store ratings
collected by different engines. The second tool extracts all ratings engines defined
into an rdf model, providing also basic information about them like the mode
and the set of available ratings.

17

5.3 Asserters and Items

Our suite also provides features to retrieve the following information from a
rating data set :

1. number of rating asserters;
2. number of rated items;
3. the list of all asserters;
4. the list of all rated items;
5. total number of ratings;
6. total number of distinct ratings;
7. ratings density.

It can happen that a user assesses two different ratings for the same item
at two different times. The System that keeps track of this fact should store
additional information to distinguish these two different events (for example a
timestamp). We say that two ratings are distinct if they differ for asserter, rated
item or both.

Density measures the amount of available information provided by a ratings
set. It coincides with the density of the bi-dimensional matrix labelled with
asserters and items, and with rating values into cells. We use the formulation of
density that can be found in [15]:

Density =
IU

I ∗ U
(1)

where U is the total number of asserters, I is the total number of rated items,
and IU is the total number of distinct ratings. All of these calculations can be
restricted to a single collection engine. So, given a collection engine E we can
retrieve the number of asserters which have at least one rating collected by E,
the number of items with at least one rating collected by E, and so on.

5.4 Statistics on rating values

We can find out various statistics from a set of ratings collected by the same,
well known, engine. For example we can get:

1. frequency distribution of available rating values;
2. average and variance of ratings;
3. average rating for an item;
4. the list of more rated items.

Dealing with ratings collected by different engines is a more subtle task,
because the raw numerical value of a rating is meaningless without any infor-
mation about its collector ratings range. Given two different collector engines
E1 and E2 with a limited ratings range(a rating range with an upper and a
lower bound), ratings collected by these two engines could be normalised into
the interval [0, 1] in order to be processed in a uniform way. For this reason, our
suite allows to find out statistics about ratings collected by two or more engines
with finite rating ranges.

18

6 Conclusions And Future Works

This paper introduces Ratings Ontology, an OWL based format to deal with
ratings and related matters. This ontology also provides elements to describe
collection contexts, that contain all information needed to give a correct inter-
pretation of a rating and of its value. In Sect.5 we presented some tools that work
on documents in this format, showing how a uniform exchange format could be
useful to develop collection engine independent tools. We have planned to de-
liver two different applications that deal with data sets with elements described
through Ratings Ontology. At first, to help researchers and companies we want
to develop a full test suite for collaborative filtering and trust algorithms. This
task involves the definition of a common format to describe test results, and
the development of some tools for statistical results visualisation. Another appli-
cation of this ontology could be a generic framework for recommender systems.
We are considering to use SWAMI[16] as starting point.

References

1. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item col-
laborative filtering. In: Internet Computing. Volume 7., IEEE (2003) 76– 80

2. Avesani, P., Massa, P., Tiella, R.: A trust-enhanced recommender system ap-
plication: Moleskiing. In: Proceedings of the 2005 ACM symposium on Applied
computing SAC ’05. (2005)

3. Herman, I., Swick, R., Brickley, D.: Resource description framework (rdf) (2004)
http://www.w3.org/RDF/.

4. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform resource identifier (uri):
Generic syntax. In: Request For Comments. Number 3986. IETF

5. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
(2004) http://www.w3.org/TR/rdf-schema/.

6. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview (2004)
http://www.w3.org/TR/owl-features/.

7. Golbeck, J.: The Trust Ontology. http://trust.mindswap.org/trustOnt.shtml.

8. Brickley, D., Miller, L.: The friend of a friend (foaf) project. (2007)
http://www.foaf-project.org/.

9. Miller, B., Albert, I., Lam, S., Konstan, J., Riedl, J.: Movielens unplugged:
Experiences with a recommender system on four mobile devices. In: 17th
Annual Human-Computer Interaction Conference, GroupLens Research (2003)
http://movielens.umn.edu/.

10. Ayers, D.: Review vocabulary http://dannyayers.com/xmlns/rev/.

11. Longo, C.: Ratings ontology http://www.tvblob.com/ratings/.

12. Farag, A., Muthucumaru, M.: Evolving and managing trust in grid computing
systems. In: Canadian Conference on Electrical Computer Engineering. (2002)

13. McBride, B.: Jena: Implementing the RDF Model and Syntax Specification. In:
Semantic Web Workshop, WWW2001. http://jena.sourceforge.net/.

14. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2007)
http://www.w3.org/TR/rdf-sparql-query/.

19

15. Caldern-Benavides, M.L., Gonzlez-Caro, C.N., de J. Prez-Alczar, J., Garca-Daz,
J.C., Delgado, J.: A comparison of several predictive algorithms for collaborative
filtering on multi-valued ratings. In: ACM symposium on Applied computing.
(2004)

16. Fisher, D., Hildrum, K., Hong, J., Newman, M., Thomas, M., Vuduc, R.: SWAMI:
a framework for collaborative filtering algorithm developmen and evaluation. In:
Research and Development in Information Retrieval. (2000) 366–368

20

Links and Cycles of Web Databases

Masao Mori1, Tetsuya Nakatoh2, and Sachio Hirokawa2

1 O ce for Information of University Evaluation, Kyushu Univ., Fukuoka, Japan.
mori.uoc@mbox.nc.kyushu-u.ac.jp

2 Research Institute for Information Technology, Kyushu Univ., Fukuoka Japan.
{nakatoh, hirokawa}@cc.kyushu-u.ac.jp

Abstract. This paper proposes a novel framework for composing web
databases. Web databases are assumed to have explicit descriptions of
I/O attributes and are considered as components of functional compo-
sitions. A user writes a script to connect output channels and input
channels of components. A script determines a directed graph that may
contain cycles which formalizes interactive and iterative behavior of a
user through a browser. The interaction and iteration are realised by
the notion of CGI-link. Auxiliary lters are introduced as components
for universal manipulating tools. (Keywords: web service composition,
mashups)

1 Introduction

This paper proposes a novel framework for composing web databases. Under the
framework we implemented a system which is open to public3.

Web databases, sometimes called deep webs [1], hidden webs or invisible webs,
have been paid attention since around 1996 because of their huge amount of in-
formation. Recently many web databases have been newly reconstructed into
web services, like Amazon.com, Google, and so on. Web services provide access
methods (API) for their hidden databases. On the other hand, for the purpose
of accessing web databases there are many researches of web wrappers. A web
wrapper collects information by analyzing HTML codes output from the hu-
man interface of a web database, e.g. [7],[8],and [9]. By virtue of web wrappers
and APIs web developers are motivated to create a web service composition and
the new style of web contents mashup. While BPEL[10] is one of outcome
from research of web service composition, mashup is a new style of combina-
tion of web services. Many mashup sites are implemented using visualization of
AJAX techniques and communications of the REST style. Sabbouh et al.[11] pro-
posed the Web Mashup Scripting Language which provides a set of procedures
of JavaScript in order to integrate web services. Yokoyama et al.[15] studied a
framework of AJAX for lightweight implementations. Importance of componeti-
zation of web services and web databases has been pointed out in [14] and [13],
before mashups obtained much attention as we see now.

3 Available at http://hyoka-inf.ofc.kyushu-u.ac.jp/%7Emori/research/PSM/

21

Mashups have two types of processing; server side processing and client
side processing. As for client side processing AJAX become popular to real-
ize mashups because mashups with AJAX are supposed to process light-weight
data. In this paper we focus on server side processing because of heavy-weight
data processing. Currently our system adopt REST style communications as for
web services, and web crawling as for web databases.

It seems that most of mashups provide integration of data rather than inte-
gration of process ows. In fact most of mashup web sites use only two or three
web services. They do not need complex descriptions of process ows. Focusing
on integrating web service feeds, Tatemura et al.[12] proposed “Mashup Feeds”
which retrieves multiple feeds from many sites and provides users with a set of
tools to manipulate the collection.

Mori et al.[5] proposed a novel approach and its system that generates
mashup CGIs by giving a simple description of web databases compositions
and stores the mashup CGIs in order to reuse them. The problem left in the
researches [5] and is the actual interface using web browsers. In this paper we
propose graphical primitives for mashup and give solutions for the following
questions:

1. What is an easier script style to combine web services and web databases?
2. How does the system manage to layout and display data from multiple web

services?
3. What is a better way to carry out next mashup execution and search?

We will introduce the notion of “user interface component”which is a key prim-
itive to layout and display data, and carrying out the next execution step of
mashups.

The structure of the paper is organized as Fig.1. New proposals are marked
with asterisks(*). Section 2 explains a standard architecture for implementing
mashup which requires basic components and their composition. In section 3,

Fig. 1. The programming paradigm of PSM

22

we analyze how users use web databases with browsers. As a result, we intro-
duce “user interface components” as new auxiliary components. In section 4,
“fllter components” and graphical components are introduced. In section 5, we
introduce the notion of links and cycles as new methods of composition. These
methods capture the repeated interaction of between a user and web databases.

2 PSM Architecture

Our system consists of three parts: interface server, CGI generator and mashup
server. When a user accesses the interface server, the server provides a web inter-
face for the user to describe mashups. A description of mashup is called a mashup
script. Once the interface server passes a mashup script to the CGI generator,
the generator forms a mashup CGI which is stored in the mashup server. The
mashup CGI is executed in the mashup server and performs administration of
communication and data processing so that the user can reuse the mashup CGI.
The architecture of our system is named as the Personally Scripting Meta-CGI
architecture, PSM for short. The overview of the architecture is shown in Fig 2.

2.1 I/O Attributes and I/O Composition

We call the subjects that input and output in PSM, as component. A mashup
script is essentially a graph over components: paths of the graph shows data
ow amongst components and each edge shows correspondence of attributes in

components. The syntax of mashup scripts will be introduced in the rest of this
section.

Most of web services provide complex queries in their search functions. A
complex query is composed of a tuple of keywords for which web services return

Fig. 2. An overview of PSM

23

Rhapsody(www.rhapsody.com) Amazon(www.amazon.com)

attribute description attribute description

input artist name of artists ItemSearch keyword search
album names of CD titles ProductSearch product id search

output artist names of artists artist names of artists
album names of CD titles album names of CD titles
track url of the web page URL url of the web page

Fig. 3. API description of Rhapsody and Amazon

collections of tuples as search result. Search functions of web services are provided
with a URL of API and variables of API. In this paper we call names of variables
attributes. We introduce two web services for example in Fig.2.1. The flrst one is
Rhapsody which is an online music web service. The second example is Amazon
Web Service whose API is for database of music products in Amazon.com. Note
that these examples are excerpts from original web service API.

We deflne attributes of complex queries as input channels and attributes of
tuples in search results from web services as output channels. We call both of
them I/O channels of web services. In PSM data on I/O channels are collections
of tuples.

2.2 Functional Composition

Functional composition of web services is data passing from output channels
on one web service to input channels on another. A mashup script consists of
descriptions of functional compositions. For example, in order to pass data from
the output channel artist of Rhapsody to the channel ItemSearch of Amazon,
the mashup script should have:

Rhapsody.artist -> Amazon.ItemSearch,

We call a pair of components as a functional composition expression, fc-expression
for short.

The mashup CGI starts to work when the initial query is given, so that
the mashup script must include at least one description about the initial query.
Let us consider a special component Start to output the initial query to web
components.

Start.x -> Amazon.ItemSearch,

The initial query might be complex, like

Start.k1:k2 -> Rhapsody.artist:album,

Keywords from the output channels k1 and k2 of Start are passed to the in-
put channels artist and album of Rhapsody, respectively. A fc-expression with
complex data passing is written with tuples of channels separated by colon.

24

2.3 The Syntax of Scripts

Now we deflne the mashup script with BNF. Note that 〈fce〉 denotes fc-expressions.

〈MashupScript〉 ::= 〈wslist〉 ”|” 〈exps〉
〈wslist〉 ::= 〈wsname〉 {”, ”〈wsname〉} ∗
〈exps〉 ::= 〈fce〉 {”, ”〈fce〉} ∗
〈fce〉 ::= 〈ws〉”->”〈ws〉
〈ws〉 ::= 〈wsname〉”.”〈chan〉

〈chan〉 ::= 〈attr〉 {” : ”〈attr〉} ∗
〈attr〉 ::= 〈attrname〉 | 〈attrname〉” ∗ ”

〈wsname〉 ::= ”names of web services”

〈attrname〉 ::= ”names of attributes”

Asterisks ”∗” added to 〈attr〉 is a word separator which will be introduced in
the next section. Like Rhapsody and Amazon, web services and web databases
with structured I/O channels are called by web components.

3 User Interface Component and CGI link

Now we consider roles of web browsers in PSM. Web browsers display data
from web components on client PCs. Since we suppose that data in PSM are

Fig. 4. Interface server(left) and a generated CGI “SWAP2007 example.cgi”(right)

25

Fig. 5. The mashup script and its graph for SWAP2007 example.cgi

sent through structured I/O channels from some web component, web browsers
obtain not as text but collections of tuples. We deflne user interface components,
UIC for short, that receive collections of tuples into input channels and display
them in appropriate forms (e.g., HTML tables <table>...</table>) on client
PCs. We denote it by Output. If distinct UICs are required, we can distinguish
them by indexing, like Output1, Output2 and so on.

As input channels of a UIC can be known by output channels of the web
component, channels of UIC can be omitted. For example, the functional com-
positions to a UIC Output like;

Rhapsody.album:track -> Output.album:track,

but we can write

Rhapsody.album:track -> Output,

We note three things about channels of UICs. Firstly we set that all of UICs
must have the same names of output channels as names of input channels while
names of input channels are determined by web components. Secondly we note
variability of input channels of UIC. In the case that a UIC is on the right hand
side of fc-expression, input channels of the UIC depend on the web component
on the left hand side of fc-expression. Thus input channels of UIC are variable.
Thirdly, output channels of a UIC can be regarded as output from users. This
idea is very important. We will study this idea in the rest of this section.

26

How and what do we flnd keywords to continue web search? In many cases
keywords might be chosen from the previous results. Let us consider the mashup
script that generates SWAP2007 example.cgi4. The UIC Output1 appears both
in the right hand side of the second line and in the left hand side of the third line.
While Output1 of the second line displays a collection of tuples (album,track)
from the web component Rhaspody, functional composition of the third line
means to set hyperlinks on all words which appears at the “album” column
in the table Output1. Those hyperlinks call SWAP2007 example.cgi that send
those words as queries to ItemSearch of Amazon web service API. Seeing Fig.4
search results of SWAP2007 example.cgi with hyperlinks on “Return Of The

Champion” are shown in the front window. We call hyperlinks generated by
output channels of UICs, CGI links. Note that a loop appears in the 4th and
the 7th lines of the script, and a component named as Histogram appears in the
8th and 9th lines. These notions are introduced in section 4 and 5.

Sometimes data in one column of a UIC forms series of keywords. For exam-
ple, let us observe the search result from Amazon web service arisen by a CGI
link of Output2 in Fig.6. Series of names of artists can be seen at the artist

column. They are marked o one phrase (or word) with comma. In order to
make a CGI link for each keyword, the word separator, asterisk ∗, is put after
the concerned output channel of UICs, like the forth line of the script in Fig.5.

The right window of Fig.6 (c) is the result by clicking the CGI link of “Queen”
(in the 6th row, “artist” column) which arise the search API of YouTube with
keyword “Queen”.

Now we discuss the three questions posed in the flrst section. By giving
graphs of components we resolve the flrst question. We introduce user interface
components for data layout management(question 2). Finally we prepare the
CGI link machinery in order to set triggers for next search(question 3).

4 Filters and Graphical Components

As we have seen, mashup scripts are essentially graphs over components. A path
on the graphs can be regarded as a pipeline for collections of tuples. So that we
have implemented filter components, like UNIX pipeline processing.

SortL, SortN To sort data with respect to the flrst input channel of a web
component. SortL for lexicographic order and SortN for numbers. Input
channels of the sort component can be omitted.

Rhapsody.track:artist:album -> SortL,

SortL.album:track:artist -> Output,

The result of this example would be ordered data with respect to music title
(track) from Rhapsody.

4 The sample script is available at
http://hyoka-inf.ofc.kyushu-u.ac.jp/%7Emori/research/PSM/Generated

SWAP2007 example.cgi

and the description of YouTube API can be found in www.youtube.com.

27

(a) Search result for the query “Queen” (b) Invocation of the query “Return Of The

Champions” from Output1

(c) Invocation of the query “Queen” in the
6th row, a rtist column from Output2

(d) Invocation of Histogram component from
Output1

Fig. 6. Executions of SWAP2007 example.cgi

28

Uniq To remove duplication of records.
Rhapsody.track:artist:album -> Uniq,

Uniq.artist:album -> Output,

Colvec Extract a column from the collection of tuples.
Rhapsody.artist -> Colvec,

Colvec.id:value -> Output,

Colvec extract the column artist of data from Rhapsody component.
Transpose Regarding the collection of tuples as a matrix, this fllter transpose

data.

I/O channels of sort and uniq fllter components are variable as well as UICs,
and input channels of fllters in the right hand side of fc-expression can be omit-
ted. Now graphical components are introduced.

Histogram To count the appearance of a specifled attribute at the input chan-
nel item of this component and make histograms. Output channels are who

for appeared keywords and num for numbers of appearance. See the 8th and
9th line of SWAP2007 example.cgi and the result in Fig.6 (d).

BarGraph, LineGraph, PointGraph Those components receive vectors and
plot graphs.

We can generalize about the component in terms of the standard output from
user interface components and graphical components. Those components involve
CGI links not only on text, but also multimedia objects.

5 Links and Cycles

Mashup feeds[12] is designed to make programs to collect feeds periodically.
It iterates procedures by time-based scheduling. This method is suitable for
feeds processing. On the other hand WMSL[11] utilized the control structure of
JavaScript for iteration.

Since mashup scripts are written in simple descriptions of graphs over com-
ponents, they might include cycles in the graphs of components. Note that cycles
play a role of iteration in PSM. If the cycle consists of only web components, its
execution would result in an inflnite loop. If the cycle includes at least one UIC,
it is possible to stop the iteration at the UIC. Thus links and cycles in PSM can
control loops.

See the mashup script SWAP2007 example.cgi again and note the 4th and
7th lines where a loop can be found. It is easy to presume that the mashup script
would stop at each loop step by the CGI links in Output2.

6 Conclusion and Future Works

We proposed the mashup scripting system PSM which resolve the three proper
questions for mashups introduced in the flrst section. The idea of functional
composition of components leads us to a simple format (graphs) of mashup

29

scripts. Moreover we proposed the new mashup programming style like UNIX
pipeline processing. In this style loops can be realized by cycles of components,
and can be controlled by CGI links.

PSM is implemented in Perl, independent of WSDL[2]. Data from web ser-
vices and web databases are transformed into lists of hash in perl codes. All of
data processing are done in single server, so that we need to improve the system
to reduce overhead.

References

[1] BrightPlanet. Deep web. White Paper, 2000.
[2] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services

description language (wsdl) 1.1. Technical report, World Wide Web Consortium,
March 2001. http://www.w3.org/TR/wsdl.

[3] K. Hemenway and T. Calishain. Spidering Hacks. O’Reilly & Associates Inc.,
Mar. 2003. ISBN-13 978-0596005771.

[4] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press, 1999.

[5] M. Mori, T. Nakatoh, and S. Hirokawa. Functional composition of web databases.
In Proceedings of International Conference Asian Digital Libraries 2006, Lecture
note in Computer Science 4312. Springer Verlag, 2006.

[6] M. Mori, T. Nakatoh, and S. Hirokawa. A light-weight implementation of mash-
ups (in japanese). In Proceedings of Data Engineering Workshop 2007, C7-152.
IEICE, 2007.

[7] T. Nakatoh, K. Ohmori, and S. Hirokawa. A report on metadata for web
databases. In IPSJ SIG Technical Reports, 2004-ICS-138(17), pages 95–98, 2004.

[8] T. Nakatoh, K. Ohmori, Y. Yamada, and S. Hirokawa. Complex query and meta-
data. In Proceedings of ISEE2003, pages 291–294, 2003.

[9] T. Nakatoh, Y. Yamada, and S. Hirokawa. Automatic generation of deep web
wrappers based on discovery of repetition. In Proceedings of the First Asia Infor-
mation Retrieval Symposium (AIRS 2004), pages 269–272, 2004.

[10] OASIS. Web Services Business Process Execution Language Version 2.0, April
2007. OASIS Standard.

[11] M. Sabbouh, J. Higginson, S. Semy, and D. Gagne. Web mashup scripting lan-
guage. In Proceedings of the 16th international conference on World Wide Web
2007, pages 1305 – 1306. ACM Press, May 2007.

[12] J. Tatemura, A. Sawires, O. Po, S. Chen, K. S. Candan, D. Agrawal, and M. Gov-
eas. Mashup feeds: Continuous queries over web services. In Proceedings of the
2007 ACM SIGMOD international conference on Management of data, pages 1128
– 1130. ACM Press, June 2007.

[13] J. Yang. Web service componentization. Communications of the ACM, 46(10):35–
40, 2003.

[14] J. Yang and M. P. Papazoglou. Web component: A substrate for web service reuse
and composition. In Advanced Information Systems Engineering: 14th Interna-
tional Conference, CAiSE 2002 Toronto, Canada, May 27-31, 2002. Proceedings,
pages 21–36. Springer Verlag, May 2002.

[15] S. Yokoyama, A. Matono, S. M. Pahlevi, and I. Kojima. A framework for modu-
larization and mashup of javascript codes on web2.0 (in japanese). DBSJ Letters,
5(3), December 2006.

30

Ontology-Driven Generation of a Federated
Schema for GIS

Agustina Buccella1, Domenico Gendarmi2, Filippo Lanubile2, Alejandra
Cechich1, and Attilio Colagrossi3

1 GIISCO Research Group,
Departamento de Ciencias de la Computación,

Universidad Nacional del Comahue, Neuquen,Argentina
{abuccel,acechich}@uncoma.edu.ar

2 Dipartimento di Informatica,
University of Bari,

Via E. Orabona, 4 - 70125, Bari, Italy
{gendarmi,lanubile}@di.uniba.it

3 Dipartimento Tutela delle Acque Interne e Marine,
APAT, Via Curtatone, 3 - 00185, Rome, Italy

attilio.colagrossi@apat.it

Abstract. In this work we propose an extension of a Federated Sys-
tem, named Information Broker, developed with the Italian Agency for
Environmental Protection and Technical Services (APAT). The main
objective of this proposal is to build an integrated system taking into
account autonomous, distributed and heterogeneous geographic sources.
Our extension is aimed at improving aspects as redundancy, consistency,
and scalability by adding semantic interoperability through the use of
ontologies and the ISO 19100 standards.

Key words: Geographic Information Systems, Federated Systems, On-
tology, ISO 19100 Standards

1 Introduction

The APAT was established in 1999 to carry out scientific and technical activities
in the national interest to protect the environment, water resources and soil.
Data collected include climatic, hydrometric, cartographic and water pollution
measures. Although all the information is owned by the same organization, the
huge amount of information is managed by different departments and units.
Besides, given the large diversity in syntax and semantic of data, measures are
stored into several independent systems, which are based on the most appropriate
technology for their data type. All these characteristics have made very hard
to share information among the different systems. Thus, the main goal of the
APAT Information Broker project is to develop a system to provide a fully and
user-transparent integration of the heterogeneous data sources, ensuring at the
same time, the existing legacy applications that operates on them will continue
operating autonomously, without undergoing any sort of modification.

31

2 A. Buccella, D. Gendarmi, F. Lanubile, A. Cechich, and A. Colagrossi

In previous work [1, 2] we have developed an Information Broker System
together with a schema integration process focusing specially on syntactic inter-
operability. This system is mainly represented by using XML data models for the
integration process without storing semantic information. Therefore, the process
is made manually, increasing the chance of introducing errors and inconsistences.

In this work, we propose an extension of the schema integration process
by adding semantic information through the use of ontologies [3]. Then, the
Information Broker System will be implemented as an ontology-driven system
in order to share the real common vocabulary contained in the sources. We
have focused on ontologies due to the advantages they provide to an integration
process – as ontologies are formally described, i.e. by using some logic language
such as Description Logic [4], we will be able to perform inferences and check
inconsistencies easily.

Our extension is based on previous work on integration of geographic in-
formation [5, 6], which focuses on two main aspects: modelling and integrating
ontologies. With respect to the former, the ontologies are created towards inte-
gration by using a family of the ISO 19100 standards (prepared by ISO Techni-
cal Committee 211 (TC211)4). Specially ISO 19109 [7], ISO 19110 [8], and ISO
19107 [9] are used in these works. On the other hand, we propose an integration
methodology focused on three main phases: unit, integration and system. Each
phase takes advantage of the semantic of ontologies and their specific represen-
tation. This integration process is mainly based on our work in [5].

This paper is organized as follows: next Section describes the current Informa-
tion Broker System. Section 3 presents the extension describing its architecture.
In Section 4 we discuss some related work. Finally, future work and conclusions
are discussed afterwards.

2 The Information Broker System

Distributed and overlapped information in APAT have motivated the construc-
tion of a federated system based on hydrological features. As the main goal of the
project is to develop a system to provide a fully and user-transparent integra-
tion of the sources, in previous work [1, 2] we have introduced and implemented
an Information Broker System based on a layered-based architecture. Figure 1
shows this architecture consisting of three main layers, wrapper, federation and
presentation.

In the Wrapper Layer, Data Access Services (DASs) have been developed to
wrap each available data source and to extract the information required on de-
mand. Following, the Federation Layer offers a uniform and transparent access
to the data stored in data sources through the Query Processor and the Fed-

erated Schema Browser components. The Query Processor performs the task
of decomposing a global query in a set of local queries and integrating all the
obtained results in a single response. The Federated Schema Browser provides

4 http://www.isotc211.org/

32

Ontology-Driven Generation of a Federated Schema for GIS 3

Fig. 1. The Information Broker Architecture

a high-level access to the federated schema, and is used by the query processor
to discover the appropriate DAS which, in turn, provides access to a specific
concept.

Finally, the Presentation Layer represents the communication medium be-
tween the broker and the end-users. It consists of two main components: the User

Interface and the Ontology. Two different user-interfaces have been developed:
an hydrological query wizard, used to perform global queries and view conse-
quent results in a common web browser; and a web ontology browser, enabling
users to navigate through the hydrological concepts (the ontology) within the
APAT domain.

We have developed a first prototype of the Information Broker System [2].
This first release is composed of six databases managed by three distinct DBMS,
namely MySQL Server, used for collecting real time measures; PostgreSQL
server, used for collecting information on water quality; and Tamino XML Server,
used for collecting data on extreme hydrological events and hydrography of the
territory. Empirical evaluations about the use of this system are still outstanding.

In this paper, we are interested in one of the main processes to build the
Federated Schema of the federation layer. Next sub-section describes some details
of this process.

2.1 Building the Federated Schema

The federated schema is designed to provide a shared vocabulary of the informa-
tion sources. Based on this vocabulary, we implement the user interface and the
query processor components in order to give a global view of the whole system.
In this way, the federated schema constitutes the core of the Information Broker
system.

33

4 A. Buccella, D. Gendarmi, F. Lanubile, A. Cechich, and A. Colagrossi

A bottom-up process consisting of four steps has been designed taking into
account syntactic interoperabilities. Figure 2 shows graphically the components
created within each step.

Fig. 2. Schema Integration Process

The first step transforms the local schemas into so-called export schemas,
which are expressed in a common data model (CDM) and represented by XML
data models. Thus, local schemas of the different databases of the federation
converge on a common structure of data.

Then, the second step creates the export-schema mappings, which are XML
files manually generated at design time from each export schema. Such files
contain the mappings between the local and export schemas; that is, correspon-
dences between low-level data and high-level domain concepts.

Finally, the third step builds the federated schema, which represents the
logical model of the virtual database containing all data available within the
federation. The federated schema is the result of merging all the export schemas.

During this merging, all possible conflicts must be identified and solved. This
is accomplished through two different activities. The Correspondence Investiga-

tion activity searches for correspondences among the export schemas. The output
of this activity is a set of conflicts, grouped in naming conflicts and structural

conflicts. After that, the Conflict Resolution activity is carried out reviewing
and fixing each conflict.

Once the federated schema has been generated, the last step in the process
manually generates the federated-schema mapping file. It consists of an XML file
that stores the correspondences between complex concepts and simple concepts
distributed in the different export schemas; simple concepts and constraints that
characterize them; and simple concepts and services able to retrieve them.

34

Ontology-Driven Generation of a Federated Schema for GIS 5

With respect to semantic aspects of the Information Broker System, we add
a new component, called Ontology Schema Mapping, in order to represent the
correspondences between concepts in the domain ontology and queries.

3 An Ontology-Based Extension for Generating a
Federated Schema

Although the current Information Broker architecture is well suited for manip-
ulating standard information through XML formatting rules, integration com-
pletely depends on users’ interpretations and background. As we aforementioned,
the task of building the federated schema is completely manual and in the case
of large information sources (as we have to consider in this project) it becomes
tedious and error-prone. Aspects as modificability and scalability were not taken
into account because re-executing the integration process only for some changes
on data can take several days.

In this way, the process of building the federated schema becomes difficult to
standardize and evolve. Taking into account these two points we propose some
changes on the general process of building the federated schema in order to
facilitate the use of more suitable processes. The proposed extension is based on
previous work [5, 6] in which an architecture and a merging process have been
defined.

Fig. 3. Changes on the Schema Integration Process

35

6 A. Buccella, D. Gendarmi, F. Lanubile, A. Cechich, and A. Colagrossi

Figure 3 shows the main changes made on the original Information Broker
architecture. Like in the original schema (Figure 2), four bottom-up steps are
necessary to build the federated schema. However, these steps are very different.
The first and second steps, which were in charge of transforming local schemas
into export schemas and generating export schema mappings, are now responsi-
ble for standardizing the geographic information of sources.

The third and fourth steps, which were in charge of creating the federated
schema and its mappings, are now responsible for applying the method for merg-
ing ontologies.

In this way, the four steps are combined into two main processes, enriching

local ontologies and the merging process itself. The first process defines the steps
to create formal ontologies by applying the ISO 19100 standard for geographic
information. Then, the merging process implements our merging method. Next
two sub-sections provide a brief description of these processes.

3.1 Enriching local ontologies

The use of the ISO 19100 standard gives a new perspective to face integration
problems for the interoperability of geographic systems. New ontology modelling
techniques of this type of systems should be based on this standard in order to
allow integration methods take advantage the benefits they provide.

In our extension, a top-level ontology and a domain ontology are built based
on the information provided by the models of the standard (ISO 19109 and
19107 std.). Gray arrows in the Figure show how the information flows among
the models. Thus, the domain ontology is built considering the General Feature
Model (GFM) and the Application Schema [7]. The GFM is a meta-model of
feature types. It defines the structure for classifying features used then to build
the application schema. In the case of the top-level ontology, it is based on the
structure of the GFM and the general features of the model being built.

Currently, there are new methodologies proposing the creation of ontologies
such as [10, 11], including Semantic Enrichment as one of the most important
steps. The main goal of this is to reconcile semantic heterogeneity, so it involves
adding more semantic information about data. In our work, as both ontologies –
top-level and domain – have to be based on the standard before being created,
we add a new step in the process named the enrichment step. In this step,
the components of the ontologies are enriched in their descriptions, through
the metaclasses (from GFM) which they are instance of and the schemas on
which they are based. In this way, all metaclasses extracted from the GFM
and representing information by the application schema are created as abstract
classes in the local ontology. Creating an ontology with these characteristics is
not a complex task because the information needed with respect to the GFM
can be extracted from the Feature Catalogue. Besides, by using an ontology
editor as Protégé 5 to model OWL ontologies [12], ISO ontologies from http:

//loki.cae.drexel.edu/~wbs/ontology/list.htm can be imported.

5 http://protege.stanford.edu/

36

Ontology-Driven Generation of a Federated Schema for GIS 7

Thus, all the ontologies will have the same structure due to all components are
subclassifying the same model. The GFM acts as a top-level ontology classifying
the elements of the ontology and making the integration easier. We will discuss
this in the next sub-section.

3.2 The Merging Process

The merging process involves the task of merging the geographic sources in
order to create a global vocabulary (federated schema) by defining two main
components (Figure 3), logic and analysis. Both processes are used in different
parts of the merging process.

This process is composed of three main phases: unit, integration and system.
In the Unit Phase each system is analyzed separately. The top-level and domain
ontologies can be seen as a unique ontology in which generalization / specializa-
tion relations are the connectors between them. This ontology will be formally
represented by using OWL [12].

Then, once the ontologies are correctly created, a Reasoning System (such
as RACER [13]) is applied in order to discover inferences not detected by users.
We take advantage of the capability of inferring subsumption relations between
classes and properties in the schema (TBox). That is, the reasoning system will
determine where a concept can be located in a taxonomy hierarchy (a hierar-
chy built by means of a subconcept relation). Besides, the reasoner is used to
check the consistency of the formal ontologies. Here, the validity of intentional
definitions (in TBox) is checked. If an inconsistency is found, an expert user is
responsible for solving it.

As result for each system, a normalized ontology (that can be divided into
a top-level and a domain ontology) is returned. This ontology will be based on
the geographic standards containing metaclasses descriptions (GFM) and the
geographic schemas on which they are based. Thus, after passing through the
logic process, the ontologies will have the correct structure we need to start with
the following phase.

In the Integration Phase three processes are responsible for matching two
normalized ontologies in order to create the global ontology. It contains the
general concepts users will use to query the integrated system. In addition, a
set of mappings are returned in order to represent the matching among the
ontologies.

Merge, General Analysis, and Specialized Analysis are the processes of this
phase. To do the first process, both ontologies of each system are joined by using
generalization / specialization relations. In this way, the ontologies are taken as
they are returned from the unit phase. Then, the two ontologies belonging to
two different systems are merged. The merge process is performed by matching
the classes that are part of the standard (metaclasses). As both ontologies have
the same superclasses, merging is an easy task.

Once the merge process is finished, the General Analysis starts. It applies
two types of analysis: syntactic and semantic. Within the syntactic analysis three
syntactic functions are used in order to compare the names of the concepts in a

37

8 A. Buccella, D. Gendarmi, F. Lanubile, A. Cechich, and A. Colagrossi

different way. Thus, functions return a different similarity result depending on
the syntaxes of the compared names.

Then, in the semantic analysis, a thesaurus is used to extract synonym re-
lationships between the concepts of the ontologies. These relationships are nec-
essary because synonyms (in general) are not similar syntactically. In this case,
WordNet6 is used as the thesaurus. The Specialized Analysis performs a struc-
tural comparison by applying the similarity function described in [6, 14]. This
function compares the number of properties that the classes have in common
and analyzes them in a hierarchy (by calculating the depth of the most common
superclass between the classes).

In the two last processes, user interaction is needed in order to determine the
correct mapping. In this way, processes are user-driven and users are responsible
for the final decisions.

Finally, it is possible the processes executed before generate inconsistencies
within this final ontology. Therefore, the System Phase re-normalizes the global
ontology created in the last phase. Like in the unit phase, a logic process is
applied, where the reasoning system is used once more to analyze possible sub-
sumption relations and inconsistencies in the global ontology.

User participation is also needed in this phase. Users here have two types of
responsibilities – committing the options the reasoner system detects and testing
the global ontology.

4 Related Work

Mapping discovery by using ontologies has being extensively investigated during
the last years. Various approaches have emerged proposing processes and tech-
niques to find similarities between elements of different but related ontologies.

In particular we are interested in methods for integration of geographic
sources. In general, we can find three main overlapped mechanisms to perform
integration, the use of top-level ontologies, logical inferences and/or matching

functions. Table 1 shows the more representative and referenced proposals clas-
sified by these three types.

One particularity of all these proposals is the use of ontologies to represent
either top-level information or domain information or both of them. In the case
of ODGIS several ontologies are built (top-level, domain, and application ontolo-
gies) in order to provide more information about the domain and thus facilitate
the integration process. But the activity of creating these ontologies is not an
easy task and it demands a lot of effort. Other proposals as GeoNis, Aerts et al.
and Hakimpour et al. use a top-level ontology together with the advantages of
a formal language (to make inferences) as tools to find more suitable mappings.
The use of similarity functions, in proposals as MDSM and SIM-DL, involves
a set of functions that analyze the concepts and properties syntactically and
semantically. In particular the use of these types of functions is useful when

6 http://wordnet.princeton.edu/

38

Ontology-Driven Generation of a Federated Schema for GIS 9

Table 1. The three mechanisms for integration mapped to the proposals

Top-level Logical Matching

ontology Inferences Functions

BUSTER [15]
√

Hakimpour et al. [16]
√ √

MDSM [14]
√

ODGIS [17]
√

GeoNis [18]
√ √

Aerts et al. [19]
√ √

Buccella et al. [5]
√ √ √

SIM-DL [20]
√

the ontologies are not complete (that is, there is absent information about the
domain) and/or as starting point of an integration process when a top-level
ontology is not involved. Proposals performing some manual step within the in-
tegration process require the assistance of an expert user to do so. For example,
BUSTER needs of an expert user although it uses inferences during the query
process.

Our merging method applies the three mechanisms to integrate ontologies.
On one hand, top-level ontologies are created by using the information provided
by the geographic standard. Then, logic capabilities and matching functions are
combined in order to find more suitable mappings. The use of these three options
makes our approach take advantage of the inherent benefits of using the standard
in geographic information, the logic of data, and the semantic information from
ontologies.

5 Conclusion and Future Work

In this work, we have presented an extension of the current Information Broker
System in order to add capabilities which improve the generation of the feder-
ated schema. Particularly, our proposal aims at improving interoperability and
consistency through the use of ontologies. However, there are still many issues
that need further research. For example information sources in APAT Informa-
tion Broker are not currently standadized, which may hinder consistency. The
use of the ISO 19100 Stds. is a starting point for improving that. In addition,
further validation of the ontology merging process would be absolutely necces-
sary for large ontologies – although our experiences [5] have shown good results
when using small ones.

References

1. Calefato, F., Colagrossi, A., Gendarmi, D., Lanubile, F., Semeraro, G.: An informa-
tion broker for integrating heterogeneous hydrologic data sources: A web services

39

10 A. Buccella, D. Gendarmi, F. Lanubile, A. Cechich, and A. Colagrossi

approach. In Xu, A., Chaudhry, L., Guarino, S., eds.: Research and Practical Issues
of Enterprise Information System, IFIP Series (Springer). Volume 205. (2006)

2. Gendarmi, D., Lanubile, F., Lichelli, O., Semeraro, G., Colagrossi, A.: Water
protection information management by syntactic and semantic interoperability of
heterogeneous repositories. In: Proceedings of the ISESS’07. (2007)

3. Gruber, T.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5(2) (1993) 199–220

4. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., Patel-Schneider, P., eds.: The
Description Logic Handbook - Theory, Implementation and Applications. Cam-
bridge University Press (2003)

5. Buccella, A., Cechich, A.: Towards integration of geographic information systems.
Electronic Notes in Theoretical Computer Science 168 (2007) 45–59

6. Buccella, A., Cechich, A., Brisaboa, N.R.: A three-level approach to ontology
merging. In: MICAI’05. LNCS 3789, Monterrey, México, Springer-Verlag (Novem-
ber 2005) 80–89

7. : Geographic information. Rules for Application Schema. Draft International
Standard 19109, ISO/IEC (2005)

8. : Geographic information. Geographic Information and Methodology for Feature
Cataloguing. Draft International standard 19110, ISO/IEC (2005)

9. : Geographic information. Spatial Schema. International standard 19107, ISO/IEC
(2003)

10. Belussi, A., Negri, M., Pelagatti, G.: An iso tc 211 conformant approach to model
spatial integrity constraints in the conceptual design of geographical databases. In:
ER (Workshops). (2006) 100–109

11. Jang, S., Kim, T.J.: Modeling an interoperable multimodal travel guide system
using the iso 19100 series of international standards. In: Proceedings of the GIS
’06, New York, NY, USA, ACM Press (2006) 115–122

12. Smith, M.K., Welty, C., McGuinness, D.: Owl web ontology language guide. W3C
(February 2004)

13. Haarslev, V., Moller, R.: Racer system description. In Lambrix, P., Borgida, A.,
Lenzerini, M., Moller, R., Patel-Schneider, P., eds.: Proceedings of the CEUR-WS.
Number 22, Linkoeping, Sweden (August 1999)

14. Rodŕıguez, M., Egenhofer, M.: Comparing geospatial entity classes: An asymmetric
and context-dependent similarity measure. International Journal of Geographical
Information Science 18(3) (2004) 229–256

15. Visser, U.: Intelligent Information Integration for the Semantic Web. Volume 3159
of Lecture Notes in Computer Science. Springer Berlin - Heidelberg (2004)

16. Hakimpour, F.: Using Ontologies to Resolve Semantic Heterogeneity for Integrat-
ing Spatial Database Schemata. PhD thesis, Zurich University (2003)

17. Fonseca, F.: Ontology-driven Geographic Information Systems. PhD thesis, Uni-
versity of Maine (2001)

18. Stoimenov, L., Stanimirovic, A., Djordjevic-Kajan, S.: Discovering mappings be-
tween ontologies in semantic integration process. In: Proceedings of the AGILE’06,
Visegr, Hungary (2006) 213–219

19. Aerts, K., Maesen, K., van Rompaey, A.: A practical example of semantic inter-
operability of large-scale topographic databases using semantic web technologies.
In: Proceedings of the AGILE’06, Visegr, Hungary (2006) 35–42

20. Janowicz, K.: Sim-dl: Towards a semantic similarity measurement theory for the
description logic cnr in geographic information retrieval. In: OTM Workshops (2).
(2006) 1681–1692

40

Software Semantic Provisioning: actually reusing

software

S. Sgueraa, A. Stellatoa, P. Ombredanneb, M. T. Pazienzaa

s.sguera@ieee.org

{pazienza, stellato}@info.uniroma2.it

philippe.ombredanne@eclipse.org

a: Università di Roma Tor Vergata, Dipartimento di Informatica, Sistemi e Produzione
b: The Eclipse Software Foundation

Abstract. Software development nowadays largely consists of adapting
existing functionalities or components to perform in a new environment, and is
biased towards delivering component-oriented architectures. Finding, choosing,
provisioning and integrating the right libraries or components is still an ad-hoc
and error prone task. This paper describes the SSP (Software Semantic
Provisioning) project, funded in its early stages by GoogleTM Inc., developed
during the Google Summer of CodeTM 2007 program, and incubated by the
Eclipse Software Foundation; the project aims to actually achieve software
reuse in an effective, reliable and developer-friendly fashion, integrating cutting
edge technologies in the component provisioning and integration areas, and
providing support to decision-making in choosing the right dependencies set. A
prototypical RESTful repository, and an Eclipse plug-in consuming the
repository services have been implemented and will be discussed.

1. Introduction

Software development nowadays largely consists of adapting existing functionalities
or components to perform in a new environment, and is biased towards delivering
component-oriented architectures. Finding, choosing, provisioning and integrating the
right libraries or components is still an ad-hoc and – thus – error prone task.
Furthermore, it is sadly well know that object-oriented programming promised a lot
about code reuse, but so far it never delivered it that much.
The problem of component provisioning, choosing the right software libraries set,

and integrating it affects software developers and libraries providers. The impact of
this is library choosing, component provisioning and integration tasks are carried out
by developers, with little or no help at all.
The very general concept which lies behind software collection and reuse can be

observed (in terms of needs) and applied (through successful methodologies and
technical solutions) at very different level of specializations. While very general
frameworks for software delivery and provisioning may offer services for accessing

41

2 S. Sguera, A. Stellato, P. Ombredanne, M. T. Pazienza

and contributing to large library repositories, relying on dedicated metadata for
organizing and retrieving the archived objects, there could be specific fields of
interest where a more complex and organized description of the repository, tailored
upon explicit needs and requirements which characterize the given domain, would
improve the shareability of data, information and tools inside really active and
participating communities.

Following previous research in the software components and libraries provisioning
and integration by the ART group1 at University of Rome Tor Vergata, this paper
describes the SSP (Software Semantic Provisioning) project, funded in its early stage
by GoogleTM Inc., developed during the Google Summer of CodeTM 2007 program
(details in [6]), and incubated by the Eclipse Software Foundation.

In Section 2 we will briefly introduce the main provisioning, build and integration
support technologies currently available. Representative use case scenarios have been
studied exploiting the prototypical implementation provided, and will be presented in
Section 3, giving the reader a more thorough understanding of the surrounding
environment and the actual benefits delivered to developers and component providers
by the project. Section 4 will describe our approach, key goal and significant design
issues. The software component domain has been formalized in the Software
Provisioning Ontology (SWPO) whose main classes, properties and possible
evolutions will be discussed in Section 5. Section 6 and 7 will be dedicated
respectively to the discussion of architectural choices and issues we took both in
server and client side development, while Section 8 will hold our conclusions and
future directions of work and research.

2. State-of-the-art

A number of existing projects and efforts aim to describe software. Each one focuses
upon a peculiar aspect, but no known product provides a thorough description
enabling complex search and integration features. Hereafter we discuss the main
characters populating the current component provisioning and integration panorama.

DOAP

The DOAP2 (Description Of A Project) effort aims to describe a software project in
terms of URI, maintainers, code repository and other product release-related features.
No hints about what a given piece of software does or does not are given.

Maven

Maven3 is one of the cutting edge integration and build management technology, and
gained a significant market share in latest years. Its main goal is helping developers in

1 http://ai-nlp.info.uniroma2.it
2 http://usefulinc.com/doap
3 http://maven.apache.org

42

Software Semantic Provisioning: actually reusing software 3

handling dependencies and relieve the burden of integration and build process. The
m2eclipse plug-in4 allow developers to use POM files directly from the Eclipse5 IDE.

Even if the folksonomy feature provided by the repository is quite functional and
easy to use, and perfectly in line with the Web 2.0 hype, it does not provide a reliable
mechanism to spot functional resemblance or more formal mappings and
correspondence between components, as we propose in this paper.

OSGi Bundle Repository
OSGi6 is the technology which enabled – among other things – the major shift in
Eclipse’s aims, from being a tooling platform (versions before 3.0) to a Rich Client
Platform [3], and the subsequent changes in the requirements set, in terms of dynamic
plug-in management, services, security, and performance. It provides an excellent
platform for bundle provisioning and building dynamically extensible applications. A
still evolving specification for building OSGi bundle repositories is given in [5].

Orbit
Orbit7 mainly aims to reduce component duplication: it provides a repository of
bundled versions of third party libraries that are approved for use in one or more
Eclipse projects. It also clearly indicates the status of the library (i.e., the approved
scope of use). Yet our aim is a bit more general, not simply attempting to reduce
duplication, but collapsing – where possible – two or more libraries’ functionalities in
just a single one.

Buckminster
Buckminster8’s goal is to leverage and extend the Eclipse platform to make mixed-
component development as efficient as plug-in development. It is very much focused
on dependencies handling as well, while our approach is mainly aimed to improve
components search and facilitate software reuse.

Kepler

The purpose of Kepler9 is to address the complexities involved with provisioning,
managing, and to use a shared infrastructure in order to support a community-oriented
development model. The focus remains much tied to community-oriented
development, more than component-oriented as in our effort.

Ivy

Ivy10 is a project incubated by the Apache Software Foundation: it provides a tool for
managing (recording, tracking, resolving and reporting) project dependencies. An

4 http://m2eclipse.codehaus.org
5 http://www.eclipse.org
6 http://www.osgi.org
7 http://www.eclipse.org/orbit/
8 http://www.eclipse.org/buckminster/
9 http://www.eclipse.org/proposals/kepler/
10 http://incubator.apache.org/ivy/

43

4 S. Sguera, A. Stellato, P. Ombredanne, M. T. Pazienza

interesting feature is transitive dependencies management: it shows simple inference
capabilities, but no support for functionalities-driven smart search and reasoning,
which characterize our approach, and are essential to us to enhance software reuse
possibilities.

3. Main use cases and benefits

Despite the proliferation of provisioning systems and frameworks, the component
search and choice activities are still carried out by developers with little or no help at
all. Programmers are left to themselves scouting the web to find libraries and
components, and no systematic approach nor thorough frameworks exist.

In the next paragraphs we will discuss some of the most representative use cases
and the benefit they deliver to developers and components providers, stressing how
our system tackles various aspects which currently undermine software reuse and
often lead to write ex-novo already existing code.

Assert and spot functional equivalence between components

The number of components and libraries, along with their versions, makes practically
impossible for a developer to know them all. On the other hand, there may exist more
than a piece of software accomplishing the same task, fulfilling the same requirements
set, or even implementing the same specification. To some extent, such components
could be considered functionally equivalent.
This is the case, for instance, of Hibernate11, Apache Cayenne12 and all of the other

frameworks implementing the Java Persistence API, or any implementation of the
Java Servlet API, any JDBC driver, or any HTTP server (or client as well). The list
would go a long way.

Furthermore, the equivalence is symmetrical, reflexive and transitive; the inference
mechanism helps building relations upon social-generated contents: relations and
functional equivalence among software components are both explicitly declared and
inferred by the system, thus building a dense semantic network with a little effort.
Machine-readable metadata allow much more granularity and raise the formal level
and the intelligence of search-related features.

Let’s suppose we just finished developing, for some obscure reason, a novel
implementation of the Java persistence API. Let’s suppose also that metadata about
two common frameworks implementing the same API – i.e. Hibernate and Apache
Cayenne – are already present in the repository, and (just as an example) that the two
are declared as functionally equivalent. As we declare our library as equivalent to
Hibernate, since they implement the same API, the inference engine can conclude my
library is equivalent to Cayenne as well; Cayenne’s mapping to our product is
nowhere in the repository, but was just inferred. A developer looking for “Hibernate
or equivalent” or “Cayenne or equivalent” libraries, or again “Java Persistence API

11 http://www.hibernate.org
12 http://cayenne.apache.org/

44

Software Semantic Provisioning: actually reusing software 5

implementation” will then see our implementation among the query results, obtain
information and in case decide to use it.

Find components providing a set of tasks

Describing a software component or library in terms of the tasks it fulfills is the very
first way to tell whether a piece of software fits our needs or it does not. During the
analysis and design phase developers must choose the right set of enabling
technologies and components which will drive further development phases, and will
construct the base for building our application’s architecture.

Let’s suppose – just as an example – we are planning to develop two components,
one carrying out the “dom-parsing” task and the other fulfilling the “sax-parsing”
task, and we would like to know if there is already a unique component providing
both the tasks. It would be useful to browse the repository and discover at design time
that xerces-j actually carries out both sax and dom xml parsing. We might then decide
to use it if it fits our project’s requirements.

Assessing reputation of components
Whenever a developing team picks up third-party code to underlie its application, it is
implicitly taking responsibility someone else’s code, which could affect their
product’s security and credibility. To this purpose, we could want to know which –
and how many – components actually use one: this may give us valuable information
about its reputation. On the other hand, if we developed a new component – and
added it to the repository, it could be interesting to know which and how many
components rely on our work.

4. Approach and design goals

Our key goal is to provide developers with a complete environment to exploit
semantic metadata in order to effectively find and provision software components.

We tried to overcome the main limitations in current mainstream provisioning
systems and frameworks, which are in turn tied to a particular technology or show a
formalization level which grants no access to technology-independent, high level and
enough granular information for a component.

Moreover, even if current provisioning technologies follow different approaches
and stress different aspects proper of the software domain, there is a substantial
overlap among the components’ description they provide and rely upon.
Thus an ontology, meant to be a shared, higher level domain vocabulary among

developers, allowing to semantically describe software and eventually mapping a
subset of available metadata to one of the technologies available, would enable a
thorough description of a component, aimed to stress what does the component do in
an unambiguous fashion; this supports interoperability among developers and among
technologies, provide some ground concepts to establish, declare or infer relationships
among software components, and eases the reuse of existing software, giving
developers a significant help in the early discovery phases.

45

6 S. Sguera, A. Stellato, P. Ombredanne, M. T. Pazienza

Figure 1: Server and Client side full stack architecture

A RESTful semantic repository (Figure 1), as it will be clearer in the next sections,
easily allows the developing of a multitude of clients (i.e. browsers extensions, IDE
plug-ins, et cetera), and broadens the field of possible applications.

5. Knowledge Model

The Knowledge Model of the SSP environment offers, at the current state of
development, those concepts and relations which are necessary for providing a
sufficiently detailed description of software entities and for modeling the
functionalities which have been presented in the use-cases section.

Reference to past research work on modeling ontologies, like [4], for describing
software systems has been made by reusing concepts from these ontologies for
describing common software entities like: component, library and software license.

As it can be seen in Figure 2, our framework is centered about the description of
software objects, providing several semantic anchors through which they can be
identified, classified according to different perspectives and needs, and thus easily
retrieved on these same aspects.
�������	
��	�(s) can be mainly distinguished according to two different categories:
������	��s, which are “Program modules that are designed to interoperate with each
other at runtime”, that is software objects for which there is a well-defined runtime
behavior, and �������(ies) which define “collections of subprograms used to develop
software”.

46

F
ig

u
re

 2
:

K
n

o
w

le
d

g
e

M
o
d

el
 o

f
th

e
 S

S
P

 F
r
a
m

e
w

o
r
k

47

Other classes offer further perspectives over which software objects registered in the
SSP repository may be clustered and accessed: ��	��	 has been introduced to
describe the diverse software licenses adopted by software developers and vendors.
This way users may filter their choice if, as an example, they need only software
licensed under a specific contract. This filtering can even less explicit, by automatic
reasoning over class of licenses and the relationships between them. A property
��	��	����������	���� allows to establish incompatibilities between use of
components licensed under different contracts, while the class ��	��	����	 describes
categories of licenses which share common aspects. A reification technique (see [2]
for a wider discussion on this topic) has been adopted to describe license styles both
as objects of the domain as well as classes of licenses (so, as �������������
� ��	��),
still remaining inside a first order description of the domain. This way we can “talk
about” software license styles as ground objects (which may exhibit specific
contractual expressions, have a reference web site for their general specifications
etc…) and, at the same time, consider them as set of licenses, offering class level
restrictions on the values that their belonging instances should expose on their
properties. The explicit links between the objects (instances of ��	��	����) and the
set of Licenses (subclasses of ��	��) is given by a restriction on a property which
describes the specific style (if present) of any given license; the semantic repository
thus automatically generates subclasses of ��	��	 for each new introduced license
style, together with their associated restriction.

With the same approach, it is possible to describe software with licenses according
to a specific style, as for the following example:

����	����	��	��	�������	 � ���	��	�����	����	���	��	

which describes (in description logic syntax) software distributed according to a
license instantiating class ����	����	���	��	� where this last is defined as:

����	����	���	��	 � ����	����	�
���
����

The same reification technique described above is used to automatically generate
subcategories of ��
��	� which cluster sets of components and libraries according
to their purposes, which are considered first class citizens inside the repository and
not mere simple attributes for describing software. Specific ��!s can thus be defined
in the repository and fully qualified according to their specifications and to
descriptive information thought for human inspection; software objects can then be
accessed, among the other ways, according to the task(s) they fulfill (e.g XML
parsing, object persistence, text indexing etc…)

6. Server-side: the SSP Semantic Repository

The semantic repository publishes a set of REST API, in compliance to the well
known architectural style described in [1] allowing clients to easily consume its
services, and enabling any kind of Web 2.0 buzzword-compliant mashup. The
RESTlet framework was embedded into a servlet container to deploy the repository as
a web application.

48

Software Semantic Provisioning: actually reusing software 9

Figure 3: SSP Eclipse plug-in - UI contribution

Data serialization (beans to XML and vice versa) and complex services are handled
by the application layer, while to access RDF triples stored in a persistent Jena model
we took advantage of the IBM Jastor framework, providing OWL to Java mapping.
Anyway, a further level of indirection was introduced not to tie the topmost layers to
the specific technologies (i.e. Jastor) used in the data access layer. To enable
inference-based web services we plugged Jena with the Pellet DIG reasoner.

7. Client-side: Eclipse SSP Plugin

We developed a RESTlet client consuming the repository’s web services, decoupling
the client-server interaction from the UI contributions.
The repository location can be both local (i.e. this can be achieved simply

deploying the repository web application inside Eclipse itself, exploiting the
embedded Jetty server used by the help plugin), or remote, and it can be chosen using
the provided preference page, accessed in the usual Eclipse way.
Two views were implemented (Figure 3): the Repository Explorer, on the left,

allows the developer to browse components by name, version, license, tags, tasks or
navigate the semantic relations among the components; the Submit a new component
view makes use of the Eclipse SWT Forms widgets to provide developers with an
elegant and fast way to submit a new component to the repository. It is possible to
define a component’s dependencies, simply by dragging a component from the
Repository Explorer on the left, and dropping it on the Dependencies tab in the
component submission form, on the right. It is also possible to choose among the
tasks already described in the repository, or add a new one throughout the submission
process.

49

10 S. Sguera, A. Stellato, P. Ombredanne, M. T. Pazienza

8. Conclusions and future works

In this paper we introduced a novel approach to software components and libraries
discovery and provisioning. Indeed we believe current mainstream provisioning
systems lack a shared vocabulary and technology-independent formalization of the
software domain, supporting richer semantic description to support reasoning and the
generation of a consensus based upon the specific domain the considered software
belongs to.

Future iterations will involve a deeper axiomatization of License and License-style
concepts, since they represent the contract between the product provider and the
consumers, and often is a strict non-functional requirement to be satisfied when a
third-party software is chosen. A strong investigation on “software specifications”
could contribute to further discriminative arguments for facilitating classification (and
thus more precise retrieval) of software objects in the repository. Integration with –
and metadata reuse from – OSGi and Maven, and user interface improvements are top
priorities for the project.

Acknowledgments

This work was funded by GoogleTM Inc. as part of the Google Summer of CodeTM

2007 program, and developed by Savino Sguera mentored by Philippe Ombredanne –
details in [6] – as a result of previous research work done in the area of software
component provisioning by M. T. Pazienza, S. Sguera and A. Stellato at the ART
research group at the University of Rome Tor Vergata.

We would like to thank Leslie Hawthorn and the whole Google Summer of CodeTM

team for the great job they did, and the Eclipse open source community for supporting
the project and giving invaluable feedback throughout the development.

References

1. Fielding, R. (2000). Architectural Styles and the Design of Network-based Software
Architectures, University of California Irvine, PhD Dissertation

2. Gangemi, A. & Mika, P. (2003). "Understanding the Semantic Web through Descriptions and
Situations." Proceedings of the DOA/CoopIS/ODBASE
2003 Confederated International Conferences. LNCS 2888. Springer Verlag, 2003

3. Gruber, O., et al., 2005. The Eclipse 3.0 platform: Adopting OSGi technology, IBM Systems
Journal, Vol 44, No 2, 2005

4. Oberle, D., Lamparter, S., Grimm, S., Vrandecic, D., Staab, S. Gangemi, A. Towards
Ontologies for Formalizing Modularization and Communication in Large Software Systems
Journal of Applied Ontology 1 (2): 163-202. 2006

5. OSGi RFC0112, 2005. http://www2.osgi.org/Download/File?url=/download/rfc-
0112_BundleRepository.pdf

6. Sguera, S., 2007
http://code.google.com/soc/2007/eclipse/appinfo.html?csaid=1221666D7EBA3415

50

OWL-S Atomic services composition with SWRL rules

Domenico Redavid1, Luigi Iannone2, and Terry Payne3

1 Dipartimento di Informatica, Università degli Studi di Bari

Campus Universitario, Via Orabona 4, 70125 Bari, Italy

{redavid}@di.uniba.it
2 Computer Science Dept., University of Liverpool

Ashton Building, Ashton Street L69 3BX, Liverpool UK

{L.Iannone}@csc.liv.ac.uk
3 School of Electronics and Computer Science, University of Southampton

Southampton, SO17 1BJ, United Kingdom

{trp}@ecs.soton.ac.uk

Abstract. This paper presents a method for encoding OWL-S atomic processes

by means of SWRL rules and composing them using a backward search planning

algorithm. A description of the preliminary prototype implementation is also pre-

sented.

1 Introduction

Semantic Web (SW) aims at proposing standards, tools and languages for knowledge

representation on the Web. Amongst the other issues, it deals with the provision of se-

mantics to Web Services in order to achieve a more abstract and flexible automation.

The result of this effort is the notion of Semantic Web Services (SWS) [1]. This term

refers to traditional Web services that have been annotated by means of SW languages

and techniques so as to make possible their automatic discovery, composition and in-

vocation. In order to achieve that, in literature there are different approaches which

produced different frameworks, among which the most widespread are OWL-S [2],

WSMO [3] and WSDL-S [4].

In this paper we will focus on OWL-S as underlying language for annotating Web

Services. OWL-S provides an ontological framework based on which an abstract de-

scription of a service can be created. It is an upper ontology whose root class is the

Service class that directly corresponds to the actual service that is described semanti-

cally (every service that is described maps onto an instance of this concept). The upper

level Service class is associated with three other classes: ServiceProfile (specifies the

functionality of a service), ServiceModel (specifies how to ask for the service and what

happens when the service is carried out) and ServiceGrounding (specifies how the ser-

vice has to be invoked). In particular, the service model tells a client how to use the

service, by detailing the semantic content of requests, the conditions under which par-

ticular outcomes will occur, and, where necessary, the step by step processes leading

to those outcomes. For nontrivial services (those composed of several steps over time),

this description may be used by a service-seeking agent in different ways.

51

The ServiceModel defines the concept Process that describes the composition of

one or more services in terms of their constituent processes. A Process can be atomic (a

non-decomposable service), composite (a set of processes within some control structure

that defines a workflow) or simple (a service abstraction).

In this paper our aim is the composition of OWL-S atomic processes adopting

SWRL [5] as language for the representation of their IOPR (Inputs, Outputs, Precon-

ditions and Results) models. Such SWRL descriptions are used as input to generate

candidate service compositions in order to achieve a given goal.

The rest of the paper is organized as follows: in section 2 we report the basic notions

of the OWL-S process model with some considerations on the guidelines that should be

followed in order to have useful metadata for the Web services to be described. Section 3

identifies some requirements needed for encoding an OWL-S atomic process by means

of SWRL rules. An algorithm for SWRL rules composition is described in section 4. In

section 5 an application example that shows the applicability of our method is presented,

while sections 6 and 7 are devoted to related work and conclusions, respectively.

2 Preliminary Considerations

In this section we report the basic notions about the OWL-S process model with some

considerations on the guidelines that should be followed in order to have useful meta-

data for the Web services to be described.

Each OWL-S process [2] is based on an IOPR model. The Inputs represent the in-

formation that is required for the execution of the process. The Outputs represent the

information that the process returns to the requester. Preconditions are conditions that

are imposed over the Inputs of the process and that must hold for the process to be

successfully invoked. Since an OWL-S process may have several results with corre-

sponding outputs, the Result entity of the IOPR model provides a means to specify this

situation. Each result can be associated to a result condition, called inCondition, that

specifies when that particular result can occur. Therefore, an inCondition binds inputs

to the corresponding outputs. It is assumed that such conditions are mutually exclusive,

so that only one result can be obtained for each possible situation. When an inCondition

is satisfied, there are properties associated to this event that specify the corresponding

output (withOutput property) and, possibly, the Effects (hasEffect properties) produced

by the execution of the process. Effects are changes in the state of the world.

The OWL-S conditions (Preconditions, inConditions and Effects) are represented

as logical formulas. If needed, OWL-S provides some extra variables, called ResultVars

and Existentials4, that can be used in these formulas.
Formally, Input and Output are subclasses of the more general class Parameter de-

clared in its turn as a subclass of Variable in SWRL ontology. Every parameter has a
type, specified using a URI. Such type is needed to refer it to an entity within the domain
knowledge of the service. The type can be either a Class or a Datatype (i.e.: a concrete
domain object such as a string, a number, a date and so on) in the domain knowledge.
Nevertheless, we argue that providing descriptions of Web services parameters using

4 These entities appeared in OWL-S 1.2 Pre-Release, available at:

http://www.ai.sri.com/daml/services/owl-s/1.2/

52

concrete datatypes gives very little in terms of added semantics. For example, consider
the following declaration of the input in a process that retrieves books:

<process:Input rdf:ID="BookName">

<process:parameterType

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</process:Input>

The fact that process:parameterType is declared as datatype means that the refer-

ence knowledge model of this input parameter is a concrete XML Schema datatype

(string) instead of being an entity within a domain ontology. This mismatch becomes

critical in automatic composition of services. Indeed, suppose that, during an hypo-

thetical composition process, we need to find another service whose output will be fed

into the service described above. Our composer, then, must necessarily consider those

services that have as output a resource of the same type of our input parameter. In

the example above, this type is string, hence every service that returns a string as an

output can be composed with our service. Therefore, this would result in meaningless

compositions of totally unrelated services due to the fact that parameters have been se-

mantically poorly described. In the rest of this paper we consider only those services

that have parameters (i.e. Inputs and Outputs) declared as entities in a domain ontology

(i.e. not as datatype).

3 Encoding OWL-S atomic processes with SWRL rules

The aim of this section is to illustrate our approach for transforming process descrip-

tions into sets of rules expressed in an ontology-aware rule language, namely Semantic

Web Rule Language (SWRL). The motivation for doing this lies in the fact that, starting

from this rule-based representation, an algorithm for detecting possible sequential com-

position of services (described in section 4) can be applied. SWRL [5] extends the set of

OWL [6] axioms to include Horn-like rules [7]. The proposed rules are in the form of an

implication between an antecedent (body) and consequent (head); both consist of zero

or more conjunctive atoms. The intended meaning can be read as: whenever the condi-

tions specified in the antecedent hold, then the conditions specified in the consequent

must also hold. An important characteristic of the rules is safety, i.e. only variables that

occur in the antecedent of a rule may occur in the consequent. Furthermore, a rule with

conjunctive consequent can be transformed into multiple rules each with an atomic con-

sequent (Lloyd-Topor transformations [7]). A SWRL weakness is the non decidability

of the whole language. A solution to this problem has been proposed in [8] where de-

cidability is achieved by restricting application of SWRL rules to individuals explicitly

introduced in the ABox. This kind of SWRL rules are called DL-safe.

In order to perform the transformation we impose some requirements on OWL-S

process descriptions. It is necessary that all the entities within the process model are

described in terms of a domain ontology. This means, basically, that Inputs and Outputs

types, in order to satisfy this requirement, cannot be datatypes.

Within OWL-S, conditions (logical formulas) are either string literals or XML lit-

erals. The latter case is used for languages whose standard encoding is in XML, such

53

as SWRL. Body and head are logical formulas, whereby the OWL-S conditions can

be identified with the body or with the head of a SWRL rule. Such conditions are ex-

pressed over Input and Output. Therefore, if the above requirement is met, conditions

will be also expressed in terms of a domain ontology and will hence have the right level

of abstraction.

After these considerations, we can describe the guidelines we follow for encoding

an OWL-S process into SWRL.

– For every result of the process there exists an inCondition that expresses the binding

between inputs variables and the particular result (output or effect) variables.

– Every inCondition related to a particular result will appear in the antecedent of each

resulting rule, whilst the Result will appear in the consequent. An inCondition is

valid if it contains all the variables appearing in the Result.

– If the Result contains an Effect composed of more atoms, the rule will be split into

as many rules as the atoms are. Each resulting rule will have the same inCondition

as antecedent and a single atom as consequent.

– The preconditions are conditions that must be true in order to execute the service.

Since these conditions involve only the process Inputs, the corresponding SWRL

rules should have the condition as antecedent and a boolean predicate that indicates

whether the condition is true or not. In this work we consider always true all the

Preconditions.

The first guideline is needed because there may be processes in which such binding is

implicit in their OWL-S descriptions. Let us consider, for example, an atomic process

having a single output. In this case there might be no inCondition binding inputs and

output variables since, being the output the unique outcome, such binding is obvious.

In this case, though, our encoding with SWRL rules would not be possible because the

second guideline is not applicable. However, we can add a new inCondition that makes

explicit such implicit binding.

For example, suppose we have a process declared only with the following Parame-

ters, without inCondition:

<process:Input rdf:ID="BookName">

<process:parameterType rdf:datatype="&xsd;#anyURI"> &kb;#BookTitle

</process:parameterType>

</process:Input>

<process:Output rdf:ID="BookInfo">

<process:parameterType rdf:datatype="&xsd;#anyURI"> &bibtex;#Book

</process:parameterType>

</process:Output>

we should write the corresponding rule as follows:

kb:BookTitle(?process:BookName) → bibtex:Book(?process:BookInfo)

but the variable process:BookInfo does not appear in the antecedent of the rule (i.e.
in the inCondition), consequently this is not a valid SWRL rule. Since every service

54

produces the output manipulating the inputs, we can suppose that there exists a predicate
(hasTransf predicate) always true that binds every input to the output. In order to obtain
valid rules, we add this predicate at antecedent of the rule:

kb:BookTitle(?process:BookName) ∧
kb:hasTransf(?process:BookName,?process:BookInfo) →

bibtex:Book(?process:BookInfo)

including also the implicit inCondition.

4 A backward search algorithm for SWRL rules composition

In this section we present our SWRL composer prototype that implements a backward

search algorithm for the composition task. It works as follows: it takes as input a knowl-

edge base containing SWRL rules and a goal specified as a SWRL atom, and it returns

every possible path built combining the available SWRL rules in order to achieve such

goal. These rules comply with SWRL safety condition mentioned in the previous sec-

tion.

In details, the algorithm performs backward chaining starting from the goal in the

same fashion Prolog-like reasoners work for query answering. The difference is that this

algorithm does not rely just on Horn clause but on SWRL DL-safe rules. This means

that, besides the rule base, it takes into account also the Description Logic ontology to

which the rules refer.

The SWRL rule path found, and consequently the resulting OWL-S service compo-

sition, will be valid, in the sense that it will produce results for the selected goal, only if

the SWRL rules in the path are DL safe. In other words the DL-safety means that rules

are true for individuals that are known, i.e.: they appear in the knowledge base5. At

present, the prototype performs DL-safety check. This guarantees that the application

of rules is grounded in the ABox and consequently that the services that embody those

rules can be executed.

5 Example

In this section we present an example that shows the applicability of our method. The

dataset of OWL-S services can be found on Mindswap Web site 6. In such dataset, there

are some OWL-S atomic services and, based on these ones, some OWL-S composite

services. The latter set will be used to validate our method. We will evaluate how many

composite services in such set can be actually built automatically by our composer.

In table 1 we report the set of the atomic services with the information needed for

the scope of this section. Among them, only two services have not inputs and outputs

described as datatype in knowledge domain and only one service contains a Precondi-

tion. All services have no declared inConditions, hence we assume that for each of them

there is only one Result corresponding to the service output and there is no Effect.

5 It might not be the case in general, given the Open World Assumption holding in Description

Logics, see [8] and chapter 2 in [9]
6 http://www.mindswap.org/2004/owl-s/services.shtml

55

To obtain SWRL rules that satisfy the requirements described in the section 3, we

have modified the atomic services as follows:

a) b)

<!--namespace of this ontology is &kb;-->
..
<owl:Class rdf:ID="BookTitle">

<rdfs:subClassOf>
<owl:Class rdf:ID="BookEntity"/>

</rdfs:subClassOf>
</owl:Class>
<owl:DatatypeProperty rdf:about="hasBookName">

<rdfs:domain rdf:resource="#BookTitle"/>
<rdfs:range rdf:resource="&xsd;#string"/>

</owl:DatatypeProperty>
..

..
<process:Input rdf:ID="BookName">

<process:parameterType
rdf:datatype="&xsd;#anyURI">

&kb;#BookTitle
</process:parameterType>

</process:Input>
..

Fig. 1. The transformation of a datatype in a knowledge domain entity

– For every parameter having a datatype as type, we created a class in the domain

ontology having a datatype property with the corresponding datatype as range (fig.

1a). The OWL-S descriptions have been modified assigning the newly created class

to the corresponding parameterType (fig. 1b).

– For each service, we create two logical formulas. The first composed of unary atoms

having the parameterType URI as their predicate and the input as their variable, for

each input. The second composed of a unary atom having the parameterType URI

as its predicate and the output its variable. We set these two logical formulas as,

respectively, the antecedent and consequent of a new SWRL rule.

– Since every service produces the output manipulating the inputs, we can suppose

that there exists a predicate (hasTransf predicate) always true that binds every input

to the output. We did this in order to guarantee the SWRL safety condition, then we

added hasTransf predicates to the antecedent of the rule built in the previous step.

With this modification the antecedent can be identified with a new inCondition.

The obtained SWRL rule set is given as input to our composer and the resulting

composition can be compared with the processes proposed in the Mindswap composite

services examples. However, OWL-S composite processes can use control constructs

(such as iteration and selection) that are more complex than the simple sequence, hence

some considerations are needed w.r.t. composed services in 2:

– The French Dictionary service returns the meaning of a French word in French.

To do this, it uses the processes of two atomic services: BabelFishTranslator and

English Dictionary. It defines the sequences reported in the column 2 of the table 2

that are combined by means of other control constructs to return its result.

– Find Cheaper Book Price service returns the smallest price of a book along with

the name of the bookstore that sells it. To do this, it uses the processes of three

56

ATOMIC SERVICE DATATYPE

INPUTS

DATATYPE OUT-

PUTS

SWRL CONDITION

Book Finder:

Returns the information of a book whose title
best matches the given string.

“BookName” No No

Zip Code Finder:

Returns the zip code for the given city/state.
“City”, “State” No No

Latitude Longitude Finder:

Returns the latitude and longitude for a given zip
code.

No No No

Barnes & Nobles Price Finder (BNPrice):

Returns the price of a book as advertised in
Barnes and Nobles web site given the ISBN
Number.

No No No

Amazon Book Price Finder (AmazonPrice):

Returns the price of a book as advertised in
Amazon web site given the ISBN Number.

No No No

English Dictionary:

Returns the meaning of a word from the dictio-
nary.

“InputString” “OutputString” No

BabelFish Translator:

Convert text from one language to another lan-
guage using the online BabelFish translator ser-
vices.

“InputString” “OutputString” One Precondition:
“SupportedLanguagePair”

Currency Converter:

Converts the given price to another currency.
No No No

Table 1. Some characteristics of the OWL-S atomic services datataset

atomic services: BookFinder, BNPrice and AmazonPrice. It defines the sequences

reported in the column 2 of the table 2 that are combined by means of selection

control construct to return its results.

As mentioned above, our composer is not able to work with complex control sequences

and composite services as inputs. In both cases, we have to check if our composer was

able to retrieve the basic sequences reported above on the basis of which the composite

services have been built. In order to verify this, in Tab. 2 we put as input of our composer

the outputs of the sequences instead of the outputs of the services.

COMPOSITE SER-

VICE

SEQUENCES IN THE SERVICE RETRIEVED?

(Yes/No)

French

Dictionary

1) BabelFishTranslatorProcess ⇒ EnglishDictionaryProcess
2) EnglishDictionaryProcess ⇒BabelFishTranslatorProcess

1) Yes
2) Yes

Book Price 1) BookFinderProcess ⇒ BNPriceProcess ⇒
CurrencyConverterProcess

1) Yes

Find Cheaper

Book Price

1) BookFinderProcess ⇒ BNPriceProcess
2) BookFinderProcess ⇒ AmazonPriceProcess

1) Yes
2) Yes

Table 2. Some characteristics of the OWL-S composite services datataset

BookPrice service returns the price of a book in a desired currency. To do this, it uses

the processes of three atomic services: Book Finder, BNPrice and Currency Converter.

Since it uses only the sequence construct, the searched goal can be the output of the

service and our system retrieves the correct composition.

57

6 Related work

To the best of our knowledge no approach in literature makes use of SWRL for the com-

position of Semantic Web Services. Researchers focussed either on semi-automated or

fully automated methods for service composition, drawing inspiration especially from

AI planning [10] and state machines [11].

One approach aims at integrating Semantic Web formalisms into classical planner

methodologies. Berardi et al. [12] address the problem of automatic composition syn-

thesis of e-Service. They developed a framework in which the exported behavior of an

e-Service is described in terms of its possible executions (execution trees). Then they

specialize the framework to the case in which such exported behavior (i.e., the execu-

tion tree of the e-Service) is represented by a finite state machine. In [13], the semantics

underlying the DAML-S specification (the ancestor of OWL-S) has been translated into

FOL, obtaining a set of axioms for describing the features of each service. By combin-

ing these axioms within a Petri Net, the authors have obtained process-based service

models that enable reasoning about the interactions among the processes that form the

structure of a service. Traverso and Pistore [14] propose a planning technique for the

automated composition of Web services described in OWL-S process models, which

can deal with nondeterminism, partial observables, and complex goals. Such technique

facilitates the synthesis of plans that encode compositions of web services with the

usual programming constructs, like conditionals and iterations. In [15] an approach for

developing a Semantic Web service discovery and composition framework on top of

the CLIPS rule-based system is presented. More specifically, it describes a methodol-

ogy for using production rules over Web services semantic descriptions expressed in

the OWL-S ontology.

Other approaches, in which our methodology can be framed, apply methodologies

and tools developed in the field of AI planning directly on Semantic Web settings. Sirin

and Parsia [16] demonstrate how an OWL reasoner can be integrated within an AI plan-

ner, called SHOP2 [17], for the composition of Semantic Web Services. The reasoner

is used to store the world states, answer the planners queries regarding the evaluation of

preconditions, and update the state when the planner simulates the effects of services.

An approach for using SPARQL [18] as an expression language for OWL-S conditions

is presented in [19]. It describes how SPARQL can be used to give a compact represen-

tation of the preconditions of a service, and of its results. To our knowledge there hasn’t

been any attempt to use SPARQL query engines for achieving service composition.

The first type of approach foresees a translation from the Semantic Web formalisms

to a dedicated formalism so that tools developed in particular research areas can be ap-

plied maintaining the same performances. On the contrary, the second type of approach

foresees a porting of the algorithms and methodologies from other research fields using

the Semantic Web technologies. The advantage of this approach, in which we frame

our methodology, is the direct use of the Semantic Web formalisms. In this manner,

we are able to use methodologies coming from more consolidated research fields ex-

ploiting the advantages that Semantic Web guarantees, i.e. a distributed knowledge base

and the semantic interoperability. Furthermore, the use of SWRL, in particular, allowed

us to exploit its greater expressiveness with respect to OWL-DL itself. Indeed, OWL-

DL, being a Description Logic, does not allow to formulate constructs like property

58

compositions without becoming undecidable. SWRL partially reliefs these constraints,

especially in the fragment we adopted in our work (i.e.: DL-safe SWRL rules), provid-

ing a more powerful means that becomes very useful in most SWS description portions

such as inConditions and Effects.

7 Conclusions and future work

In this paper we have presented a new method that exploits SWRL for OWL-S atomic

services composition. We have proved that if the OWL-S services have a meaningful

semantics and valid SWRL conditions it is possible to build composer exploiting only

the Semantic Web technology to achieve the composition task. This work can be con-

sidered as a starting point for the solution of a broader issue like the orchestration of

SWS. Indeed rules for service coordination can be added to the rules for SWS encoding

completing the knowledge that is necessary for the orchestration.

Future work will mainly consist of augmenting the number of services that can be

encoded into SWRL rules. In other words the system should be able in the future to

handle composite services as input and to produce more complex control structures

(such as selection and iteration). The latter seems to be the most challenging task since

it will require more powerful algorithms for the composition task.

Furthermore, an interesting aspect to deal with is the management of knowledge

bases when there are changes produced by the effects of a service execution. Semantic

Web languages are based on Description Logics which implement monotonic reason-

ing. In other words, they do not provide any means for retracting or modifying the status

of the knowledge base that is not adding some new facts. This is somewhat a too restric-

tive requirement to represent, for instance, service execution in such formalisms. Think

for example of representing the status of an activity as a functional property 7. Now,

as soon as this activity changes its status (say, for instance, it passes from ’scheduled’

to ’in progress’), an equivalent change should be carried out on its description in the

knowledge base. At the moment there is no DL reasoner allowing for that, meaning that

performing such change in a traditional knowledge base would lead to an inconsistency

of the whole knowledge base.

References

[1] McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent Systems 16

(2001) 46–53

[2] OWL-S: Semantic markup for web services, http://www.w3.org/submission/owl-s/ (2004)

[3] WSMO: Web service modeling ontology d2v1.3, http://www.wsmo.org/tr/d2/v1.3/ (2006)

[4] WSDL-S: Web service semantics, http://www.w3.org/submission/wsdl-s/ (2005)

[5] Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL rules: A proposal and

prototype implementation. J. of Web Semantics 3 (2005) 23–40

[6] OWL: Owl web ontology language overview, http://www.w3.org/tr/owl-features/ (2004)

[7] Lloyd, J.W.: Foundations of logic programming (second, extended edition). Springer series

in symbolic computation. Springer-Verlag, New York (1987)

7 a property allowing only one value for each instance it is applied to.

59

[8] Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. Journal of Web

Semantics: Science, Services and Agents on the World Wide Web 3 (2005) 41–60

[9] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The De-

scription Logic Handbook. Cambridge University Press (2003)

[10] Georgeff, M.P.: Planning. In Allen, J., Hendler, J., Tate, A., eds.: Readings in Planning.

Kaufmann, San Mateo, CA (1990) 5–25

[11] Gurevich, Y.: Evolving algebras 1993: Lipari Guide. In Börger, E., ed.: Specification and

Validation Methods. Oxford University Press (1994) 9–37

[12] Berardi, D., Calvanese, D., Giacomo, G.D., Hull, R., Mecella, M.: Automatic composition

of transition-based semantic web services with messaging. In Böhm, K., Jensen, C.S.,

Haas, L.M., Kersten, M.L., Larson, P.Å., Ooi, B.C., eds.: VLDB, ACM (2005) 613–624

[13] Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of web

services. In: WWW ’02: Proceedings of the 11th international conference on World Wide

Web, New York, NY, USA, ACM Press (2002) 77–88

[14] Traverso, P., Pistore, M.: Automated composition of semantic web services into executable

processes. In McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: International Se-

mantic Web Conference. Volume 3298 of Lecture Notes in Computer Science., Springer

(2004) 380–394

[15] Meditskos, G., Bassiliades, N.: A semantic web service discovery and composition proto-

type framework using production rules. In OWL-S:Experiences and Directions Workshop

at 4th European Semantic Web Conference (ESWC) (2007)

[16] Sirin, E., Parsia, B.: Planning for Semantic Web Services. In Semantic Web Services Work-

shop at 3rd International Semantic Web Conference (2004)

[17] Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: Shop2: An

htn planning system. J. Artif. Intell. Res. (JAIR) 20 (2003) 379–404

[18] Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (Candidate Rec-

ommendation). Technical report, W3C (2007)

[19] Sbodio, M.L., Moulin, C.: SPARQL as an expression language for OWL-S. In OWL-

S:Experiences and Directions Workshop at 4th European Semantic Web Conference

(ESWC) (2007)

60

The JUMP project: domain ontologies and
linguistic knowledge @ work

P. Basile, M. de Gemmis, A.L. Gentile, L. Iaquinta, and P. Lops

Dipartimento di Informatica
Università di Bari

Via E. Orabona, 4 - 70125 Bari - Italia
{basilepp,degemmis,al.gentile,l.iaquinta,lops}@di.uniba.it

Abstract. The JUMP project aims at bringing together the knowledge
stored in different information systems in order to satisfy information
and training needs in knowledge-intensive organisations. Electronic Per-
formance Support Systems provide help, advices, demonstrations, or
any other informative support that a user needs to the accomplish-
ment of job tasks in her day-to-day working environment. The paper
describes the JUMP framework, which is designed to offer multiple ways
for the user to query the knowledge base resulting from integration of
autonomous legacy systems. Semantic Web languages and technologies
are used throughout the framework to represent, exchange and query
the knowledge, while Natural Language Processing Techniques are im-
plemented to understand natural language queries formulated by the user
and provide consistent and satisfying results.

Keywords: Semantic Web, Interoperability, Word Sense Disambigua-
tion, Entity Recognition

1 Introduction

The JUMP project 1 aims at developing an EPSS (Electronic Performance Sup-

port System) capable of intelligent delivery of contextualized and personalized
information to knowledge workers acting in their day-to-day working environ-
ment on non-routinary tasks. While generic queries can be easily fulfilled by
means of standard information retrieval tools, such as general purpose search
engines, the scenario is more difficult if the search goal concerns grey informa-
tion stored in various forms and spread in different company knowledge bases,
managed by different applications, all running within the company intranet. It
is the case of users knowledgeable w.r.t. the IT infrastructure and that already
have the background knowledge necessary to achieve most of the task they are
involved in, but not being expert of all the domains in which the task to be
achieved spans. Tasks of this kind are neither generally codified in corporate

1 JUst-in-tiMe Performance support system for dynamic organizations, co-funded by
POR Puglia 2000-2006 - Mis. 3.13, Sostegno agli Investimenti in Ricerca Industriale,
Sviluppo Precompetitivo e Trasferimento Tecnologico

61

procedures nor completely new to the worker. Above all, those tasks are by no
means solvable, in terms of information retrieval, by a standard Internet search.
Any brute-force approach like Google desktop search can solve the problem in
this case and, even if it could, the result would never take into account the
connections existing between the various sources. An EPSS aims at supporting
information needs spanning through multiple knowledge bases, namely all the
available information systems in the company, be them formalized or not, includ-
ing binary documents such as video or audio streams. It acts as an agent gluing
together the different sources by means of semantic connections, and provides
the user with contextualized and personalized information tied to both the task
being accomplished and to her characteristics. On the basis of an accurate and
formalized description of user’s features and of those of the software tool she is
using, as well as the textual information describing the task being accomplished
(for example, the text of an e-mail just received), the EPSS should select rele-
vant items from the KBs, ranking them according to the user profile, and provide
them in a list to the user who will eventually give a feedback about the relevance
of the provided information. The JUMP system has been designed to achieve this
goal by means of a centralized recommendation system that takes advantage of
a shared ontology describing the various knowledge bases and advanced Natural
Language Processing (NLP) techniques to handle natural language requests.

The paper is organized as follows: after giving a general description of JUMP
framework focusing on abstract layers of its architecture and the underlying
shared ontology, in section 3 we give a detailed description of the Content An-
alyzer Module encapsulated in the framework, which provides NLP tools. In
section 4 we argument the project prototype and conclusions to work, anticipat-
ing possible future work.

2 JUMP: Ontology-centric Architecture

The system general architecture is depicted in Figure 1, where the central com-
ponent (JUMP-EPSS) acts as a hub of many autonomous peripheral systems.
The involved systems in the current implementation are a Human Resources
Managements system (HRMS), an Enterprise Resource Planning (ERP), a Doc-
ument Management system (DMS) and a Learning Management system (LMS),
but the design of the platform is such that new systems can be added as they
become available.

2.1 Modularized Design

The basic design idea of the JUMP project is to encourage the loosely coupling
among framework components according to a Service Oriented Architecture per-
spective so that the framework has the ability to seamlessly add information
sources or peripheral systems, each one based on different technologies, pro-
gramming languages and knowledge representation metaphors. This has lead to
adopting standard languages and protocols when designing the interfaces that

62

each of the systems participating in JUMP has to implement in order to expose
search services. The communication level between JUMP and the ancillary sys-

Fig. 1. Sketch of the JUMP system architecture

tems is designed to exchange both metadata about relevant items stored in the
subsystems and the items themselves. While the items considered here (which
are the results JUMP can present to the user) are generic binary objects ranging
from email addresses to audio/video streams, the metadata about them are ex-
pressed through Semantic Web technologies; to make this possible, some OWL 2

ontologies about the items have been created, in order to structure specific do-
main knowledge and instantiate resources to describe the stored items.

2.2 Ontologies in the JUMP project

An ontology, following Grubers widely accepted definition [6], is a shared formal-
ization of a conceptualization. That is, an ontology is a description (like a formal
specification of a program) of the concepts and relationships that can exist for an
agent or a community of agents. In order to define an ontology it is necessary to
choose a formalism, to use this formalism to encode the conceptualization that
the applications are going to use, and to make this conceptualization shared,
i.e. ensure that the ontology is used consistently by all the systems involved.
To define the JUMP ontology we adopted OWL as representation language and
Description Logics [1] was consequently adopted as the underlying formalism.
Separate ontology fragments have been handcrafted using the Protege editor 3

2 http://www.w3.org/2004/OWL/
3 http://protege.stanford.edu

63

in order to represent the most important concepts inside each of the involved
systems. Ontologies have been then designed bottom-up in order to reflect the
semantics of the underlying databases and coded functional processes as much as
possible, but not aiming at a total ontological replication of the knowledge bases.
After developing the single Ontology Fragments (OF), they have been divided
into system specific ontologies and upper ontologies; these upper ontologies are
the part of the OFs that the JUMP system should use when formulating queries
for the subsystems. The Shared Ontology (SO) is therefore the union of all the
upper OFs plus all the relations and concepts that are specific to the JUMP
system; since some concepts are repeated across systems, the creation of the SO
is the point in which alignment techniques have to be used in order to simplify
and generalize the query writing phase of the search. The concept in SO are
annoted using lexical concept that are exploited by Word Sense Disambiguaiton
algorithm described in Section 3.1. The Ontology Fragments are aligned manu-
ally using the concepts in the Shared Ontology. The single Ontology Fragments
are populated automatically creating a mapping between each legacy system’s
DBMS and each fragment.

2.3 JUMP EPSS Core: External and Internal Interactions

JUMP architecture has two abstract layers, as showed in figure 2, logically or-
ganized as a stack:

– User Interface Layer

– Application Domain Layer

Fig. 2. JUMP Engine and Framework Layers

The User Interface Layer has been designed to support both online and of-
fline client. It supports several devices: we handle both untrusted devices, such

64

as web browser or Office tools (Word/Excel), for which we predisposed a lo-
gin procedure and trusted devices, such as mobile devices (e.g. smart phone) or
email client for which the system is able to identify the user without any login
procedure. The application domain layer has a software layer, namely exter-

nal gateway, that communicates with all user devices through their specialized
provider. The JUMP Engine elaborates all requests making use of specialized
modules to resolve specific requests (e.g. plain text is sent to Content Analyzer

Module, described in Section 3, in order to capture its semantics). Communi-
cation between the JUMP Engine and all specialized modules is implemented
through a software layer, namely internal gateway.

3 NLP Processes in the Content Analyzer Module

Since user’s requests are formulated by using natural language, Natural Lan-
guage Processing (NLP) techniques are adopted in order to covert the original
requests into an internal representation processable by the JUMP system. The
Content Analyzer Module is devoted to this task: it extracts relevant concepts
from the text describing the request and build an internal data structure called
Bag-Of-Concepts (BOC). The goal is to include semantics in the process and to
overcome well-known problems in text processing, such as polysemy, due to the
use of keywords. The BOC structure contains two type of concepts:

1. relevant linguistic concepts recognized in the text by a Word Sense Disam-
biguation process [8] exploiting external linguistic knowledge-bases such as
the WordNet lexical database [9];

2. relevant domain concepts extracted by a Named Entity Recognition (NER)
process. The NER process is guided by JUMP ontology.

The implemented NLP process also includes operations preliminary to the BOC
extraction step, such as:

– Text normalization: the original text is modified to prepare it for the follow-
ing steps (for example, all formatting characters are removed);

– Tokenization: it is the process of split up input a string into tokens;
– Stop words elimination: all commonly used words are deleted;
– Stemming: it is the process of reducing inflected (or sometimes derived)

words to their stem. In our project we adopt the Snowball stemmer 4;
– POS-tagging: it is the process of assign a part-of-speech to each token. We

develop a JAVA version of ACOPOST tagger 5 using Trigram Tagger T3
algorithm. It is based on Hidden Markov Models, in which the states are tag
pairs that emit words;

– Lemmatization: it is the process of determining the lemma for a given word.
We use WordNet Default Morphological Processor (included in the WordNet

4 http://snowball.tartarus.org/
5 http://acopost.sourceforge.net/

65

distribution) for English. For the Italian language, we have built a different
lemmatizer that exploits the Morph-it! morphological resource 6.

As final output each word in the original document is enriched with syntactic
and semantic information collected during all the steps. In the two following
subsections (3.1 and 3.2) we provide more details about the process of BOC
extraction process.

3.1 JIGSAW: Word Sense Disambiguation

The goal of a WSD algorithm consists in assigning a word wi occurring in a doc-
ument d with its appropriate meaning or sense s, by exploiting the context C in
where wi is found. The context C for wi is defined as a set of words that pre-
cede and follow wi. The sense s is selected from a predefined set of possibilities,
usually known as sense inventory. In the proposed algorithm, the sense inven-
tory is obtained from WordNet. JIGSAW is a WSD algorithm based on the idea
of combining three different strategies to disambiguate nouns, verbs, adjectives
and adverbs. The main motivation behind our approach is that the effective-
ness of a WSD algorithm is strongly influenced by the POS tag of the target
word. An adaptation of Lesk dictionary-based WSD algorithm has been used to
disambiguate adjectives and adverbs [2], an adaptation of the Resnik algorithm
has been used to disambiguate nouns [10], while the algorithm we developed for
disambiguating verbs exploits the nouns in the context of the verb as well as the
nouns both in the glosses and in the sentence examples that WordNet utilizes to
describe the usage of a verb. JIGSAW takes as input a document d = (w1, w2,
. . . , wh) and returns a list of WordNet synsets X = (s1, s2, . . . , sk) in which each
element si is obtained by disambiguating the target word wi based on the in-
formation obtained from WordNet about a few immediately surrounding words.
We define the context C of the target word to be a window of n words to the
left and another n words to the right, for a total of 2n surrounding words. The
algorithm is based on three different procedures for nouns, verbs, adverbs and
adjectives, called JIGSAWnouns, JIGSAWverbs, JIGSAWothers, respectively.
A short description of procedures JIGSAWnouns and JIGSAWverbs follows,
more details about all the procedures and experiments are reported in [3].

JIGSAWnouns The procedure is obtained by making some variations to the
algorithm designed by Resnik for disambiguating noun groups. Given a set of
nouns W = {w1, w2, . . . , wn}, obtained from document d, with each wi having
an associated sense inventory Si = {si1, si2, . . . , sik} of possible senses, the goal
is assigning each wi with the most appropriate sense sih ∈ Si, according to the
similarity of wi with the other words in W (the context for wi). The idea is to
define a function ϕ(wi, sij), wi ∈ W , sij ∈ Si, that computes a value in [0, 1]
representing the confidence with which word wi can be assigned with sense sij .
JIGSAWnouns differs from the original algorithm by Resnik in several ways.
6 http://sslmitdev-online.sslmit.unibo.it/linguistics/morph-it.php

66

First, in order to measure the relatedness of two words we adopted a modified
version of the Leacock-Chodorow measure [7], which computes the length of
the path between two concepts in a hierarchy by passing through their Most

Specific Subsumer (MSS). In our version, we introduced a constant factor depth

which limits the search for the MSS to depth ancestors, in order to avoid “poorly
informative MSSs”. Moreover, in the similarity computation, we introduced both
a Gaussian factor G(pos(wi), pos(wj)), which takes into account the distance
between the position of the words in the text to be disambiguated, and a factor
R(k), which assigns sik with a numerical value, according to the frequency score
in WordNet (more importance is given to the synsets that are more common than
others). This algorithm considers the words in W pairwise. For each pair (wi,wj),
the most specific subsumer MSSij is identified, by reducing the search to depth

ancestors, at the most. Then, the similarity Sim(wi, wj , depth) between the two
words is computed. MSSij is considered as supporting evidence for those synsets
sik in Si and sjh in Sj that are descendants of MSSij . The amount of support
contributed by the pairwise comparison is the similarity value Sim(wi, wj , depth),
weighted by a gaussian factor that takes into account the position of wi and wj

in W (the shorter is the distance between the words, the higher is the weight).
The value ϕ(i, k) assigned to each candidate synset sik for the word wi depends
on both the amount of support it received and a factor that takes into account
rank of sik in WordNet, i. e. how common sense sik is for the word wi. The
synset assigned to each word in W is the one with the highest ϕ value. More
details about both the procedure and the computation of the similarity value
are reported in [3].

JIGSAWverbs We define the description of a synset as the string obtained
by concatenating the gloss and the sentences that WordNet uses to explain the
usage of a synset. First, JIGSAWverbs includes, in the context C for the target
verb wi, all the nouns in the window of 2n words surrounding wi. For each
candidate synset sik of wi, the algorithm computes nouns(i, k), that is the set
of nouns in the description for sik. Then, for each wj in C and each synset sik,
the following value is computed:

maxjk = max
wl∈nouns(i,k) {sim(wj,wl,depth)} (1)

where sim(wj,wl,depth) is the same similarity measure in JIGSAWnouns. In
other words, maxjk is the highest similarity value for wj wrt the nouns related
to the k-th sense for wi. Finally, an overall similarity score among sik and the
whole context C is computed:

ϕ(i, k) = R(k) ·

∑
wj∈C

G(pos(wi), pos(wj)) · maxjk

∑
h
G(pos(wi), pos(wh))

(2)

where both R(k) and G(pos(wi), pos(wj)), that gives a higher weight to words
closer to the target word, are defined as in JIGSAWnouns. The synset assigned
to wi is the one with the highest ϕ value.

67

3.2 Named Entity Recognition Step

The Named Entity Recognition (NER) task has been defined in the context of
the Message Understanding Conference (MUC) as the capability of identifing
and categorizing entity names, defined as instances of the three types of ex-
pressions: entity names, temporal expressions, number expressions [5]. Further
specializations of these top level classes have been proposed [11] and general pur-
pose lists of Named Entities are publicly available and incorporated e.g. within
well-known Text Processing Software, as GATE (General Architecture for Text
Engineering) [4], to give a popular example. However, for the aim of JUMP
project we cannot rely on general purpose gazetteers to perform the step of
Named Entity Recognition, due to specificity of categories and their instances
for this particular project. For this reason we developed a simple algorithm to
recognize entities using as gazetteers a domain ontology: we tag each token in
the original document with the ontology class value if it represents an instance
of that class in the domain ontology. The idea of the algorithm follows. Given
C = {C1, C2, . . . , Cn} the set of classes in the domain ontology, for each class Ck

we consider the set P = {p1, p2, . . . , pm} of properties belonging to Ck. Given
T = {t1, t2, . . . , ts} the list of tokens obtained from document d, for each token
tj we consider a window of h following tokens. The algorithm checks for each
Ck if value of any combination of tj , . . . , tj+h matches with the value of any pm,
for all instances of Ck, and assigns to tj the correspondent label. The search
is done beginning from longer combinations of tokens and in the worst case it
ends without any class annotation for the single token tj . Taking advantage of
semantic information provided by ontology, we can simply obtain relations be-
tween all entities found in the text, exploiting the object properties defined by
the ontology, without added computational cost.

3.3 Concept-based Text Representation

Both the WSD procedure and the NER process are fundamental to obtain a
concept-based text representation that we called Bag-Of-Concepts (boc). In this
model, a vector of concepts (WordNet synsets or named entities) corresponds
to a document, instead of a vector of keywords. Therefore, each document (for
example, an email text) representing the user request is converted in a BOC
structure in order to be processed by the JUMP Engine. A more formal descrip-
tion of the BOC text representation follows. Assume that we have a document dn

(corresponding to a user’s request n)processed by the Content Analyzer Module.
The document is converted into the following BOC structure:

dn = 〈(tn1, wn1), (tn2, wn2), . . . , (tn|V |, wn|V |)〉

where:

– tnk is the k-th token (synset or named entity) recognized in document dn by
NLP procedures;

– V is the set of distinct tokens recognized in dn;

68

– wnk is the weight representing the informative power of token tnk in docu-
ment dn.

In other words, a text is represented by a vector of pairs (token, weight),
where tokens are recognized from keywords in the text by NLP procedures which
assign each token with a numerical score representing the discriminatory power
of that token in the text. Weights can be computed in different ways for synsets
and named entities. For example, we consider a user who is going to prepare a
technical report for a project. She has technical skills but no idea about how
to compile such kind of document. She queries the Jump System, using the fol-
lowing expression q : “I have to prepare a technical report for the Jump project”.
The Jump Engine passes the user’s request q to the Content Analyzer module
that processes the document in order to both disambiguate the task to be ac-
complished, by using the WSD procedure, and to recognize entities potentially
useful for the task. The final output of this stage is q represented according to
the BOC model:

q = 〈(01704982, 0.75), (06775158, 0.85), (Jump, 0.99), (00746508, 0.80)〉

where both synset identifiers of the concepts recognized in the text and named
entities are used in the BOC structure. For example, the verb “prepare” has
been disambiguated as the synset reported below:

01704982 (verb.creation) prepare -- (to prepare verbally, either

for written or spoken delivery; ‘‘prepare a report’’

which identifies the task to be accomplished. This structure is used to query
the Shared Ontology. As a result, the Jump Engine provides all istances of the
concepts technical report and project and relations intercourring among these
istances and istances of different classes of the ontology. In the example, the
system returns the list of partners and documents related to the Jump project,
and the list of technical reports already written for other projects.

4 Conclusions and Future Work

In this paper we presented the design and initial implementation of a framework
for knowledge sharing within knowledge-intensive organizations by personalized
information retrieval. The user current task and background knowledge are used
to fulfill informative request. NLP and shared domain ontology are exploited to
semantic interpretation of user request in order to query legacy knowledge bases.
The JUMP project is an ongoing project; so far, a prototype implementing what
presented in this paper has been developed as an internal proof of concept to ver-
ify that interfacing systems through the JUMP framework is feasible and useful
even outside the project scope itself.Other features currently under development
in the prototype are related to the different possible interfaces that the user can
exploit in order to query the system. In particular, the possible interactions that
have been depicted so far include support to Microsoft IBF (Information Bridge
Framework) smart tags (in PUSH mode, i.e. without the user explicitly request-
ing services), and SMS and email support (in PULL mode, i.e. as answer to a

69

user explicit request). Since the user is likely to be a fairly experienced computer
user and not a computer programmer, the query is expected to be a simple text
query, not different from a normal query that could be issued against a standard
query engine such as Google or Yahoo. As future work, we intend to improve the
WSD algorithm and the NER process by including the shared ontology, enriched
with external links to WordNet, into these processes.

Acknowledgements

This work has been co-funded by Regione Puglia, Italy, through the research
funding program named POR Puglia 2000-2006 - Mis. 3.13, Sostegno agli Inves-
timenti in Ricerca Industriale, Sviluppo Precompetitivo e Trasferimento Tecno-
logico.

References

1. F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-

tions. Cambridge University Press, 2003.
2. S. Banerjee and T. Pedersen. An adapted lesk algorithm for word sense disam-

biguation using wordnet. In CICLing ’02: Proceedings of the Third International

Conference on Computational Linguistics and Intelligent Text Processing, pages
136–145, London, UK, 2002. Springer-Verlag.

3. P. Basile, M. de Gemmis, A.L. Gentile, P. Lops, and G. Semeraro. Jigsaw algorithm
for word sense disambiguation. In SemEval-2007: 4th Int. Workshop on Semantic

Evaluations, pages 398–401. ACL press, 2007.
4. H. Cunningham, Y. Wilks, and R.J. Gaizauskas. Gate: a general architecture for

text engineering. In Proceedings of the 16th conference on Computational linguis-

tics, pages 1057–1060, Morristown, NJ, USA, 1996. Association for Computational
Linguistics.

5. R. Grishman and B. Sundheim. Message understanding conference- 6: A brief
history. In COLING, pages 466–471, 1996.

6. T. R. Gruber. A translation approach to portable ontology specifications. In
Knowledge Engineering, 5(2), pages 199–220. Academic Press, 1993.

7. C. Leacock and M. Chodorow. Combining local context and WordNet similarity

for word sense identification, pages 305–332. MIT Press, 1998.
8. C. Manning and H. Schütze. Foundations of Statistical Natural Language Process-

ing, chapter 7: Word Sense Disambiguation, pages 229–264. MIT Press, Cambridge,
US, 1999.

9. G. A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38(11):39–
41, 1995.

10. P. Resnik. Disambiguating noun groupings with respect to WordNet senses. In
Proc. of the 3th Workshop on Very Large Corpora, pages 54–68. ACL, 1995.

11. S. Sekine, K. Sudo, and C. Nobata. Extended named entity hierarchy. In Proceed-

ings of the LREC-2002, 2002.

70

The HMatch 2.0 Suite for Ontology
Matchmaking �

S. Castano, A. Ferrara, D. Lorusso, and S. Montanelli

Università degli Studi di Milano
DICo - Via Comelico, 39, 20135 Milano - Italy
{castano,ferrara,lorusso,montanelli}@dico.unimi.it

Abstract. In this paper, we present the HMatch 2.0 suite for a flexible
and tailored ontology matchmaking, by focusing on the architectural
features and on the evaluation results. Applications of HMatch 2.0 are
also discussed, with special regard for the ontology evolution issues in
the frame of the BOEMIE research project.

1 Introduction

The increasing complexity of knowledge-intensive applications such as data in-
tegration, semantic search, semantic web services, peer-to-peer systems, social
networks, demands for sophisticated and flexible ontology matchmaking sys-
tems, to appropriately manage and compare independent heterogeneous ontolo-
gies adopted by the various parties for knowledge representation and discovery.
In particular, the capability of finding mappings between semantically related
elements of two different ontologies according to different notions of similar-
ity is a key feature for effective ontology matchmaking [1–3]. In this paper, we
present the HMatch 2.0 suite for a flexible and tailored ontology matchmak-
ing, by focusing on the architectural features and on the evaluation results and
application issues also in the frame of the BOEMIE research project for the on-
tology evolution 1. HMatch 2.0 has been designed to provide: i) a comprehensive
suite of components for ontology matchmaking, that can be invoked alone or
in combination to fit a wide range of matching requirements arising in differ-
ent matching scenarios and applications; ii) a family of matching techniques for
each different ontology matching component, to perform the matching process
in the most suitable way, according to different understandings of the notion of
semantic similarity; iii) an open architecture to ensure a high level of flexibility
in combining the various matching components and to support a service-oriented
interaction with knowledge intensive applications. With respect to our previous
work on ontology matching [4, 5],the main contribution of this paper regards the
new component-based architecture of HMatch 2.0 and the new functionalities of
� This paper has been partially funded by the BOEMIE Project, FP6-027538, 6th EU

Framework Programme and by the ESTEEM PRIN project funded by the Italian
Ministry of Education, University, and Research.

1 http://www.boemie.org

71

instance matching and mapping composition that have been introduced in the
framework of the BOEMIE project to support multimedia ontology evolution.
The paper is organized as follows. In Section 2, we introduce the architecture
of HMatch 2.0. Section 3 describes the components available for concept and
instance matching. In Section 4, we discuss main issues on the evaluation of
HMatch 2.0 while, in Section 5, we discuss expected application scenarios and
current application to ontology evolution in BOEMIE. Finally, in Section 6, we
provide our concluding remarks.

2 Architecture of HMatch 2.0

HMatch 2.0 is designed with the goal of providing a comprehensive framework for
ontology matchmaking. In particular, HMatch 2.0 is composed by several match-
ing components that can be used alone or in combination. Each component has
the goal of evaluating a different type of matching under different understandings
of similarity and by using different kind of matching techniques.

2.1 Component Interactions

HMatch 2.0 components and their interactions are shown in Figure 1.

HMatchController

MappingManager

HMatch(L)HMatch(S)

HMatch(I)

HMatch(V)

HMatch(C)

<<execute>>

<<execute>>

<<support>>

<<support>>

<<execute>>

<<execute>>

<<return> <<return>>

<<execute>>

<<exploit>>

HMatch(M)
<<exploit>>

<<return>>

<<execute>>

MappingRepository

<<store>>

<<retrieve>>

<<support>>

<<return>>

Fig. 1. High-level view of the HMatch 2.0 components and their interactions

The HMatchController is responsible of managing the configuration of HMatch
2.0 and the execution of the matching workflow. It also provides the interface

72

to all the matching components and to the mapping manager. HMatch(L) is the
component devoted to enforce the linguistic matching. It is used both for pro-
viding to the designer the mappings derived from the linguistic analysis and as a
support for the other modules which rely on linguistic affinity for implementing
their matching task (i.e., HMatch(C) and HMatch(I)). HMatch(C) performs con-
textual matching and implements techniques for comparing ontology elements
based on their contexts. HMatch(I) performs instance matching by interacting
with HMatch(C) in order to establish the mappings at the schema level and with
HMatch(L) to exploit the linguistic matching techniques for instance matching.
HMatch(S) performs structural matching to evaluate the structural similarity
between two ontologies. Since it is dependent only from the structure of the
ontologies to be matched, it works on the graph structure of the ontologies with-
out interactions with other components. HMatch(M) component provides all the
functionalities required for merging sets of mappings by means of mapping op-
erations such as intersection, union, product and transitive closure. HMatch(V)
is used for mapping validation and inference. This component takes in input an
initial set of mappings which can be calculated by means of any other HMatch
2.0 component. The MappingManager is responsible for the storage, release, and
post-processing of mappings produced by the other modules. A mapping m pro-
duced as output of a matching process is a 5-tuple of the form:

m = 〈E1, E2,R,V,S〉

where, E1 and E2 denote two ontology elements (i.e., concepts, properties, in-
dividuals), R denotes a semantic relation (e.g., ≡, �) holding between E1 and
E2, V ∈ [0, 1] is a confidence value associated with R, and S ∈ [0, 1] denotes the
level of similarity between E1 and E2 determined by the matching component.
The confidence value V denotes the level of trust associated with m and it is
differently computed by each matching component (e.g., in HMatch(C), V is de-
termined by considering the number of matching elements in the context of two
ontology concepts).

2.2 Matching process

The workflow of the matching process of HMatch 2.0 is shown in Figure 2. When
two ontologies are submitted to the matching process, the first step is the con-
figuration of the HMatch 2.0 execution. In this step, the designer can choose the
components of HMatch 2.0 to be activated during the matching process and can
set the set of parameters required in the matching process. HMatch 2.0 is highly
configurable and almost every parameter intervening in the matching process
can be set by the designer. However, HMatch 2.0 is provided with default values
for each parameter, in order to simplify the configuration step. If any of the
activated components requires linguistic similarity analysis, the linguistic affin-
ity (LA) is calculated between the names of ontology concepts and properties.
Then, each selected matching component is executed. As a result, one or more
sets of mappings are produced. The designer can stop the process and store the

73

Configure
Matching

Linguistic
Affinity

[requires_la=true]

[else]

Execute HMatch
Component

[other_required=true]

[else]

[else]

[post_process=true]

Merge Validate

Store Mappings

Fig. 2. Workflow of the matching process

mappings or he can perform a post-processing activity on the resulting map-
pings. During the mapping post-processing step, each set of mappings can be
validated and new mappings can be inferred. Moreover, the different set of map-
pings obtained according to different similarity matchings can be merged into a
comprehensive and coherent mapping set. The validation and merge step can be
iterated as many times as required by the designer.

3 Ontology Matchmaking Functionalities

The HMatch 2.0 suite provides components for performing matching both at
schema and instance level, namely HMatch(L), HMatch(C), HMatch(S), HMatch(I),
and HMatch(M).

3.1 HMatch(L): Linguistic Matching

The Linguistic Matching component determines the level of semantic correspon-
dence between terms used as names of ontology elements (i.e., concepts, prop-
erties, individuals). The degree of such a correspondence is calculated through
a Linguistic Affinity function (LA) which returns a value in the range [0,1]. LA
is used as the fundamental technique for establishing the similarity between two
atomic ontology elements to be matched in all the situations when linguistic
analysis is required. In HMatch 2.0, LA can be evaluated by means of three
different approaches:

– Syntactic: using a string matching algorithm (i.e., QGram, i Sub).
– Semantic: using a thesaurus or a lexical system (i.e., WordNet) of terms

and terminological relationships and a notion of weighted distance between
terms.

– Combined: using a function that combines syntactic and semantic mea-
sures.

74

3.2 HMatch(C): Contextual Matching

HMatch(C) determines the level of semantic affinity between concepts of two in-
dependent ontologies. A threshold-based mechanism is enforced to set the min-
imum level of semantic affinity required to consider two concepts as matching
concepts. Given two concepts c and c′, HMatch(C) calculates a semantic affinity
value SA(c, c′) in the range [0, 1] as the linear combination of a linguistic affin-
ity value LA(c, c′) produced by exploiting HMatch(L) and a contextual affinity
value CA(c, c′). The contextual affinity function of HMatch 2.0 provides a mea-
sure of similarity by taking into account the contextual features of the ontology
concepts c and c′. The context can be differently composed to consider different
levels of semantic complexity, and four matching models, namely, surface, shal-

low, deep, and intensive, are defined to this end. The context of a concept can
include properties, semantic relations with other concepts, and property values.
In the surface matching, only the linguistic affinity between the concept names
of c and c′ is considered to determine concept similarity. A detailed description
of there matching models and of their evaluation is given in [4].

3.3 HMatch(S): Structural Matching

The goal of HMatch(S) is to evaluate the degree of similarity between two ontolo-
gies on the basis of their structure, by considering the RDF graph associated with
the OWL representation of the two ontologies to be compared. More specifically,
HMatch(S) is conceived to work only with structural information and without
taking into account linguistic and contextual features of the two ontologies. This
goal is important when the two ontologies do not provide significant linguistic
information or the names used for ontology elements are missing or misleading.
Another advantage of HMatch(S) is the fact that it allows to define mappings
also for the elements which are not featured by a name, such as the so-called
anonymous classes (i.e., quantified and cardinality restrictions, collections).

Goal of HMatch(S), in other terms, is to capture the structural role of an
ontology element, that is the combination of information about the position of
the element with respect to other elements in the ontology, the number and
features of RDF triples in which it is involved, and the position within a RDF
triple (i.e., subject, predicate, or object). In particular, HMatch(S) takes into
account the following features for each element:

– The type of a feature, i.e., classes, properties, instances, anonymous classes.
– The number of RDF triples involving an element.
– The position within a triple (i.e., subject, predicate, or object).
– The type of the elements involved into the same RDF triples of a given

element.
– The language constructs involved in the same RDF triples of a given element.

3.4 HMatch(I): Instance Matching

The goal of the instance matching component is to determine instances that
represent the same real object or event and to help in disambiguating multiple

75

explanations of the same entity [6]. HMatch(I) evaluates the degree of similar-
ity among different individuals by considering those assertions which provide a
description of the individuals features. Consequently, the similarity of role filler
values as well as the similarity of their direct types is evaluated. When two in-
stances are compared, their similarity is proportional to the number of similar
roles and role fillers they share. Moreover, for the similarity evaluation we asso-
ciate a different weight with different properties of the instances, to capture the
fact that some properties are more important than others in denoting the real
object denoted by an instance, because they are relevant for object identifica-
tion. For example, the name of a person is more important than his age for the
goal of identifying the person.

The approach adopted in HMatch 2.0 is based on the idea of considering
roles (referred also as properties) as connections between individuals and prop-
agating similarity values through them. Each specification of an individual of
the ABoxes is represented by means of a tree. In order to evaluate the degree
of similarity of two individuals, the procedure computes a measure of similarity
between datatype values and propagates these similarity degrees to the individ-
uals of the higher level by combining the similarity among their role fillers. To
this end, HMatch(I) provides a set of specific techniques devoted to the evalua-
tion of similarity between datatype values. A function called datatype role filler

matching is responsible of selecting the most suitable matching technique for
each pair of datatype role fillers, according to the semantic meaning of the roles
and to the datatype category.

3.5 HMatch(M): Mapping Analysis and Combination

Using HMatch 2.0 it is possible to collect several sets of mappings produced by
the different components available both for concept and for instance matching.
The different sets of mappings can be produced against the same ontologies or
against a collection of different ontologies. Even in case of mappings collected
against the same ontologies, the correspondences among ontology elements can
be different moving from one set of mapping to another, because the different
components analyze different features of the ontology elements. In order to ob-
tain a comprehensive evaluation of the level of matching between two ontologies,
HMatch 2.0 provides operations for combining different sets of mappings into a
unique set and for dealing with the cardinality of a mapping set. Operations sup-
ported by HMatch(M) are defined over two mapping sets and are intersection,
union, product, and transitive closure. Intersection and union are used to com-
bine together the results obtained by different matching components against the
same ontologies. From a conceptual point of view, the intersection has the goal
of selecting those ontology elements that are similar with respect to more than
one matching component at the same time, while union has the goal of selecting
elements which are similar with respect to at least one matching component.
Combining structural similarity with linguistic similarity, for example, is useful
in case of elements labeled with different terms or terms that are not retrieved
to be similar by linguistic matching techniques. On the other side, product and

76

transitive closure are used for combining together results obtained from different
ontologies. The semantics of mapping operation is described in [7].

4 Evaluation results

In general, the evaluation of ontology matchmaking tools is based on the idea
of using a benchmark constituted by several heterogeneous ontologies to be
matched and a set of manually defined results, that is a set of expected map-
pings. Then, the matching tool to be evaluated is executed against the ontologies
in the benchmark, in order to obtain a set of automatically retrieved mappings.
On the basis of these two sets of mappings, conventional metrics are employed
for the evaluation of the tool, namely precision, recall, and F-measure [8].

The evaluation of HMatch 2.0 has been performed over the 2006 and 2007
benchmarks of the Ontology Alignment Evaluation Initiative (OAEI), an inter-
national ontology matching contest held with the goal of comparing different
ontology matching tools [5] 2. We performed the evaluation of each component
separately as well as the evaluation of HMatch(M)by applying the union and
intersection operations. A summary view of these result is reported in Table 1.
A detailed description of these results is given in [7, 5].

HMatch(C) HMatch(S) HMatch(C) ∩ HMatch(S) HMatch(C) ∪ HMatch(S)

Precision 0.92 0.81 0.99 0.81

Recall 0.60 0.72 0.35 0.76

F-Measure 0.73 0.77 0.51 0.79

Table 1. Evaluation results of HMatch 2.0

As a general remark, we note that the intersection is useful to increase pre-
cision (up to a very high level of 0.99), while union is useful to increase recall.
This is because the general behavior of HMatch 2.0 is to find a quite low number
of results, but very correct. Then, if we apply intersection, we reduce again the
number of results, but we increase the probability to have them correct. On the
opposite, if we take the union, we increase the number of results by affecting
precision. More in detail, the results show that the union provides the best bal-
ance between precision and recall. The general conclusion is that intersection is
supposed to be used when the precision of the results is much more important
than the number of results retrieved. In all the other cases, union is the best
solution in order to combine different components of HMatch 2.0.

5 Application scenarios

The HMatch 2.0 ontology matching suite provides a highly configurable matching
environment where the various components can be dynamically selected accord-
2 http://oaei.ontologymatching.org/2007/

77

ing to the application context that is considered for a given matching case. With
respect to the complexity of the ontologies to be matched, we note that HMatch
2.0 is intended to work with OWL ontologies and it is compatible with all the
OWL dialects (i.e., OWL Lite, OWL DL, OWL Full). By taking into account
the elements that affects the matching process, the level of semantic complexity
supported by HMatch 2.0 is ALC. In Figure 3, we summarize the applicability
of each HMatch 2.0 component in terms of i) the ontological features that are
considered, and ii) the suggested application context.

HMatch(L) HMatch(C) HMatch(S) HMatch(I)

Ontological

description

Poorly structured

ontologies, with

very simple concept

descriptions (e.g.,

Web directories,

glossaries)

Ontologies with

semantically rich

concept descrip-

tions (e.g., OWL

ontologies, DL

specifications)

Ontologies with

“nameless” concept

descriptions (e.g.,

XML documents,

Ontologies with

generally labeled

elements)

Ontologies with in-

stances (e.g., Se-

mantic Web ontolo-

gies)

Application

context

Oriented to

soft chema

integration

Oriented to

stable schema

integration

Oriented to

semi-structured

document

integration

Oriented to

data/information

integration

Fig. 3. Applicability of the HMatch 2.0 components

HMatch(L) is suited to work with poorly structured ontologies, such as Web
directories, taxonomies, and glossaries, where properties, semantic relations, and
instances are not available. Moreover, HMatch(L) is also used with richer ontol-
ogy descriptions to perform an initial comparison and to provide a linguistic
analysis as input for the execution of other HMatch 2.0 components. In gen-
eral, HMatch(L) is suggested for generic matching scenarios where the linguistic
component is relevant and/or is self-explanatory. In particular, soft schema inte-
gration is a typical application context where HMatch(L) is invoked to identify
the corresponding labels used in different schemas of web sources. As a further
application context, HMatch(L) can be used for supporting social tagging and
classification of Web resources (i.e., folksonomy). In this respect, HMatch(L) has
the role to suggest to the user the “right tag” for a given resource according to
linguistic-based rather than popularity-based metrics. When semantically rich
ontology descriptions are provided (e.g., OWL ontologies, DL specifications),
HMatch(C) is the suggested component to use due to the high level of matching
granularity enforced through its matching models (i.e., surface, shallow, deep,
intensive). For this reason, HMatch(C) is suited for general-purpose matching
scenarios where it can be properly combined with HMatch(L) to obtain stable
integrated representation of the information. For instance, in schema integra-
tion applications, HMatch(C) can be used to refine the results of the linguistic
matching and to provide a more accurate matching evaluation by taking into
account contextual features of schema elements to be integrated. HMatch(S) is
suggested when the ontology descriptions contain “nameless” concept descrip-

78

tions, that is ontologies with anonymous classes or with non-meaningful element
names. For this reason, HMatch(S) is suited for those application contexts where
the meaningfulness of the terminological part is not guaranteed and/or is not a
core requirement. As an example, HMatch(S) can be adopted for semi-structured
document integration (e.g., XML documents) where tag labels are often au-
tomatically generated by applications thus making ineffective the adoption of
linguistic-based matching components. For what concern HMatch(I), it is suited
to work with ontology instances (ABoxes). In particular, HMatch(I) is suggested
for those application contexts where extensional matching is applicable, such as
data/information integration.

We note that in real matching scenarios more than one HMatch 2.0 compo-
nent can be executed according to the specific features of the ontology descrip-
tions to be matched. In this respect, the results produced by each component
can be combined by invoking HMatch(M) in order to return a single comprehen-
sive set of matching results. Moreover, the combination of different HMatch 2.0
components can contribute to increase the quality of the matching results. For
instance, intersection and union of HMatch(C) and HMatch(S) results provide
better performance in terms of precision and recall, respectively, as discussed in
Section 4.

5.1 A practical application to ontology evolution

The HMatch 2.0 ontology matching suite is actually adopted in the framework of
the BOEMIE project where it is exploited for supporting multimedia ontology
evolution. In BOEMIE, a novel methodology for ontology evolution is defined
to enhance traditional approaches and to provide methods and techniques for
evolving a domain ontology through acquisition of semantic information from
multimedia sources such as image, video, and audio [9]. The BOEMIE method-
ology is characterized by the use of a reasoning-based engine with the role of
providing a semantic interpretation of the extracted information and by the use
of an ontology matching engine. In particular, HMatch 2.0 is used as a compre-
hensive matching service to support the BOEMIE evolution activities and tasks
as shown in Table 2. According to the interpretation results, ontology evolution
is performed i) through population by inserting new instances in the ontology,
and ii) through enrichment by inserting new concepts and relation types in the
ontology. Coordination activities are also defined in the BOEMIE methodology
to log changes and to manage the different versions of the ontology produced
with evolution.

6 Concluding Remarks

In this document, we have described the architecture and the main matching
components implemented in the HMatch 2.0 ontology matchmaking suite. In-
stance matching is a challenging task and HMatch 2.0 is one of the few ontology

79

Activity Task HMatch 2.0 component Goal

Population Instance grouping HMatch(I) To group together instances

referred to the same individ-

ual in the domain

Enrichment Concept enhancement HMatch(L), HMatch(C) To suggest names for new con-

cepts and properties

Coordination Alignment HMatch(C), HMatch(S) To align a new version of the

domain ontology with other

external knowledge sources

Table 2. Usage of HMatch 2.0 components in BOEMIE

matching tools with instance matching functionalities. Moreover, we have intro-
duced the idea of composing mappings obtained by applying different matching
components. In such a way, the domain expert is capable of collecting separate
mappings sets on the ground of different application purposes and of deriving
a comprehensive similarity view of ontology elements. Our future work will be
devoted (i) to increasing the recall results obtained with HMatch(C) starting
from experimental data and working on the combination between HMatch(C)
and HMatch(S), and (ii) to formalize the semantics of mapping operations by
taking into account the different types of mappings and their relations.

References

1. Aumueller, D., Do, H., Massmann, S., Rahm, E.: Schema and Ontology Matching
with COMA++. In: Proc. of SIGMOD 2005 - Software Demonstration, Baltimore,
USA (2005)

2. Jian, N., Hu, W., Cheng, G., Qu, Y.: Falcon-AO: Aligning Ontologies with Falcon.
In: Proc. of K-CAP Workshop on Integrating Ontologies, Banff, Canada (2005)

3. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag (2007)
4. Castano, S., Ferrara, A., Montanelli, S.: Matching Ontologies in Open Networked

Systems: Techniques and Applications. Journal on Data Semantics (JoDS) V (2006)
5. Castano, S., Ferrara, A., Messa, G.: ISLab HMatch Results for OAEI 2006. In:

Proc. of ISWC Int. Workshop on Ontology Matching, Athens, Georgia, USA (2006)
6. Gu, L., Baxter, R.A., Vickers, D., Rainsford, C.: Record Linkage: Current Practice

and Future Directions. Technical Report 03/83, CSIRO Mathematical and Infor-
mation Sciences (2003)

7. Bruno, S., Castano, S., Ferrara, A., Lorusso, D., Messa, G., Montanelli, S.: Ontology
Coordination Tools: Version 2. Technical Report D4.7, BOEMIE Project, FP6-
027538, 6th EU Framework Programme (2007)

8. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval
of Information by Computer. Addison-Wesley (1989)

9. Castano, S., Espinosa, S., Ferrara, A., Karkaletsis, V., Kaya, A., Melzer, S., Möller,
R., Montanelli, S., Petasis, G.: Ontology Dynamics with Multimedia Information:
The BOEMIE Evolution Methodology. In: Proc. of the ESWC Int. Workshop on
Ontology Dynamics (IWOD 07), Innsbruck, Austria (2007)

80

Semantic Nearest Neighbor Search in OWL Ontologies

Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito

Dipartimento di Informatica, Università degli studi di Bari

Campus Universitario, Via Orabona 4, 70125 Bari, Italy

{fanizzi|claudia.damato|esposito}@di.uniba.it

Abstract. A nearest neighbor search procedure is presented, for retrieving re-

sources in knowledge bases expressed in OWL. The procedure exploits a semi-

distance for annotated resources, that is based on a number of dimensions corre-

sponding to a committee of features represented by OWL concept descriptions.

The procedure can retrieve resources belonging to query concepts expressed in

OWL, by analogy with other training instances, on the grounds of the classifica-

tion of the nearest ones w.r.t. the dissimilarity measure. Besides, it may also be

able to suggest new assertions that are not logically entailed by the knowledge

base due to open world semantics. In the experimentation, where we compare the

performance of the procedure to running a reasoner, we show that it can be quite

accurate and augment the scope of its applicability, improving w.r.t. previous pro-

totypes that adopted other semantic measures.

1 Introduction

In the perspective of resource retrieval, purely logical approaches pursued so far, in

the context of the Semantic Web, may fall short in terms of noise-tolerance and effi-

ciency. Hence, analogical methods applied to multi-relational domains appear particu-

larly well suited, since they are known to be more efficient and noise-tolerant, which is

very important in contexts where knowledge is intended to be acquired from distributed

sources. To this purpose, a relational distance-based framework for retrieving resources

contained in semantic knowledge bases has been devised to infer inductively consistent

class-membership assertions that may be not logically derivable due to the open-world

semantics. The main idea is that similar individuals, by analogy, should likely belong

to the extension of similar concepts.

Specifically, we present a retrieval procedure that constitutes a multi-relational ex-

tension [5] of the well-known Nearest Neighbor approach (henceforth, NN) [10]. These

algorithms may be quite efficient because they require checking query-membership for

a limited set of training instances on such concepts and making a decision on the clas-

sification of new instances.

From a technical viewpoint, extending the NN setting to work on multi-relational

representations, such as concept languages like OWL, required suitable metrics whose

definition could not be straightforward. In particular, a theoretical problem has been

posed by the Open World Assumption (OWA) that is generally made in the target con-

text, differently from typical databases settings where the Closed World Assumption

(CWA) is the standard. Indeed the NN algorithms are devised for simple classifications

81

where classes are assumed to be pairwise disjoint which is quite unlikely in the Seman-

tic Web context.

As pointed out in [3], most of the existing measures focus on the similarity of atomic

concepts within hierarchies or simple ontologies. Moreover they have been conceived

for assessing concept similarity. Conversely, for our purposes, a notion of similarity be-

tween individuals is required. Recently, dissimilarity measures for specific description

logics concept descriptions have been proposed [3, 4]. Although they turned out to be

quite effective for the inductive tasks of interest, they are still partly based on struc-

tural criteria (a notion of normal form) which determine their main weakness: they are

hardly scalable to deal with standard languages, such as OWL-DL, commonly used for

ontologies and knowledge bases.

A new semantic pseudo-metric [7] is exploited in order to overcome these limita-

tions. Following the distance-induction method proposed in [9], the proposed measures

are based on a committee of features (concepts) onto which individuals are projected

for being compared. As such, these measures are not absolute, yet they depend on the

knowledge base they are applied to. However, the measures are suitable for a wide

range of languages, since they merely depend on the discernibility of the input individ-

uals w.r.t. a fixed set of concepts. The choice of optimal committees may be performed

in advance through randomized search algorithms [7].

Such measures have been integrated in the NN procedure presented in [4]. Essen-

tially the classification of a resource w.r.t. a query concept is performed by selecting the

closest resources in the knowledge base and then determining the membership through

a weighted voting procedure based on the neighbor similarity.

The resulting system allowed for an experimentation of the method on performing

instance retrieval with real ontologies drawn from public repositories comparing its

predictions to the assertions that were logically derived by a standard reasoner. These

experiments show that the novel measure considerably increases the effectiveness of

the method with respect to past experiments where the same procedure was integrated

with other dissimilarity measures [4].

The paper is organized as follows. The basics of the instance-based approach ap-

plied to the standard representations are recalled in Sect. 2. The next Sect. 3 presents

the semantic similarity measures adopted in the retrieval procedure. Sect. 4 reports the

outcomes of experiments performed with the implementation of the procedure. Possible

developments are finally examined in Sect. 5.

2 Resource Retrieval as Nearest Neighbor Search

2.1 Representation and Inference

In the following sections, we assume that concept descriptions are defined in terms of a

generic sublanguage based on OWL-DL that may be mapped to Description Logics with

the standard model-theoretic semantics (see the handbook [1] for a thorough reference).

A knowledge base K = 〈T ,A〉 contains a TBox T and an ABox A. T is a set of

axioms that define concepts. A contains factual assertions concerning the resources,

also known as individuals. Moreover, the unique names assumption may be made on

82

the ABox individuals, that are represented by their URIs. The set of the individuals

occurring in A will be denoted with Ind(A).
As regards the inference services, like all other instance-based methods, our proce-

dure may require performing instance-checking [1], which roughly amounts to deter-

mining whether an individual, say a, belongs to a concept extension, i.e. whether C(a)
holds for a certain concept C. Note that because of the OWA, a reasoner may be un-

able to give a positive or negative answer to a class-membership query. This service is

provided proof-theoretically by a reasoner.

2.2 The Method

Query answering boils down to determining whether a resource belongs to a (query)

concept extension. Here, an alternative inductive method is proposed for retrieving the

resources that likely belong to a query concept. Such a method may also be able to

provide an answer even when it may not be inferred by deduction, Moreover, it may

also provide a measure of the likelihood of its answer.

In similarity search [10] the basic idea is to find the most similar object(s) to a query

one (i.e. the one that is to be classified) with respect to a similarity (or dissimilarity)

measure. We review the basics of the k-NN method applied to the Semantic Web context

[4] context.

The objective is to induce an approximation for a discrete-valued target hypothesis

function h : IS �→ V from a space of instances IS to a set of values V = {v1, . . . , vs}
standing for the classes (concepts) that have to be predicted. Note that normally |IS| 	
|Ind(A)| i.e. only a limited number of training instances is needed especially if they are

prototypical for a region of the search space. Let xq be the query instance whose class-

membership is to be determined. Using a dissimilarity measure, the set of the k nearest

(pre-classified) training instances w.r.t. xq is selected: NN(xq) = {xi | i = 1, . . . , k}.

In its simplest setting, the k-NN algorithm approximates h for classifying xq on the

grounds of the value that h is known to assume for the training instances in NN(xq),
i.e. the k closest instances to xq in terms of a dissimilarity measure. Precisely, the value

is decided by means of a weighted majority voting procedure: it is simply the most

voted value by the instances in NN(xq) weighted by the similarity of the neighbor

individual.

The estimate of the hypothesis function for the query individual is:

ĥ(xq) := argmax
v∈V

k∑

i=1

wiδ(v, h(xi)) (1)

where δ returns 1 in case of matching arguments and 0 otherwise, and, given a dissimi-

larity measure d, the weights are determined by wi = 1/d(xi, xq).
Note that the estimate function ĥ is defined extensionally: the basic k-NN method

does not return an intensional classification model (a function or a concept definition),

it merely gives an answer for the instances to be classified. It should be also observed

that this setting assigns a value to the query instance which stands for one in a set

of pairwise disjoint concepts (corresponding to the value set V). In a multi-relational

83

setting this assumption cannot be made in general. An individual may be an instance of

more than one concept.

The problem is also related to the CWA usually made in the knowledge discov-

ery context. To deal with the OWA, the absence of information on whether a training

instance x belongs to the extension of the query concept Q should not be interpreted

negatively, as in the standard settings which adopt the CWA. Rather, it should count as

neutral (uncertain) information. Thus, assuming the alternate viewpoint, the multi-class

problem is transformed into a ternary one. Hence another value set has to be adopted,

namely V = {+1,−1, 0}, where the three values denote, respectively, membership,

non-membership, and uncertainty, respectively.

The task can be cast as follows: given a query concept Q, determine the membership

of an instance xq through the NN procedure (see Eq. 1) where V = {−1, 0, +1} and

the hypothesis function values for the training instances are determined as follows:

hQ(x) =

⎧
⎨

⎩

+1 K |= Q(x)
−1 K |= ¬Q(x)

0 otherwise

i.e. the value of hQ for the training instances is determined by the entailment1 the cor-

responding assertion from the knowledge base.

Note that, being based on a majority vote of the individuals in the neighborhood,

this procedure is less error-prone in case of noise in the data (e.g. incorrect assertions)

w.r.t. a purely logic deductive procedure, therefore it may be able to give a correct

classification even in case of (partially) inconsistent knowledge bases.

It should be noted that the inductive inference made by the procedure shown above

is not guaranteed to be deductively valid. Indeed, inductive inference naturally yields

a certain degree of uncertainty. In order to measure the likelihood of the decision

made by the procedure (individual xq belongs to the query concept denoted by value

v maximizing the argmax argument in Eq. 1), given the nearest training individuals in

NN(xq, k) = {x1, . . . , xk}, the quantity that determined the decision should be nor-

malized by dividing it by the sum of such arguments over the (three) possible values:

l(class(xq) = v|NN(xq, k)) =
∑

k

i=1
wi · δ(v, hQ(xi))

∑
v
′∈V

∑
k

i=1
wi · δ(v′, hQ(xi))

(2)

Hence the likelihood of the assertion Q(xq) corresponds to the case when v = +1.

3 A Semantic Pseudo-Metric for Individuals

As mentioned in the first section, various attempts to define semantic similarity (or dis-

similarity) measures for concept languages have been made, yet they have still a limited

applicability to simple languages [3] or they are not completely semantic depending also

on the structure of the descriptions [4]. Moreover, for our purposes, we need a function

for measuring the similarity of individuals rather than concepts. It can be observed that

1 We use |= to denote entailment, as computed through a reasoner.

84

individuals do not have a syntactic structure that can be compared. This has led to lifting

them to the concept description level before comparing them (recurring to the notion of

the most specific concept of an individual w.r.t. the ABox [1], yet this makes the mea-

sure language-dependent. Besides, it would add a further approximations as the most

specific concepts can be defined only for simple DLs.

For the NN procedure, we intend to exploit a new measure that totally depends on

semantic aspects of the individuals in the knowledge base.

3.1 The Family of Measures

The new dissimilarity measures are based on the idea of comparing the semantics of

the input individuals along a number of dimensions represented by a committee of

concept descriptions. Indeed, on a semantic level, similar individuals should behave

similarly with respect to the same concepts. Following the ideas borrowed from [9],

totally semantic distance measures for individuals can be defined in the context of a

knowledge base.

More formally, the rationale is to compare individuals on the grounds of their se-

mantics w.r.t. a collection of concept descriptions, say F = {F1, F2, . . . , Fm}, which

stands as a group of discriminating features expressed in the OWL-DL sublanguage

taken into account.

In its simple formulation, a family of distance functions for individuals inspired to

Minkowski’s norms Lp can be defined as follows [7]:

Definition 3.1 (family of measures). Let K = 〈T ,A〉 be a knowledge base. Given a

set of concept descriptions F = {F1, F2, . . . , Fm}, a family of dissimilarity functions

dF
p

: Ind(A) × Ind(A) �→ [0, 1] is defined as follows:

∀a, b ∈ Ind(A) dF
p
(a, b) :=

1
|F|

⎡

⎣
|F|∑

i=1

| πi(a) − πi(b) |p

⎤

⎦

1/p

where p > 0 and ∀i ∈ {1, . . . , m} the projection function πi is defined by:

∀a ∈ Ind(A) πi(a) =

⎧
⎨

⎩

1 Fi(a) ∈ A (K |= Fi(a))
0 ¬Fi(a) ∈ A (K |= ¬Fi(a))

1/2 otherwise

The superscript F will be omitted when the set of features is fixed.

The alternative definition for the projections, requires the entailment of an assertion

(instance-checking) rather than the simple ABox look-up; this can make the measure

more accurate yet more complex to compute unless a KBMS is employed maintaining

such information at least for the concepts in F.

3.2 Discussion

It is easy to prove [7] that these functions have the standard properties for pseudo met-

rics (i.e. semi-distances [10]):

85

Proposition 3.1 (pseudo-metric). For a given a feature set F and p > 0, dp is a

pseudo-metric.

It cannot be proved that dF
p
(a, b) = 0 iff a = b. This is the case of indiscernible

individuals with respect to the given set of features F. To fulfill this property several

methods have been proposed involving the consideration of equivalent classes of indi-

viduals or the adoption of a supplementary meta-feature F0 determining the equality of

the two individuals.

Compared to other proposed dissimilarity measures [3, 4], the presented functions

do not depend on the constructors of a specific language, rather they require only (re-

trieval or) instance-checking for computing the projections through class-membership

queries to the knowledge base.

The complexity of measuring he dissimilarity of two individuals depends on the

complexity of such inferences (see [1], Ch. 3). Note also that the projections that de-

termine the measure can be computed (or derived from statistics maintained on the

knowledge base) before the actual distance application, thus determining a speed-up in

the computation of the measure. This is very important for algorithms that massively

use this distance, such as all instance-based methods.

The measures strongly depend on F. Here, we make the assumption that the feature-

set F represents a sufficient number of (possibly redundant) features that are able to

discriminate really different individuals. The choice of the concepts to be included –

feature selection – is beyond the scope of this work (see [7] for a randomized optimiza-

tion procedure aimed at finding optimal committees). Experimentally, we could obtain

good results by using the very set of both primitive and defined concepts found in the

knowledge base.

Of course these approximate measures become more and more precise as the knowl-

edge base is populated with an increasing number of individuals.

4 Experimentation

4.1 Experimental Setting

In order to test the NN procedure integrated with the pseudo-metric proposed in the

previous section, we have applied it to retrieval problems on random queries.

To this purpose, a number of OWL ontologies was selected, namely: FINITE STATE

MACHINES (FSM), SURFACE-WATER-MODEL (SWM), part of SCIENCE and NEW

TESTAMENT NAMES (NTN) from the Protégé library2, the Semantic Web Service Dis-

covery dataset3 (SWSD) and the FINANCIAL ontology4. Tab. 1 summarizes the details

of these knowledge bases.

For each ontology, 30 queries were randomly generated by composition of primitive

or defined concepts. The performance was evaluated comparing the decisions made by

the NN procedure to those returned by a standard reasoner5 as a baseline.

2 http://protege.stanford.edu/plugins/owl/owl-library
3 https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/xmedia/

dl-tree.htm
4 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
5 We employed PELLET v. 1.5. See http://pellet.owldl.com

86

Table 1. Data concerning the ontologies employed in the experiments.

knowledge base DL language #concepts #object prop. #data prop. #individuals

FSM SOF(D) 20 10 7 37

SWM ALCOF(D) 19 9 1 115

SCIENCE ALCIF(D) 74 70 40 331

NTN SHIF(D) 47 27 8 676

SWSD ALCH 258 25 0 732

FINANCIAL ALCIF 60 17 0 1000

The parameter k was set to log |Ind(A)| depending on the number of individuals in

the ontology. Yet we found experimentally that much smaller values could be chosen,

resulting in the same classification. We employed the simpler version of the distance

(dF
1
) using all the concepts in the knowledge base for determining the set F.

4.2 Results

Standard IR measures. Initially the standard IR measures precision, recall, and F1-

measure were employed to evaluate the system performance. The outcomes are reported

in Fig.2. For each knowledge base, we report the average values obtained over the 30

queries as well as their standard deviation and minimum-maximum ranges of values.

It is possible to note that precision and recall are generally quite good except in the

experiment with the SWSD ontology where precision was significantly lower. Namely,

SWSD turned out to be more difficult (also in terms of recall) for two reasons: a very

limited number of individuals per concept was available and the number of concepts is

larger than in other knowledge bases. For the other ontologies scores are quite high, as

testified also by the F-measure values. The results in terms of recall are also more stable

than those for recall as proved by the limited variance observed, whereas some queries

turned out to be quite difficult w.r.t. the correctness of the answer.

The reasons for precision being less than recall are probably related to the OWA.

Indeed, in a many cases it was observed that the NN procedure deemed some individ-

uals as relevant for the query issued while the DL reasoner was not able to assess this

relevance and this was computed as a mistake while it may likely turn out to be a correct

inference when judged by a human agent.

Because of the problem issued by the OWA, in some cases it could not be (de-

ductively) ascertained whether a resource was relevant or not for a given query. Thus

explicitating both the rate of inductively classified individuals and the real nature of the

mistakes would be needed. This leads to consider different indices.

Alternative measures. In previous works [4], we had employed the following indices

for the evaluation:

– match rate: rate of individuals whose classification matched the reasoner decision;
– omission error rate: rate of individuals for which inductive method could not de-

termine whether they were relevant to the query (or not) while they were actually

relevant according to the reasoner;

87

Table 2. Experimental results in terms of standard IR measures: average ± standard deviation

and [min.;max.] intervals.

precision recall F-measure

FSM
89.22 ± 15.88 91.63 ± 12.41 90.26 ± 14.46

[28.60;100.00] [50.00;100.00] [36.39;100.00]

SWM
73.35 ± 11.66 89.56 ± 9.35 80.52 ± 10.55

[52.90;93.80] [73.30;97.50] [62.04;93.80]

SCIENCE
94.55 ± 6.03 97.12 ± 2.78 95.79 ± 4.45

[86.70;99.70] [93.50;99.70] [89.97;99.70]

NTN
78.73 ± 9.98 92.28 ± 4.58 84.63 ± 7.84

[34.60;95.60] [85.30;99.70] [49.23;97.61]

SWSD
55.30 ± 11.01 70.59 ± 10.37 61.51 ± 9.68

[31.90;74.10] [56.80;86.20] [41.03;79.69]

FINANCIAL
89.57 ± 19.48 97.80 ± 5.06 92.43 ± 15.47

[22.40;99.70] [84.70;100.00] [35.75;99.85]

– commission error rate: rate of individuals inductively found to be relevant to the

query concept, while the reasoner assigned them to its negation (and vice-versa);

– induction rate: rate of individuals whose relevance (or irrelevance) relevant w.r.t.

the query concept could be determined by the inductive method, while this classi-

fication could not be derived logically by the reasoner.

Tab. 3 reports the outcomes in terms of these new indices. Preliminarily, it is im-

portant to note that, in each experiment, the commission error was low or absent. This

means that the search procedure is quite accurate: it did not make critical mistakes i.e.

cases when an individual is deemed as an instance of a concept while it really is an

instance of a disjoint one. Furthermore, the rate of omission errors was quite low, yet it

is more frequent for the considered ontologies especially when few disjointness axioms

were specified. A noteworthy difference was observed for the case of the FINANCIAL

ontology for which we found the lowest match rate and the highest variability in the

observed results over the various query concepts.

Comparing these outcomes to those reported in other works on the same task [4],

where the highest average match rate observed was about 80%, we find a significant

increase of the performance due to the accuracy of the new measure. Also the elapsed

time (not reported here) was much less with the new measure: once the values of the

projection functions are pre-computed, the efficiency of the classification, which de-

pends on the similarity computation gains a lot of speed-up.

The usage of all concepts for the feature committee F made the measure quite ac-

curate, which is the reason why the procedure resulted quite conservative as regards

inducing new assertions. In many cases, it matched rather faithfully the reasoner deci-

sions (the top k nearest neighbors had null distance w.r.t. the query instance). Namely,

we found that a choice for lower values for k could have been made, for in many cases

the decision on the correct classification was easy to make even on account of fewer

(the closest) neighbor instances. This yielded also that the likelihood of the inference

made (see Eq. 2) turned out quite high.

88

Table 3. Results with alternative indices: average ± standard deviation and [min.;max.] intervals.

match r. commission e.r. omission e.r. induction r.

FSM
94.51 ± 6.63 5.49 ± 6.63 0.00 ± 0.00 0.00 ± 0.00

[73.00;100.00] [0.00;27.00] [0.00;0.00] [0.00;0.00]

SWM
85.38 ± 5.69 0.00 ± 0.00 2.68 ± 0.92 11.95 ± 5.37

[75.70;98.30] [0.00;0.00] [0.90;4.30] [0.90;20.90]

SCIENCE
97.31 ± 1.97 0.00 ± 0.00 0.98 ± 0.61 1.71 ± 1.41

[94.60;99.40] [0.00;0.00] [0.30;1.80] [0.30;3.60]

NTN
88.06 ± 6.95 0.00 ± 0.00 2.12 ± 0.77 9.83 ± 7.12

[74.60;95.40] [0.00;0.00] [0.30;3.40] [4.30;24.30]

SWSD
85.40 ± 4.96 0.00 ± 0.00 4.76 ± 1.86 9.84 ± 3.97

[74.50;92.20] [0.00;0.00] [2.70;8.70] [4.00;19.00]

FINANCIAL
93.34 ± 11.55 6.30 ± 11.55 0.01 ± 0.03 0.35 ± 0.06

[54.80;99.70] [0.00;44.70] [0.00;0.10] [0.30;0.50]

Cases of induction are particularly interesting because they suggest new assertions

which cannot be logically derived by a deductive reasoner and they might be used to

complete a knowledge base [2], e.g. after being validated by an ontology engineer. Eq. 2

should be employed to assess the likelihood of the candidate assertions and hence de-

cide on their inclusion in the ABox.

5 Conclusions and Outlook

This paper explored the application of a distance-based procedure for semantic search

to knowledge bases represented in OWL. To this purpose, a novel family of language-

independent semantic pseudo-metrics was exploited. Specifically, these measures were

integrated in a nearest neighbor search procedure which can be employed for solving

approximate retrieval problems.

This turns out to be more effective w.r.t. purely logical methods, especially in the

presence of incomplete (or noisy) information in the knowledge bases. Experiments

made on various ontologies showed that the method is quite effective and also robust

since it seldom made commission errors during the various runs. As expected for an

instance-based learning method, the overall performance depends on the number (and

distribution) of the available training instances.

As regards the dissimilarity measures, we argue that more efficiency may be reached

when statistics (on class-membership) are maintained by the KBMS [8]. Besides, so

far, the subsumption relationships among concepts in the feature committee are not

explicitly exploited, which might likely make similarity measurements more accurate.

Further developments can be also foreseen as concerns the choice of good feature

committees. Namely, since measures are very dependant on this choice, some immedi-

ate lines of investigations arise: studying how to maintain limited-sized concepts com-

mittees, yet saving those sets which altogether are endowed of a real discriminating

power.

89

Randomized optimization procedures can be used to learn maximally discriminating

sets of features, by allowing the composition of concepts through the specific construc-

tors made available by the representation language of choice [7]. This can be accom-

plished especially well when large sets of individuals are available for the ontologies.

Namely, part of the entire data can be drawn in order to learn optimal feature sets, in

advance with respect to the next stage.

As mentioned, the measures can be adopted in other instance-based machine learn-

ing methods which can be applied to several further tasks. For instance, the measures

have been exploited in a hierarchical conceptual clustering algorithm where clusters

would be formed grouping individual resources on the grounds of their similarity [6].

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The

Description Logic Handbook. Cambridge University Press, 2003.

[2] F. Baader, B. Ganter, B. Sertkaya, and U. Sattler. Completing description logic knowledge

bases using formal concept analysis. In M. Veloso, editor, Proceedings of the 20th In-

ternational Joint Conference on Artificial Intelligence, pages 230–235, Hyderabad, India,

2007.

[3] A. Borgida, T.J. Walsh, and H. Hirsh. Towards measuring similarity in description logics.

In I. Horrocks, U. Sattler, and F. Wolter, editors, Working Notes of the International De-

scription Logics Workshop, volume 147 of CEUR Workshop Proceedings, Edinburgh, UK,

2005.

[4] C. d’Amato, N. Fanizzi, and F. Esposito. Reasoning by analogy in description logics

through instance-based learning. In G. Tummarello, P. Bouquet, and O. Signore, editors,

Proceedings of Semantic Web Applications and Perspectives, 3rd Italian Semantic Web

Workshop, SWAP2006, volume 201 of CEUR Workshop Proceedings, Pisa, Italy, 2006.

[5] W. Emde and D. Wettschereck. Relational instance-based learning. In L. Saitta, editor,

Proceedings of the 13th International Conference on Machine Learning, ICML96, pages

122–130. Morgan Kaufmann, 1996.

[6] N. Fanizzi, C. d’Amato, and F. Esposito. A hierarchical clustering procedure for semanti-

cally annotated resources. In R. Basili and M.T. Pazienza, editors, Proceedings of the 10th

Congress of the Italian Association for Artificial Intelligence, AI*IA2007, volume 4733 of

LNAI, pages 266–277. Springer, 2007.

[7] N. Fanizzi, C. d’Amato, and F. Esposito. Induction of optimal semi-distances for individu-

als based on feature sets. In D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik,

A.-Y. Turhan, and S. Tessaris, editors, Working Notes of the 20th International Descrip-

tion Logics Workshop, DL2007, volume 250 of CEUR Workshop Proceedings, Bressanone,

Italy, 2007.

[8] I. R. Horrocks, L. Li, D. Turi, and S. K. Bechhofer. The Instance Store: DL reasoning with

large numbers of individuals. In V. Haarslev and R. Möller, editors, Proceedings of the

2004 Description Logic Workshop, DL 2004, volume 104 of CEUR Workshop Proceedings,

pages 31–40. CEUR, 2004.

[9] M. Sebag. Distance induction in first order logic. In S. Džeroski and N. Lavrač, editors,

Proceedings of the 7th International Workshop on Inductive Logic Programming, ILP97,

volume 1297 of LNAI, pages 264–272. Springer, 1997.

[10] P. Zezula, G. Amati, V. Dohnal, and M. Batko. Similarity Search – The Metric Space

Approach. Advances in database Systems. Springer, 2007.

90

1 1 2 2

1

2

91

92

93

94

<< component >>

Widget Framework

<< component >>

View Templates

<< component >>

Data Framework

Data Access

<< component >>

RDF Store

<< component >>

Controller Classes

REST API

<< component >>

Data Types

<< component >>

User Module

<< component >>

Permission Rules

<< component >>

Model Objects

Remote Object

REST API

<< component >>

Workflow Engine

<< component >>

SQL Storage

dd: Technical Model

<< use >>

Internal API

Internal API

<< use >>

<< use >>

<< use >>

<< use >>

DB Abstraction

RDF Abstraction

<< use >>

<< use >>

95

96

97

98

99

100

Towards Social Semantic Suggestive Tagging

Fabio Calefato, Domenico Gendarmi, Filippo Lanubile

University of Bari,
Dipartimento di Informatica,

Via Orabona, 4, 70126 - Bari, Italy
{calefato,gendarmi,lanubile}@di.uniba.it

Abstract. The organization of the knowledge on the web is increasingly
becoming a social task performed by online communities whose members share
a common interest in classifying different types of information for a later
retrieval. Collaborative tagging systems allow people to organize a set of
resources of interest through unconstrained annotations based on free keywords
commonly named tags. Suggestive tagging techniques support users in this
organization process and have shown to be helpful also in fostering a quick
convergence to a shared tag vocabulary.
In this paper, we propose a tag recommender which relies on the content
analysis of the resource to be tagged, as well as on the personal and collective
tagging history. The main contribution of this work is a model which combines
semantic content analysis methods with existing suggestive tagging techniques.
The expected benefit is the improvement of the user experience in social
bookmarking systems, and more generally in collaborative tagging systems.

Keywords: collaborative tagging, folksonomy, recommender system, semantic
web, content analysis, suggestive tagging, social bookmaking.

1 Introduction

The phenomenon of Web 2.0 [9] has led to the development of many tools, which
have succeeded in making the task of knowledge organization more attractive to a
broader audience. Tools for accomplishing this activity, such as collaborative tagging
systems, harness the power of virtual communities and have been shown effective in
gathering quickly large amounts of information directly generated by users.

Collaborative tagging systems allow people to organize a set of resources, by
annotating them with tags through a browser. Tags can be regarded as free keywords
used by people to label resources of interest. The activity of labelling is called
tagging, as it consists of attaching one or more tags to the resource. Although this
tagging activity is accomplished individually, while using the system, everyone can
see who else is participating by observing others’ tagging behaviours. This tight
feedback loop makes these systems social and the result is a collection of annotations,
also called folksonomy [14]. Unlike top-down centralized classification approaches,
folksonomies have revealed a noteworthy ability in adhering to the personal way of

101

thinking [4]. The opportunity of using free tags with no restrictions allows users to
express their own perspective on the annotated resource. Therefore, these annotations
can become a reliable indicator of interests and preferences of the active participants
in such systems.

To date, most collaborative tagging systems provide a limited support to users in
the annotation process, as they typically recommend tags by arranging suggested tags
in a tag cloud that emphasizes tags on the basis of their popularity: the bigger the font,
the more used the tag. By suggesting to the user his/her most used tags, as well as the
most popular tags in the whole community, this form of tag recommendation takes
into account both the personal and social dimension of folksonomies. Nevertheless,
this approach falls short of considering the semantic dimension for the content of the
resource that is going to be annotated.

We acknowledge that suggesting meaningful tags to a user, according to personal
and social interests, can enhance the user experience and augment the number of
active participants in the annotation process. However, we argue that the content
analysis of the resources can significantly improve the accuracy of suggestive
tagging, thus, fostering a quick convergence to a shared tag vocabulary and limiting
the tag synonymy issue [5].

In this paper, we propose a tag recommender which relies on the semantic analysis
of the resource content which is going to be annotated, as well as on the personal and
collective tagging history. Such an approach is able to address the typical cold-start
problem affecting recommender systems [11]. In fact, our recommender system will
be able of suggesting tags to users who have not yet tagged any resource, by putting
forward tags which are popular in the community. Further, when there are resources
not yet tagged by anyone in the community, our recommender will suggest tags which
have been gathered through a semantic analysis of the resource content.

The main contribution of this work is a model which combines semantic content
analysis methods with existing suggestive tagging techniques. The expected benefit is
the improvement of the user experience in social tagging bookmarking systems, and
more generally in collaborative tagging systems.

The remainder of the paper is structured as follows. Section 2 describes how the
content analyzer works and how it is going to be integrated in the proposed tag
recommender system. In Section 3 we present our model through four typical
scenarios which can take advantage from a mix of semantic content analysis and
traditional suggestive tagging. Section 4 surveys novel related work concerning
suggestive tagging in folksonomies. Finally, Section 5 draws conclusions and points
out some challenges we are going to address in the near future.

2 Content Analysis for Semantic Tag Suggestion

The idea behind applying content analysis for semantic suggestive tagging is to
provide a user who wants to tag a resource, not only with relevant words extracted
from a resource, but also with a set of synonyms. In this way, other than fostering tag
convergence, we also increase the probability of suggesting tags that fit better to
users’ personal way of thinking, without affecting the meaning.

102

To make this possible, a word sense disambiguation (WSD) algorithm is needed,
which can assing a word w occurring in a given resource (e.g., a web document), to
the appropriate sense, according to the context (i.e., the set of words that precede and
follow w). Then, once the appropriate sense of a word w is identified, a dictionary or a
lexical ontology can be used to find its synonyms, and to provide the user with a set
of recommended tags alternative to w.

META (MultilanguagE Text Analyzer) [3] is a tool developed at the University of
Bari, which implements an algorithm to perform WSD on text documents in a variety
of formats (e.g., pdf, doc). The tool has also been used by the Item Recommender
system (ITR) to learn sense-based user profiles [12]. In addition to performing the
basic content analysis tasks (e.g., stop-words elimination, stemming), META is also
able to analyze different parts of text documents, called slots. For instance, when
processing papers from a conference proceedings, META performs content analysis
on the title, abstract, and body, separately. Furthermore, META relies on WordNet for
obtaining a sense inventory. Thus, after performing the WSD, META returns the
unique id in WordNet (called offset) of the correct sense identified, for each word
extracted. Our idea is to use offsets to retrieve from the lexical ontology the whole set
of synonyms (SYNSET, in short) for each relevant word extracted that will be
suggested as a tag.

3 The Suggestive Tagging Model

In [1, 9] a generic collaborative tagging system is defined as a tripartite 3-uniform
hypergraph F� (N,E) where N� U�T�R is the union of three disjoint sets of entities,
namely a set of registered users (U), a set of applied tags (T), and a set of annotated
resources (R). Furthermore, we define E� {(u,t,r) | u�U, t�T, r�R} as the set of all
the annotations that compose the folksonomy. Given the above definitions, we can
define a typical social bookmarking system as a folksonomy where R is replaced by a
set of bookmarks B, pointing to resources in R.

For each entity within such system, we can also discern among different kinds of
tags, users and bookmarks. Given a user u and a selected bookmark b we can identify
three sets of tags:

� Personal Tags(u), all the tags assigned by u to all bookmarks.
� Social Tags(b), all the tags assigned by all users to b.
� Semantic Tags(b), all the tags extracted by analyzing the content of the

resource pointed by b.
Depending on the amount of tags adopted by a single user, we can also

discriminate a user as novice, if he/she has no tags, or as expert, when he/she has
started to annotate bookmarks using tags. The definition of novice includes hence
both new users just registered to the system and users registered for a while but loath
in using tags to save bookmarks. Finally, a bookmark can be categorized as tagged if
it has been annotated with at least one tag, or untagged if there are no associated tags

According to the above definitions, we illustrate four scenarios which depict how a
user can be supported by tag recommendations in his/her task of saving a bookmark
(Table 1). Because of the huge number of registered users and the availability of

103

suggestive tagging features, we use del.icio.us1 as the reference system for the
proposed approach. In the following, we consider four users, namely John and Dexter
(as novices), and Alice and Bea (as experts). We also assume the Collaborative
Development Group Research page2 as an untagged bookmark and SWAP 2007
home page3 as a tagged one.

Novice

Expert

Untagged

Bookmark

Tagged

Bookmark

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Novice

Expert

Untagged

Bookmark

Tagged

Bookmark

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Table 1. Four exemplary scenarios

Scenario 1: A Novice user saving an Untagged Bookmark
John is going to save Collaborative Development Group Research page as a
bookmark. Being a novice user, he has no tags yet. In this scenario del.icio.us cannot
provide any suggestion because John has no personal tags and nobody else has saved
this bookmark yet (Figure 1). However, even if no suggestions are available from
either personal or social tags, according to our view, it is still possible to support John
with tag recommendations by providing Semantic Tags as the output of the content
analysis (Figure 2). In particular, META extracts the following words from the
Collaborative Development Group Research page (for the sake of space, we limit to
six the number of words extracted):

� software (occurring 27 times)
� distributed (21)
� 2007 (16)
� 2006 (10)
� conference (7)
� workshop (5)

In addition, META identifies the correct sense for the words extracted. For
instance, for the word “conference” the sense extracted from the inventory is
“prearranged meeting, especially with a formal agenda”, while the other offset (i.e.,
“association of sport teams”) is just skipped. Finally, the whole set of semantic tags is
obtained by also retrieving from WordNet the SYNSET for “conference” (i.e.,
{meeting}).

1 http://del.icio.us
2 http://cdg.di.uniba.it/index.php?n=Research.HomePage
3 http://www.swapconf.it/2007/

104

Figure 1. No tags suggested by
del.icio.us

Semantic Tags

software

distributed
2007

workshop

John

save

Content Analyzer

{meeting}

SYNSET

conference
2006

Semantic Tags

software

distributed
2007

workshop

John

save

Content Analyzer

{meeting}

SYNSET

conference
2006

Figure 2. Semantic Tags as output of
the content analysis

Scenario 2: An Expert user saving an Untagged Bookmark
Alice is an expert user and thus, she has already used some tags to annotate
bookmarks in del.icio.us. Now she wants to save a bookmark never tagged before in
the system. In such a case, del.icio.us can suggest only those tags which have been
already adopted by Alice, even though most of them might be inappropriate (Figure
3). Instead, in this scenario, we argue that a hopefully more useful set of tags can be
suggested to Alice by intersecting both Alice’s Personal Tags (i.e., collaborative,
Web2.0, 2007, conference, …) and the Semantic Tags extracted from the bookmark
(i.e., software, distributed, 2007, conference).

We define the intersection of the two sets as the Personal Semantic Tags(u, b), i.e.,
all the tags from a user which have also been obtained from the content analysis of the
resource pointed by a bookmark. If the set of Personal Semantic Tags is not empty,
these tags will be suggested to Alice as recommended tags, in addition to the
remaining Personal Tags and Semantic Tags (Figure 4).

Figure 3. Personal tags suggested by
del.icio.us

save

Alice

Semantic Tags

software

distributed

Personal Tags

academic
Web2.0

research

semantic

Content Analyzer

Personal

Semantic Tags

conference

2007

…

workshop
collaborative

2006

save

Alice

Semantic Tags

software

distributed

Personal Tags

academic
Web2.0

research

semantic

Content Analyzer

Personal

Semantic Tags

save

Alice

Semantic Tags

software

distributed

software

distributed

Personal Tags

academic
Web2.0

research

semantic

academic
Web2.0

research

semantic

Content Analyzer

Personal

Semantic Tags

conference

2007

…

workshop
collaborative

2006

Figure 4. Personal Semantic Tags
recommendation

Scenario 3: A Novice user saving a Tagged Bookmark
Dexter is a novice user who has been registered to del.icio.us from two months, but he
has never used tags. Now he is going to save the SWAP 2007 home page that has
already been tagged by Alice and other users. Typically, del.icio.us suggests only
popular tags if the selected bookmark has been annotated by more than one user

105

(Figure 5). This time, a recommender that implements our approach might benefit
from both Semantic Tags(b) and Social Tags(b). Assuming that the Social Tags(b)
and the Semantic Tags(b) sets are not disjoint, we define the intersection between
these two sets as Social Semantic Tags(b) (i.e., 2007, conference, workshop, and
software). As in the previous scenario, our social/semantic tag recommender would
suggest tags belonging to the intersection as Recommended Tags and also the
remaining Social Tags and Semantic Tags (Figure 6).

Figure 5. Popular tags suggested by
del.icio.us

Dexter

save

Content Analyzer

Semantic TagsSocial Tags

academic reseach

workshop

semantic

Social Semantic

Tags

Alice

italian

conference

2007

Web2.0 software

distributed
semanticweb

2006

Figure 6. Social Semantic Tags
recommendation

Scenario 4: An Expert user is saving a Tagged Bookmark
Bea is an expert user who uses del.icio.us to save her bookmarks on a daily basis, and
thus she has a large set of personal tags. She is now going to save and tag the SWAP
2007 home page, which has been also tagged by both Alice and Dexter, among the
others. In such a scenario, del.icio.us would provide Bea with both Popular Tags, i.e.,
the most used tags for that bookmark by other users, and Recommended Tags, i.e., the
personal tags that have been also used by others for that bookmark (Figure 7). Other
than suggesting these two sets of tags, according to our approach, it is also possible to
exploit the Semantic Tags(b) obtained through the content analysis of the SWAP 2007
home page. In this scenario, Bea is supported with four different kinds of tags
recommendation:

� Personal Semantic Tags(u, b)
� Social Semantic Tags(b),
� Shared Tags(b, u): those tags belonging to the intersection between

Personal Tags(u) and Social Tags(b)
� Semantic Shared Tags(u, b): those tags belonging to the intersection of all

the above available sets of tags, namely Personal Tags(u), Social Tags(b),
and Semantic Tags(b) (Figure 8).

We argue that the quality of tag recommendations provided to Bea could be
significantly improved by presenting intersections which limit the information
overload.

106

Figure 7. Recommended and popular
tags suggested by del.icio.us

Social Tags

Bea

save

Content Analyzer

Semantic TagsPersonal Tags

Personal

Semantic

Tags

Social

Semantic

Tags

Shared

Tags

Shared

Semantic

Tags

Alice
Dexter

conference

2007

software

workshop
distributed

2006

Web2.0

collaborative

academic

research

semantic

semanticweb

blog

barcellona

Figure 8. Four different kinds of tags
recommendation

Finally, in the following table, we summarize all the recommended tags, according
to each presented scenario. In particular, strongly recommended tags, i.e., those tags
that, in our view, are hopefully more useful, are shown in bold (Table 2).

Novice

Expert

Untagged Bookmark Tagged Bookmark

Semantic Tags Social Semantic Tags

Personal Semantic Tags Semantic Shared Tags

Shared Tags

Social Semantic Tags

Personal Semantic Tags

Semantic Tags

Social Tags

Personal Tags

Semantic Tags

Personal Tags

Semantic Tags

Social Tags
Novice

Expert

Untagged Bookmark Tagged Bookmark

Semantic Tags Social Semantic Tags

Personal Semantic Tags Semantic Shared Tags

Shared Tags

Social Semantic Tags

Personal Semantic Tags

Semantic Tags

Social Tags

Personal Tags

Semantic Tags

Personal Tags

Semantic Tags

Social Tags

Table 2. Recommended tags for each scenario

4 Related Work

Suggestive tagging within folksonomies is a rather novel field of research [8]. The
evidence of such a novelty is the quite sparse literature related to the state of the art on
tag recommendations.

One existing approach to tag suggestions is referred to as selection of tags, which
indicates that systems select a small number of tags to display, among the sheer size
of terms already associated to an item. With respect to this approach, Sen et al. [13]
investigated how different algorithms for selecting tags to display, influence users’
personal vocabularies while annotating movies in a movie recommendation system.

107

A similar approach was also proposed by Xu et al. [16], who defined a set of
general criteria for a good tag suggestion algorithm, in order to identify the most
appropriate tags, while eliminating noise and spam. These criteria, identified through
a study of tag usage by real users in My Web 2.0, include high coverage of multiple
facets to ensure good recall, least effort to reduce the cost involved in browsing, and
high popularity to ensure tag quality.

Based merely on the social dimension of tagging systems is the work of Jaschke et
al. [7], who presented two different algorithms for recommending tags. The first
algorithm is based on collaborative filtering [11], whereas the second is based on the
FolkRank algorithm, defined in [6], and exploits the graph structure of folksonomies.
The comparison, performed using two datasets from real–life folksonomies, namely
Last.fm and Bibsonomy, showed that the graph-based FolkRank algorithm
outperforms collaborative filtering approaches.

Finally, following a similar approach to the one proposed in this paper, Byde et al.
[2] described a tag recommender system based on two different resource similarity
metrics, which take into account the tag used by one user to annotate resources and
their content, respectively. Although this work was the first to introduce content-
based methods for recommending tags, it failed to take into account the social
dimension of folksonomies (i.e., the community tags) to compute the resource
similarity, considering only the personal resources and tags.

5 Conclusions and Future Work

Suggestive tagging fulfils several needs: it helps users in the annotation process,
fostering a quick tag vocabulary convergence, and enhances the likelihood of a
resource to get tagged. However, current systems suggest tags only on the basis of
personal recent use or because of their popularity among the community.

In this paper, we have described a model which combines semantic content
analysis methods with existing suggestive tagging techniques. By exploiting
semantics of content analysis, provided by the META tool, and social features, built-
in in folksonomies, the proposed recommender can address tag recommendations
even in borderline cases, such as a user which has never used tags previously or a
resource with no associated tags. We also intend to extend META and adapt it for the
purpose of performing the content analysis of web resources to be annotated. Web
pages organize their content in the HTML <head/> and <body/> slots. The analysis of
the content of the <head/> slot, in particular, can offer valuable insights for the
purpose of suggesting tags to annotate a web resource. In fact, editing both the
<title/>, and the keywords and description <meta/> slots can be thought as an accurate
form of free annotation, because their content reflect just the personal view of the web
page creator/maintainer on its whole content.

Our approach to suggestive tagging has been presented in the context of del.icio.us,
the most popular social bookmarking system. As future work, we plan to complete the
development of the proposed recommender system and perform an explorative
experimentation within del.icio.us, having the existing suggested tagging feature as a
control group.

108

References

1. Abbattista, F., Calefato, F., Gendarmi D., Lanubile, F.: Shaping personal information
spaces from collaborative tagging systems. In B. Apolloni et al. (Eds.): KES 2007/ WIRN
2007, Part III, LNAI 4694, Springer-Verlag Berlin Heidelberg, pp. 728–735, 2007.

2. Byde, A., Wan, H., Cayzer, S.: Personalized Tag Recommendations via Social Network
and Content-based Similarity Metrics. In Proceedings of the International Conference on
Weblogs and Social Media (ICWSM’07), March 2007.

3. Degemmis M., Lops P., and Semeraro G.: A content-collaborative recommender that
exploits WordNet-based user profiles for neighborhood formation. User Modeling and
User-Adapted Interaction, 17(3), pp. 217-255, July 2007.

4. Gendarmi D., Abbattista F., Lanubile F.: Fostering knowledge evolution through
community-based participation. Proceedings of the 1st Workshop on Social and
Collaborative Construction of Structured Knowledge at WWW’07. 2007.

5. Golder, S., Huberman, B.: Usage patterns of collaborative tagging systems. Journal of
Information Science, 32(2), pp. 198-208, 2006.

6. Hotho, A Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies:
Search and ranking. In: Sure, Y., Domingue, J. (Eds.) ESWC 2006, LNCS, vol. 4011,
Springer-Verlag Berlin Heidelberg, pp. 411–426, 2006.

7. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag
Recommendations in Folksonomies. In J. N. Kok and J. Koronacki and R. López de
Mántaras and S. Matwin and D. Mladenic and A. Skowron, (Eds.), Knowledge Discovery
in Databases: PKDD 2007, 11th European Conference on Principles and Practice of
Knowledge Discovery in Databases, LNCS, vol. 4702, Springer-Verlag Berlin Heidelberg,
pp. 506-514, 2007.

8. Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT06, tagging paper, taxonomy, Flickr,
academic article, to read. Proceedings of the Seventeenth Conference on Hypertext and
Hypermedia. ACM Press, New York, NY, pp. 31-40, 2006.

9. Mika, P.: Ontologies are us: A unified model of social networks and semantics.
Proceedings of the 4th International Semantic Web Conference, ISWC 2005, LNCS, Vol.
3729, Springer-Verlag Berlin Heidelberg, pp. 522-536, 2005.

10. O’Reilly T.: What is Web 2.0. Design Patterns and Business Models for the Next
Generation of Software. September 2005.

11. Sarwar, B., Karypis, G., Konstan, J., and Reidl, J.: Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international Conference on World
Wide Web (WWW 2001). ACM Press, New York, NY, pp. 285-295, 2001.

12. Schein, A. I., Popescul, A., Ungar, L. H., Pennock, D. M.: Methods and metrics for cold-
start recommendations. In Proceedings of the 25th Annual international ACM SIGIR
Conference on Research and Development in information Retrieval. ACM Press, New
York, NY, pp. 253-260, 2002.

13. Semeraro G., Degemmis M., Lops P., Basile P. Combining Learning and Word Sense
Disambiguation for Intelligent User Profiling. In Proceedings of 20th International Joint
Conference on Artificial Intelligence, IJCAI 2007, pp. 2856-2861, 2007.

14. Sen, S., Lam, S. K., Rashid, A., Cosley, D., Frankowski, D., Osterhouse, J., Harper, F. M.,
Riedl, J.: Tagging, communities, vocabulary, evolution. Proceedings of the 20th
Anniversary Conference on Computer Supported Cooperative Work (CSCW 2006). ACM
Press, New York, NY, 181-190, 2006.

15. Vander Wal, T. Folksonomy Definition and Wikipedia. November 2005.
16. Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the Semantic Web: Collaborative Tag Suggestions.

Proceedings of Collaborative Web Tagging Workshop at 15th International World Wide
Web Conference (WWW 2006). 2006.

109

Okkam4P : A Protégé Plugin for Supporting the
Re-use of Globally Unique Identifiers for

Individuals in OWL/RDF Knowledge Bases�

Paolo Bouquet1, Heiko Stoermer1, and Xin Liu2

1 University of Trento,
Dept. of Information and Communication Tech.,

Trento, Italy
{bouquet, stoermer}@dit.unitn.it

2 JiLin University
Dept. of Computer Science and Technology

Chang Chun, China
xinliujlu@gmail.com

Abstract. In Protégé, any newly created RDF/OWL knowledge base
refers to local instances through a local URI, which is obtained through
the concatenation of the ontology URI, the hash sign # and a local iden-
tifier. However, this practice makes data-level integration quite hard, and
definitely prevents the straightforward application of RDF graph merging
for independently developed knowledge bases, even if they share the same
OWL ontology. In this paper, we present a Protégé plugin which supports
the systematic reuse of global identifiers for instances in RDF/OWL
knowledge base. The plugin is an extension of the Protégé “Individuals”
tab. The main difference is that, when an instance is created, the user has
a chance of looking for an existing URI for the corresponding individual
in a publicly available service called Okkam. The match between the
newly created instance and the globally registered individuals is based
on a comparison of features of the new and a a simple profile stored in
Okkam for all individuals. The plugin is available and tested for Protégé
3.3.1 and 3.4 beta.

1 Introduction

One of the key ideas of the Semantic Web is that the use of a unique identi-
fier (URI) for referring to the same resource will be the basis for enabling the
integration of data across autonomous applications and independently created
semantic repositories. However, nothing in the infrastructure of the Semantic
Web supports content creators to reuse already existing URIs for referring to a
� This work was partially funded by the European Commission under the 6th Frame-

work Programme IST Integrated Project VIKEF - Virtual Information and Knowl-
edge Environment Framework (Contract no. 507173, Priority 2.3.1.7 Semantic-based
Knowledge Systems; more information at http://www.vikef.net). The authors would
like to thank Daniele Zanoni for his work on the first prototype of Okkam4P .

110

resource which has already been referred to in other applications/repositories.
This is true for any type of resource (including abstract resources, like classes
and properties), but is especially bad for instances (individuals), as the ex-post

discovery of identities between instances across knowledge bases is in general
more difficult (and less investigated) than discovering mappings between ontol-
ogy elements. The lack of systematic support for the reuse of URIs leads to a
flooding of identifiers, which makes data integration on the Semantic Web very
hard and error prone.

The issue of identity and identification in the (Semantic) Web has been dis-
cussed and analyzed from different perspectives in the past, in fact two scientific
workshops have been dedicated to the topic3, the proceedings of which are a
great source of insight into the diverse points of view on the issue4. Addition-
ally, works such as Kent’s [9, 10] from a historical perspective, Gangemi and
Presutti’s [6, 7] as well as the efforts and discussions within the W3C [2, 1, 8],
make evident that there is plenty of ambiguity about the use and semantics of
a URI. There are several options of what a URI can identify, opinions about
whether a URI should be de-referenceable or not (and how), how syntactically
URIs should be constructed that refer to non-electronic objects, and – last but
not least – the intuition that the uniqueness property of URIs which their name
suggests is desirable, but in no way guaranteed.

This last point is the motivation of our work. Based on the availability of
an open public service for supporting the global reuse of unique identifiers for
individual instances called Okkam [3], which is described in Sect. 2, we are
developing tool support for content creation. The global service is based on an
open public repository which stores previously created identifiers for individuals,
together with a simple profile. The idea is that this service can be used to look
up for pre-existing identifiers of any newly created instance in a knowledge base;
this process is based on an entity matching algorithm, which uses any available
information about the new entity to match it with the profiles of individuals
stored in the repository and thus to find candidate URIs for reuse.

The application we are going to present makes use of this service in the area of
ontology editing. It aims at demonstrating the advantages of such an approach
as a way to converge on common URIs for newly created semantic content.
Indeed, a common practice in ontology editing is the creation of new (local)
URIs for any newly created instance. Here we present a Protégé plugin, named
Okkam4P , which supports the good practice of looking up for pre-existing URIs
when editing a new RDF/OWL knowledge base. The plugin is an extension of
the “individual” tab. The main difference is that, when an instance is created,
the user has a chance of looking for a pre-existing URI for the corresponding
individual in a publicly available service called Okkam. The match between
the newly created instance and the stored individuals is based on an algorithm
which compares the features of the new instance in the local knowedge base

3 IRW in 2006 (http://www.ibiblio.org/hhalpin/irw2006/) and I
3 in 2007 (http:

//okkam.dit.unitn.it/i3/)
4 see [5] for I

3 and the workshop website for IRW

111

with the profiles stored in Okkam. The plugin is available and tested for the
latest official release of Protégé, version 3.3.1, and the beta version 3.4; the
experimental Okkam service is accessible at http://www.okkam.org.

2 The OkkamPUBLIC Infrastructure

The work described in this paper relies on the existance of the Okkam infras-
tructure, the initial idea of which was described in more detail in [4, 3]. As
illustrated in Figure 1, at the heart of this infrastructure there is the central
repository for entity identifiers, called OkkamPUBLIC 5. This repository can
be imagined like a very large catalog, where semi-structured descriptions of en-
tities are stored and associated to globally unique identifiers for these entities. It
furthermore provides the functionality to add entities and their descriptions to
the repository that have not existed there so far, and to retrieve their Okkam

identifiers for use in information systems.

Fig. 1. Overview of the global Okkam vision.

Figure 2 illustrates the standard use-case for the okkamization6 of content,
namely to query OkkamPUBLIC for the existance of the entity at hand. This
would usually be achieved through functionality provided by a client application
– in this case Protégé – which accesses the OkkamPUBLIC API, and presents
(if available) a list of top candidates which match the description for the entity
provided within the client application. If the entity is among these candidates,
the client agent (human or software) uses the associated Okkam identifier in the
respective information object(s) instead of a local identifier. If the entity cannot
be found, the client application can create a new entry for this entity in Okkam

and thus cause an identifier for the entity to be issued and used as described
before.
5 This service is currently under development at the University of Trento, and will be

opened for public access in the near future.
6 We call okkamization the process of assigning an Okkam identifier to an entity that

is being annotated in any kind of content, such as an OWL/RDF ontology, an XML
file, or a database, to make the entity globally identifiable.

112

Fig. 2. Sequence diagram of the Okkam standard use case.

The large-scale, global service OkkamPUBLIC provides for the entity repos-
itory and a service infrastructure so that tools and applications can make use
of this new technology. The current version of OkkamPUBLIC is a prototyp-
ical implementation of parts of a larger multi-tier architecture, namely a non-
distributed version of the storage component OkkamSTORE which in a later
phase will move to a distributed layout, a preliminary version of the matching
component OkkamMATCH which performs the search for entities, and a subset
set of the developer API and toolkit OkkamDEV which is available7.

The mechanisms inside Okkam which perform the matching between entity
descriptions provided by the user or agent and the existing descriptions stored in
the repository, display some specifics which should be mentioned at this point.
One of the main characteristics of Okkam is that the description of an entity,
which is necessarily used to distuingish this entity from all others in the repos-
itory, does not follow a fixed schema, i.e. Okkam is specifically not something
like a knowledge base of entities; consequently, Okkam is not providing an on-
tological formalization of which attributes an entity has. The way to describe
entities is extremely flexible and semi-structured, realised by way of key/value
pairs which can contain arbitrary strings. The reasons for this decisions have
been laid out in [4, 3], and basically go back to the point that there is an infinite
variety of ways of how to model domains, for which reasons we decided to stay
completely domain independent. As a consequence, the matching algorithms in
OkkamMATCH can take as input any kind of description of an entity, e.g.
the set of properties and values inferred from an ontology, and match it against
existing data. This is how we achieve Okkam support without any dependence
on, or knowledge of, an underlying schema.

7 http://www.okkam.org

113

3 Okkam4P – Making Protégé an Okkam-empowered
Tool

3.1 User Perspective

In our vision of a functioning Okkam infrastructure there is the notion of the
so-called “Okkam-empowered tools”, which are standard end-user applications
(e.g. word processors, HTML/XML/OWL editors, web-based authoring envi-
ronments – like blogs, forums, multimedia publishing and tagging applications,
etc.) extended with functionalities which facilitate the creation of okkamized
content through the use of the OkkamPUBLIC infrastructure. Protégé falls
into this category. It is probably the most widely used editor for the creation
of RDF/OWL knowledge bases (KBs), and provides vast extensibility through
a plugin architecture, which makes it highly suitable for empowering it with
Okkam functionality.

The plugin presented in this paper essentially assigns a global unique identi-
fier called (the “Okkam ID”) to a newly created individual, rather than relying
on manual input of the user or the standard automatic mechanism of Protégé.
To this end, it implements the use-case illustrated in Fig. 2: based on the data
about an individual that are already provided in the KB developed by the user,
it queries OkkamPUBLIC to see whether an identifier already exists which can
be assigned to the new created individual, otherwise a new identifier would be
created.

To use this plugin, the user selects an individual and right-clicks on it. A
context menu will pop up, in which the item “Get Okkam ID” is the entry-point
to the functions of the plugin, as illustrated in Fig. 3.

Fig. 3. Assigning a global identifier to an individual.

114

Once clicking on this menu, the plugin starts to collect the properties of
this individual as specified in the KB, and presents a new dialog (see Fig. 4)
displaying the information that is available for querying OkkamPUBLIC in
order to see whether an identifier for this entity already exists.

Fig. 4. The information of the chosen individual.

The properties that are gathered by the plugin to construct a query are the
following:

– Ontology Reference: it is the reference of the ontology which the chosen
individual belongs to. It is loaded automatically by this plugin, and it is
read-only for users. If the ontology is publicly available, it can potentially
be of use for the server-side matching mechanisms to improve search results
for the individual.

– Wordnet Synset and Wordnet Version: provides a hint about a top-level class
which the chosen individual belongs to. This has to be set by the user.

– Preferred ID and Alternative ID1: if the user wishes to use another identifier
in other systems to identify the chosen individual, a user can input this
identifier here. These two items are optional.

– Individual Properties: the plugin loads each property of the chosen individual
automatically. The user can also deselect some properties which are thought
to be unnecessary to find the Okkam ID of the individual at hand.

After submitting this form, the plugin launches a thread to query OkkamPUBLIC

for matching entities by calling its web service. After searching, a list of entities
that match the description for the new created individual will be visualized to
the user, as illustrated in Fig. 5

The user now has the option to select one list entry as “the same” as the newly
created individual and re-use the global identifier in the local KB (therefore the
ID of the newly created individual will be replaced by the Okkam ID in the

115

Fig. 5. Query result of with matching entities that already have an identifier in Okkam.

KB); otherwise the user can choose to create the individual as a new entity in
OkkamPUBLIC , in which case the information selected in Fig. 4 will be inserted
into Okkam repository, the new Okkam ID will be retrieved and assigned to
the local individual.

3.2 Developer Perspective

The hierarchy of primary classes provided by and used in this plugin is illustrated
in Fig. 6 in the appendix. In the following we describe the function of each class
displayed in Fig. 6.

The class OkkamPlugIn is the most principal class. To extend the “Individ-
uals” tab in protege, it needs to inherit the class
edu.stanford.smi.protegex.owl.ui.actions.ResourceAction. This effects that the
menu item “Get Okkam ID...” will appear in context-menu when the user right-
clicks on a individual.

The class okkamPanel and TopPanel are used to compose the information
window (see Fig. 4); the class ResultPanel is used to show the query result
window(see Fig. 5). All of them inherit the class javax.swing.JPanel to present
a window to users.

In this plugin, we make use of web services to interact with OkkamPUBLIC .
The tasks of searching for matching entities and publishing a newly created entity
are fulfilled by calling the webservice “EntitySearch” and “EntityPublication-
WithURI” respectively. These webservices are reachable from the URL http:

//okkam.dit.unitn.it:8081/OkkamCoreWebServices/services. As complex
queries can have a considerable runtime, in the initial version of Okkam4P ,
users would see nothing but a gray window until the result returned from the
webservice. In the current version, we moved the plugin to a multi-threaded ar-

116

chitecture. Three classes which inherit class ”java.lang.Thread” are new to this
version.

The class InquireThread is used to call the webservice “EntitySearch”, it
is launched when the user submits the information to search for matching en-
tities. The class PublishThread is used to call the webservice “EntityPublica-
tionWithURI”, it is launched when the user decides to publish a new entity
to OkkamPUBLIC . The class DialogThread is used to show a dialog during
the process of searching or publishing, this dialog is meant as a user-friendly
interface to inform the users that the process is running.

4 Benefits of the Approach

The vision of the Okkam approach is the creation of what we call the Web

of Entities (WoE): a global information space in which entities (as opposed to
documents) are the main objects of discourse and thus the pivot for information
access.

The pre-requisite for this WoE to function is the existence of suitable okkamized

content, i.e. content in which identified entities (such as persons, events, loca-
tions, ...) are denoted by their globally unique Okkam identifier, instead of a
local identifier, as described in the introduction.

To achieve a substantial diffusion of okkamized content, a set of user-friendly
Okkam-empowered tools is necessary, because – as the rather slow adoption of
Semantic Web technologies has shown – the mass of content creators (i.e. the
users of the WWW) seem not to be extremely motivated to follow developments
beyond the coding of HTML documents.

With Okkam4P we are making the first and very important step towards
the creation of such a suite of tools. We address the community that is “closest”
to the issues addressed by the approach, and provide them with the means of
creating okkamized RDF/OWL KBs. The aim is to prove that – with the system-
atic a-priori use of global identifiers for entities – the vision of RDF documents
as a single, global, decentralized and meaningful knowledge base can in fact be-
come reality, without having to deal with many of the difficulties of information
integration, such as the ex-post alignment of entities.

5 Future Work and Conclusion

In this paper we have presented our ongoing work on Okkam4P , a plugin for
the creation of okkamized RDF/OWL knowledge bases in Protégé, and given a
sketch of the underlying, globally available infrastructure OkkamPUBLIC .

As regards the plugin, several improvements are scheduled in the near future.
One is the general “elevation” of the tool to a more production-quality standard,
including the usual aspects such as extended documentation, code improvements,
etc. Secondly, as the plugin is currently implemented as an extension to the
OWL part of Protégé, KBs developed in plain RDF(S) cannot benefit from

117

its functionality – a circumstance which we are currently investigating. Finally,
additional features such as offline and batch operation, as well as automatic
retrieval and assignment of Okkam identifiers to existing KBs, are already in
the design phase.

OkkamPUBLIC itself will experience a great boost in the course of the
European FP7 Integrated Project Okkam, which has the aim and the means to
implement the infrastructure briefly illustrated in Sect. 2 at a very large scale.

More information will be made available at http://www.okkam.org, the plu-
gin itself is available from http://www.okkam.org/projects/okkam4p/.

References

[1] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986: Uniform Resource

Identifier (URI): Generic Syntax. IETF (Internet Engineering Task Force), 2005.
http://www.ietf.org/rfc/rfc3986.txt.

[2] Tim Berners-Lee. Design Issues – Linked Data. Published online, May 2007.
http://www.w3.org/DesignIssues/LinkedData.html.

[3] Paolo Bouquet, Heiko Stoermer, and Daniel Giacomuzzi. OKKAM: Enabling
a Web of Entities. In i3: Identity, Identifiers, Identification. Proceedings of the

WWW2007 Workshop on Entity-Centric Approaches to Information and Knowl-

edge Management on the Web, Banff, Canada, May 8, 2007., CEUR Work-
shop Proceedings, ISSN 1613-0073, May 2007. online http://CEUR-WS.org/Vol-
249/submission 150.pdf.

[4] Paolo Bouquet, Heiko Stoermer, Michele Mancioppi, and Daniel Giacomuzzi.
OkkaM: Towards a Solution to the “Identity Crisis” on the Semantic Web. In
Proceedings of SWAP 2006, the 3rd Italian Semantic Web Workshop, Pisa, Italy,

December 18-20, 2006. CEUR Workshop Proceedings, ISSN 1613-0073, online

http://ceur-ws.org/Vol-201/33.pdf, December 2006.
[5] Paolo Bouquet, Heiko Stoermer, Giovanni Tummarello, and Harry Halpin, editors.

i3: Identity, Identifiers, Identification. Proceedings of the WWW2007 Workshop

on Entity-Centric Approaches to Information and Knowledge Management on the

Web, Banff, Canada, May 8, 2007., volume 249 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007. online http://CEUR-WS.org/Vol-249/.

[6] Aldo Gangemi and Valentina Presutti. Towards an OWL Ontology for Identity
on the Web. In Semantic Web Applications and Perspectives (SWAP2006), 2006.

[7] Aldo Gangemi and Valentina Presutti. A grounded ontology for identity and
reference of web resources. In i3: Identity, Identifiers, Identification. Proceedings

of the WWW2007 Workshop on Entity-Centric Approaches to Information and

Knowledge Management on the Web, Banff, Canada, May 8, 2007., 2007.
[8] Ian Jacobs and Norman Walsh. Architecture of the world wide web, volume one.

Published online, December 2004. http://www.w3.org/TR/webarch/.
[9] William Kent. The Entity Join. In Fifth Intl. Conf. on Very Large Data Bases,

Rio de Janeiro, Brazil, pages 232–238. Morgan Kaufman Publishers, 1979.
[10] William Kent. A Rigorous Model of Object Reference, Identity, and Existence.

Journal of Object-Oriented Programming, 4(3):28–38, June 1991.

118

Appendix: Okkam4P Class Diagram

Fig. 6. UML class diagram showing the primary classes of Okkam4P .

119

Building Rules on top of Ontologies?
Inductive Logic Programming can help!

Francesca A. Lisi and Floriana Esposito

Dipartimento di Informatica, Università degli Studi di Bari
Via E. Orabona 4, 70125 Bari, Italy
{lisi, esposito}@di.uniba.it

Abstract. Acquiring and maintaining Semantic Web rules is very de-
manding and can be automated though partially by applying Machine
Learning algorithms. In this paper we show that the form of Machine
Learning known under the name of Inductive Logic Programming (ILP)
can help. In particular, we take a critical look at two ILP proposals based
on knowledge representation frameworks that integrate Description Log-
ics and Horn Clausal Logic and draw from them general conclusions that
can be considered as guidelines for further ILP research of interest to the
Semantic Web.

1 Introduction

The logical layer of the Semantic Web architecture is currently one of the major
sources of research challenges in the field. Indeed, whereas the mark-up language
OWL for ontologies is already undergoing the standardization process at W3C,
the debate around a unified language for rules is still ongoing. Proposals like
SWRL1 extend OWL with constructs inspired to Horn Clausal Logic (HCL)
in order to meet the primary requirement of the logical layer: ’to build rules
on top of ontologies’. Since the design of OWL has been based on Description
Logics (DLs) [1] (more precisely on the SH family of very expressive DLs [9]),
rule languages for the Semantic Web will most likely follow the tradition of old

hybrid Knowledge Representation (KR) systems such as AL-log [7] and Carin

[11] that integrate DLs and HCL.
Acquiring and maintaining Semantic Web rules is very demanding and can

be automated though partially by applying Machine Learning (ML) algorithms.
The ML approach known under the name of Inductive Logic Programming (ILP)
[22] seems particularly promising for the following reasons. ILP was born at the
intersection of Concept Learning [19] and Logic Programming [17]. Thus it has
been historically concerned with rule induction from examples within the KR
framework of HCL and with the aim of prediction. The distinguishing feature
of ILP, also with respect to other forms of Concept Learning, is the use of
prior knowledge during the induction process. We claim that learning Semantic
Web rules can be reformulated as learning rules by having ontologies as prior
1 http://www.w3.org/Submission/SWRL/

120

knowledge. This may motivate an interest of the Semantic Web community in
ILP. In this paper we take a critical look at the only two ILP attempts at learning
rules within hybrid DL-HCL KR frameworks, the one for Carin [28] and the
other for AL-log [12]. From the comparative analysis of the two we shall draw
general conclusions that can be considered as guidelines for further ILP research
of interest to the Semantic Web.

The paper is organized as follows. Section 2 provides the basic notions of DLs
and HCL. Section 3 briefly describes different forms of integration of DLs and
HCL. Section 4 first provides background information on the ILP methodological
apparatus for non informed readers, then compares the two ILP proposals for
hybrid DL-HCL formalisms. Section 5 concludes the paper with final remarks.

2 Logics behind Semantic Web Ontologies and Rules

Ontologies and rules for the Semantic Web are logically founded on Description
Logics (DLs) and Horn Clausal Logic (HCL) respectively.

2.1 Description Logics

DLs are a family of decidable FOL fragments that allow for the specification
of knowledge in terms of classes (concepts), binary relations between classes
(roles), and instances (individuals) [2]. Complex concepts can be defined from
atomic concepts and roles by means of constructors (see Table 1). E.g., concept
descriptions in the basic DL AL are formed according to only the constructors of
atomic negation, concept conjunction, value restriction, and limited existential
restriction. The DLs ALC and ALN are members of the AL family. The for-
mer extends AL with (arbitrary) concept negation (also called complement and
equivalent to having both concept union and full existential restriction), whereas
the latter with number restriction. The DL ALCNR adds to the constructors
inherited from ALC and ALN a further one: role intersection (see Table 1).

A DL knowledge base (KB) can state both is-a relations between concepts
(axioms) and instance-of relations between individuals (resp. couples of indi-
viduals) and concepts (resp. roles) (assertions). Concepts and axioms form the
so-called TBox whereas individuals and assertions form the so-called ABox2.
The semantics of DLs is defined through a mapping to FOL. An interpretation

I = (ΔI , ·I) for a DL KB consists of a domain ΔI and a mapping function ·I . In
particular, individuals are mapped to elements of ΔI such that aI �= bI if a �= b

(Unique Names Assumption (UNA) [25]). Also the KB represents many different
interpretations, i.e. all its models. This is coherent with the Open World Assump-

tion (OWA) that holds in FOL semantics. The main reasoning task for a DL
KB is the consistency check that is performed by applying decision procedures
based on tableau calculus.
2 When a DL-based ontology language is adopted, an ontology is nothing else than a

TBox. If the ontology is populated, it corresponds to a whole DL KB, i.e. encom-
passing also an ABox.

121

Table 1. Syntax and semantics of the DL ALCNR.

bottom (resp. top) concept ⊥ (resp. �) ∅ (resp. Δ
I)

atomic concept A A
I ⊆ Δ

I

(abstract) role R R
I ⊆ Δ

I × Δ
I

(abstract) individual a a
I ∈ Δ

I

concept negation ¬C Δ
I \ C

I

concept intersection C1
 C2 C
I

1 ∩ C
I

2

concept union C1 � C2 C
I

1 ∪ C
I

2

value restriction ∀R.C {x ∈ Δ
I | ∀y (x, y) ∈ R

I → y ∈ C
I}

existential restriction ∃R.C {x ∈ Δ
I | ∃y (x, y) ∈ R

I ∧ y ∈ C
I}

at least number restriction ≥ nR {x ∈ Δ
I | |{y|(x, y) ∈ R

I}| ≥ n}
at most number restriction ≤ nR {x ∈ Δ

I | |{y|(x, y) ∈ R
I}| ≤ n}

role intersection R1
 R2 R
I

1 ∩ R
I

2

concept equivalence axiom C1 ≡ C2 C
I

1 = C
I

2

concept subsumption axiom C1 � C2 C
I

1 ⊆ C
I

2

concept assertion a : C a
I ∈ C

I

role assertion 〈a, b〉 : R (aI
, b

I) ∈ R
I

2.2 Horn Clausal Logic

The basic element in HCL is the atom of the form p(ti, . . . , tki
) such that each

p is a predicate symbol and each tj is a term. A term is either a constant or a
variable or a more complex term obtained by applying a functor to simpler term.
Constant, variable, functor and predicate symbols belong to mutually disjoint
alphabets. A literal is an atom either negated or not. A clause is a universally
quantified disjunction of literals. Usually the universal quantifiers are omitted
to simplify notation. Alternative notations are a clause as set of literals and a
clause as an implication. A definite clause is an implication of the form

α0 ← α1, . . . , αm

where m ≥ 0 and αi are atoms, i.e. a Horn clause with exactly one positive literal.
The right-hand side α0 and the left-hand side α1, . . . , αm of the implication are
called head and body of the clause, respectively. Note that the body is intended
to be an existentially quantified conjunctive formula ∃α1∧ . . .∧αm. Furthermore
definite clauses with m > 0 and m = 0 are called rules and facts respectively.

Definite clauses are at the basis of logic programming [17] and deductive
databases [4]. In particular, the language Datalog for deductive databases does
not allow functors and recursion. A Datalog program D is a set of Data-

log clauses. The predicates occurring in D are partitioned into two sets: the
extensional predicates (EDB-predicates) and the intensional predicates (IDB-
predicates). It is required that the predicate in the head of each rule in D be
an IDB-predicate. Based on this distinction between extensional and intensional

122

predicates, a Datalog program D can be divided into two parts, called ex-
tensional and intensional. The extensional part, denoted as EDB(D), is the set
of facts of D involving the extensional predicates, whereas the intensional part

IDB(D) is the set of all other clauses of D.
The model-theoretic semantics of Datalog is based on the notion of Her-

brand interpretation. Let D be a Datalog program. The Herbrand base HB

of D is the set of all atoms of the form p(c1, . . . , ck) such that p is a predicate
of D and all the ci are constants of D. We write EHB (resp. IHB) to denote
the atoms of HB whose predicates are extensional (resp. intensional). An Her-

brand interpretation for D is a subset of the Herbrand base HB. Let H be an
Herbrand interpretation for D. A positive ground literal l is satisfied by H if
l ∈ H. A negative ground literal ¬l is satisfied by H if l �∈ H. An Herbrand
interpretation H for D is said to be a model of D if for every clause γ of D, for
every ground instance γ′ of γ, at least one of the literals of γ′ is satisfied by H.
The meaning of a Datalog program D is the set of its models. The intersection
of all the models of D is itself a model of D, and in particular is the so-called
least Herbrand model, i.e. it is the subset of each Herbrand model of D. The cor-
responding proof-theoretic semantics of Datalog is based on the Closed World

Assumption (CWA).
Deductive reasoning with HCL is formalized in its proof theory. In clausal

logic resolution comprises a single inference rule which, from any two clauses hav-
ing an appropriate form, derives a new clause as their consequence. Resolution
is sound: every resolvent is implied by its parents. It is also refutation complete:
the empty clause is derivable by resolution from any set S of Horn clauses if S is
unsatisfiable. The main reasoning task in Datalog is query answering. A query

Q to a Datalog program D is a Datalog clause of the form

← α1, . . . , αm

where m > 0, and αi is a Datalog atom. An answer to a query Q is a substitu-
tion θ for the variables of Q. An answer is correct with respect to the Datalog

program D if D |= Qθ. The answer set to a query Q is the set of answers to
Q that are correct w.r.t. D and such that Qθ is ground. In other words the
answer set to a query Q is the set of all ground instances of Q which are logical
consequences of D. Answers are computed by refutation.

3 Combining Ontologies and Rules

The integration of Ontologies and Rules for the Semantic Web follows the tradi-
tion of KR research on hybrid systems, i.e. those systems which are constituted
by two or more subsystems dealing with distinct portions of a single KB by per-
forming specific reasoning procedures [8]. The motivation for investigating and
developing such systems is to improve on two basic features of KR formalisms,
namely representational adequacy and deductive power, by preserving the other
crucial feature, i.e. decidability. Indeed DLs and HCL are FOL fragments in-

123

comparable as for the expressiveness [2] and the semantics [26]3 but combinable
under certain conditions. In particular, combining DLs with HCL can easily yield
to undecidability if the interface between them is not reduced (safeness). A safe

interaction between the DL and the HCL part of an hybrid KB allows also to
solve the semantic mismatch between DLs and HCL [20,27].

AL-log [7] is a safe hybrid KR system that integrates ALC [29] and Datalog

[4]. In particular, variables occurring in the body of rules may be constrained with
ALC concept assertions to be used as ’typing constraints’. This makes rules ap-
plicable only to explicitly named objects. Reasoning for AL-log knowledge bases
is based on constrained SLD-resolution, i.e. an extension of SLD-resolution with
a tableau calculus for ALC to deal with constraints. Constrained SLD-resolution
is decidable and runs in single non-deterministic exponential time. Constrained
SLD-refutation is a complete and sound method for answering ground queries.

A comprehensive study of the effects of combining DLs and HCL (more
precisely, Horn rules) can be found in [11]. Here the family Carin of hybrid lan-
guages is presented. Special attention is devoted to the DL ALCNR. The results
of the study can be summarized as follows: (i) answering conjunctive queries over
ALCNR TBoxes is decidable, (ii) query answering in a logic obtained by ex-
tending ALCNR with non-recursive Datalog rules, where both concepts and
roles can occur in rule bodies, is also decidable, as it can be reduced to com-
puting a union of conjunctive query answers, (iii) if rules are recursive, query
answering becomes undecidable, (iv) decidability can be regained by disallowing
certain combinations of constructors in the logic, and (v) decidability can be
regained by requiring rules to be role-safe, where at least one variable from each
role literal must occur in some non-DL-atom. As in AL-log, query answering is
decided using constrained resolution and a modified version of tableau calculus.
As opposite to AL-log, the hybridization in Carin is not safe.

4 Learning Rules on top of Ontologies with ILP

4.1 The methodological apparatus of ILP

ILP was born at the intersection between Logic Programming and Concept
Learning. From Logic Programming it has borrowed the KR framework. From
Concept Learning it has inherited the inferential mechanisms for induction, the
most prominent of which is generalization. In Concept Learning generalization is
traditionally viewed as search through a partially ordered space of inductive hy-
potheses [19]. According to this vision, an inductive hypothesis is a clausal theory
and the induction of a single clause requires (i) structuring, (ii) searching and
(iii) bounding the space of clauses. To serve the purposes of this paper we focus
on (i) by clarifying the notion of ordering for clausal spaces. One such ordering
is θ-subsumption [23]: Given two clauses C and D, we say that C θ-subsumes D

3 Remind that the OWA holds for DLs whereas CWA is valid in HCL. Note that the
OWA and CWA have a strong influence on the results of reasoning.

124

if there exists a substitution θ, such that Cθ ⊆ D. In θ-subsumption the back-

ground knowledge that figures prominently in ILP problem settings is left out of
consideration. Yet combining the examples with what we already know often al-
lows for the construction of a more satisfactory theory that can be glanced from
the examples by themselves. Given the usefulness of background knowledge, or-
ders have been proposed that reckon with it, e.g. Plotkin’s relative subsumption

[24] and Buntine’s generalized subsumption [3]. Relative subsumption applies to
arbitrary clauses and the background knowledge may be an arbitrary finite set of
clauses. Generalized subsumption only applies to definite clauses and the back-
ground knowledge should be a definite program. Each of these orders is related to
some form of deduction. It can be shown by using these two forms of deduction
that generalized subsumption is a weaker quasi-order than relative subsumption.
Also, it can be shown that both relative and generalized subsumption reduce to
ordinary subsumption in case of non-tautologous clauses and empty background
knowledge. Generalized subsumption is of major interest to this paper. It is
called semantic generality in contrast to θ-subsumption which is a purely syn-
tactic generality. In the general case, semantic generality is undecidable and does
not introduce a lattice on a set of clauses. Because of these problems, syntactic
generality is more frequently used in ILP systems. Yet for Datalog generalized
subsumption is decidable and admits a least general generalization.

Once structured, the space of hypotheses can be searched (ii) by means of
refinement operators. The definition of refinement operators presupposes the in-
vestigation of the properties of the various quasi-orders. In Shapiro’s sense [30],
a refinement operator is a function which computes a set of specializations of a
clause. Specialization is suited for the direction of search in his approach. His
kind of refinement operator has been therefore called a downward refinement
operator in ILP. Dually, operators can be also defined to compute generaliza-
tions of clauses. These can be applied in a bottom-up search, so they have been
named upward refinement operators. A good refinement operator should sat-
isfy certain desirable properties [32]. We shall illustrate these properties for the
case of downward refinement operators but analogous conditions are actually
required to hold for upward refinement operators as well. Ideally, a downward
refinement operator should compute only a finite set of specializations of each
clause - otherwise it will be of limited use in practice. This condition is called
local finiteness. Furthermore, it should be complete: every specialization should
be reachable by a finite number of applications of the operator. Finally, it is
better only to compute proper specializations of a clause, for otherwise repeated
application of the operator might get stuck in a sequence of equivalent clauses,
without ever achieving any real specialization. Operators that satisfy all these
conditions simultaneously are called ideal. It has been shown that ideal upward
and downward refinement operators do not exist for both full and Horn clausal
languages ordered by either subsumption or the stronger orders (e.g. implica-
tion). In order to define a refinement operator for full clausal languages, it is
necessary to drop one of the three properties of idealness. Locally finiteness and
completeness are usually considered the most important properties. This means

125

that locally finite and complete, but improper refinement operators can be de-
fined for full clausal languages. On the other hand, in order to retain all the three
properties of idealness, it seems that the only possibility is to restrict the search
space. Hence, the definition of refinement operators is usually coupled with the
specification of a declarative bias for bounding the space of clauses (iii). Bias

concerns anything which constrains the search for theories [31]. Following [21] we
will distinguish three kinds of bias: (a) Language bias that specifies constraints
on the clauses in the search space; (b) Search bias that has to do with the way
an ILP system searches its space of permitted clauses; (c) Validation bias that
concerns the stopping criterion of the ILP system.

Induction with ILP generalizes from individual instances/observations in the
presence of background knowledge, finding valid hypotheses. Validity depend on
the underlying setting. At present, there exist several formalizations of induction
in clausal logic. Two orthogonal dimensions are usually taken into account when
classifying these formalizations [6]: the scope of induction (discrimination versus
characterization) and the representation of observations (ground definite clauses
versus ground unit clauses). Discriminant induction (also called predictive induc-

tion) aims at inducing hypotheses with discriminant power as required in tasks
such as classification. In classification, observations encompass both positive and
negative examples. Characteristic induction (also called descriptive induction) is
more suitable for finding regularities in a given set of unclassified examples. This
corresponds to learning from positive examples only. For a thorough discussion
of differences between discriminant and characteristic induction see [18]. The
second dimension affects the notion of coverage, i.e. the condition under which
a hypothesis explains an observation. In learning from entailment (also called
learning from implications), hypotheses are clausal theories, observations are
ground definite clauses, and a hypothesis covers an observation if the hypothesis
logically entails the observation. In learning from interpretations, hypotheses are
clausal theories, observations are Herbrand interpretations (ground unit clauses)
and a hypothesis covers an observation if the observation is a model for the hy-
pothesis. A deeper investigation of learning from entailment and learning from
interpretations can be found in [5].

4.2 ILP and DL-HCL formalisms

Learning in DL-HCL hybrid languages has very recently attracted some attention
in the ILP community. Two ILP frameworks have been proposed that adopt a
hybrid representation for both hypotheses and background knowledge.

In [28], the chosen language is Carin-ALN . The framework focuses on dis-
criminant induction and adopts the ILP setting of learning from interpretations.
The target concept is a unary Datalog predicate, therefore hypotheses are rep-
resented as Carin-ALN rules with a Datalog literal in the head. The coverage
relation of hypotheses against examples and the generality relation between two
hypotheses are based on the existential entailment algorithm of Carin. In par-
ticular, the generality relation is defined as an extension of Buntine’s generalized
subsumption [3]. Following [28], Kietz studies the learnability of Carin-ALN ,

126

thus providing a pre-processing method which enables ILP systems to learn
Carin-ALN rules [10].

In [12], the representation and reasoning means come from AL-log. Hypothe-
ses are represented as constrained Datalog clauses that are linked, connected
(or range-restricted), and compliant with the bias of Object Identity (OI)4. Note
that this framework is general, meaning that it is valid whatever the scope of in-
duction (description/prediction) is. Therefore the literal in the head of hypothe-
ses represents a concept to be either discriminated from others (discriminant

induction) or characterized (characteristic induction). The generality relation
for one such hypothesis language is an adaptation of generalized subsumption
[3], named B-subsumption, to the AL-log KR framework. It gives raise to a
quasi-order and can be checked with a decidable procedure based on constrained
SLD-resolution [14]. Coverage relations for both ILP settings of learning from
interpretations and learning from entailment have been defined on the basis of
query answering in AL-log [13]. As opposite to [28], the framework has been
implemented in an ILP system [16]. More precisely, an instantiation of it for
the case of characteristic induction from interpretations has been considered.
Indeed, the system supports a variant of a very popular data mining task - fre-
quent pattern discovery - where rich prior conceptual knowledge is taken into
account during the discovery process in order to find patterns at multiple levels of
description granularity. The search through the space of patterns represented as
unary conjunctive queries in AL-log and organized according to B-subsumption
is performed by applying an ideal downward refinement operator [15].

5 Final remarks

Building rules on top of ontologies for the Semantic Web poses several challenges
not only to KR researchers investigating suitable hybrid DL-HCL formalisms but
also to the ML community which has been historically interested in application
areas where the Knowledge Acquisition bottleneck is particularly severe. In this
paper, we have provided a brief survey of ILP literature dealing with hybrid
DL-HCL formalisms. From the comparative analysis of [28] and [12], a common
feature emerges. Both proposals resort to Buntine’s generalized subsumption,
being it a semantic generality relation. Note that in both the extension of [3]
to hybrid DL-HCL formalisms is not trivial. Following the guidelines of [28] and
[12], new ILP frameworks can be designed to deal with more expressive hybrid
DL-HCL languages. The augmented expressive power may be due to a more
expressive DL (than ALC and ALN), or a more expressive HCL fragment (than
Datalog), or a looser integration between the DL and the HCL parts. We would
like to emphasize that the safeness and the decidability of these formalisms are
two desirable properties which are particularly appreciated both in ILP and in
the Semantic Web application area.
4 The OI bias can be considered as an extension of the UNA from the semantic level

to the syntactic one of AL-log. It can be the starting point for the definition of either
an equational theory or a quasi-order for constrained Datalog clauses.

127

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

2. A. Borgida. On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence, 82(1–2):353–367, 1996.

3. W. Buntine. Generalized subsumption and its application to induction and redun-
dancy. Artificial Intelligence, 36(2):149–176, 1988.

4. S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer,
1990.

5. L. De Raedt. Logical Settings for Concept-Learning. Artificial Intelligence,
95(1):187–201, 1997.

6. L. De Raedt and L. Dehaspe. Clausal Discovery. Machine Learning, 26(2–3):99–
146, 1997.

7. F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog
and Description Logics. Journal of Intelligent Information Systems, 10(3):227–252,
1998.

8. A.M. Frisch and A.G. Cohn. Thoughts and afterthoughts on the 1988 workshop
on principles of hybrid reasoning. AI Magazine, 11(5):84–87, 1991.

9. I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

10. J.-U. Kietz. Learnability of description logic programs. In S. Matwin and C. Sam-
mut, editors, Inductive Logic Programming, volume 2583 of Lecture Notes in Arti-

ficial Intelligence, pages 117–132. Springer, 2003.
11. A.Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in

CARIN. Artificial Intelligence, 104:165–209, 1998.
12. F.A. Lisi. Principles of Inductive Reasoning on the Semantic Web: A Framework

for Learning in AL-log. In F. Fages and S. Soliman, editors, Principles and Practice

of Semantic Web Reasoning, volume 3703 of Lecture Notes in Computer Science,
pages 118–132. Springer, 2005.

13. F.A. Lisi and F. Esposito. Efficient Evaluation of Candidate Hypotheses in AL-log.
In R. Camacho, R. King, and A. Srinivasan, editors, Inductive Logic Programming,
volume 3194 of Lecture Notes in Artificial Intelligence, pages 216–233. Springer,
2004.

14. F.A. Lisi and D. Malerba. Bridging the Gap between Horn Clausal Logic and
Description Logics in Inductive Learning. In A. Cappelli and F. Turini, editors,
AI*IA 2003: Advances in Artificial Intelligence, volume 2829 of Lecture Notes in

Artificial Intelligence, pages 49–60. Springer, 2003.
15. F.A. Lisi and D. Malerba. Ideal Refinement of Descriptions in AL-log. In T. Hor-

vath and A. Yamamoto, editors, Inductive Logic Programming, volume 2835 of
Lecture Notes in Artificial Intelligence, pages 215–232. Springer, 2003.

16. F.A. Lisi and D. Malerba. Inducing Multi-Level Association Rules from Multiple
Relations. Machine Learning, 55:175–210, 2004.

17. J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd edition, 1987.
18. R.S. Michalski. A theory and methodology of inductive learning. In R.S. Michal-

ski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: an artificial

intelligence approach, volume I. Morgan Kaufmann, San Mateo, CA, 1983.
19. T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.

128

20. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules.
In S.A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, The Semantic

Web, volume 3298 of Lecture Notes in Computer Science, pages 549–563. Springer,
2004.

21. C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend. Declarative
bias in ILP. In L. De Raedt, editor, Advances in Inductive Logic Programming,
pages 82–103. IOS Press, 1996.

22. S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-

ming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer, 1997.
23. G.D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163,

1970.
24. G.D. Plotkin. A further note on inductive generalization. Machine Intelligence,

6:101–121, 1971.
25. R. Reiter. Equality and domain closure in first order databases. Journal of ACM,

27:235–249, 1980.
26. R. Rosati. On the decidability and complexity of integrating ontologies and rules.

Journal of Web Semantics, 3(1), 2005.
27. R. Rosati. Semantic and computational advantages of the safe integration of on-

tologies and rules. In F. Fages and S. Soliman, editors, Principles and Practice

of Semantic Web Reasoning, volume 3703 of Lecture Notes in Computer Science,
pages 50–64. Springer, 2005.

28. C. Rouveirol and V. Ventos. Towards Learning in CARIN-ALN . In J. Cussens
and A. Frisch, editors, Inductive Logic Programming, volume 1866 of Lecture Notes

in Artificial Intelligence, pages 191–208. Springer, 2000.
29. M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with com-

plements. Artificial Intelligence, 48(1):1–26, 1991.
30. E.Y. Shapiro. Inductive inference of theories from facts. Technical Report 624,

Dept. of Computer Science, Yale University, 1981.
31. P.E. Utgoff and T.M. Mitchell. Acquisition of appropriate bias for inductive con-

cept learning. In Proceedings of the 2nd National Conference on Artificial Intelli-

gence, pages 414–418, Los Altos, CA, 1982. Morgan Kaufmann.
32. P.R.J. van der Laag. An Analysis of Refinement Operators in Inductive Logic

Programming. Ph.D. Thesis, Erasmus University, Rotterdam, The Netherlands,
1995.

129

Foaf-O-Matic - Solving the Identity Problem in
the FOAF Network

Stefano Bortoli1, Heiko Stoermer1, Paolo Bouquet1, and Holger Wache2

1 University of Trento,
Dept. of Information and Communication Tech.,

Trento, Italy
{bortoli, bouquet, stoermer}@dit.unitn.it

2 University of Applied Sciences Northwestern Switzerland
School of Business

Brugg, CH
holger.wache@fhnw.ch

Abstract. An issue that is equally arising both from social networks
and the Semantic Web is the fact that, without the consistent use of the
same identifier for an object across systems, it is unnecessarily hard to
perform information integration. We are addressing this issue where both
fields intersect, namely in the context of FOAF profiles, which describe
the social network of a person with Semantic Web technology. We have
developed a new, state-of-the-art web application for the generation of
FOAF profiles, which has the integral characteristic of making use of
the Okkam Infrastructure. This infrastructure enables the systematic,
global use of unique identifiers for entities, and thus aims to solve the
identity problem that exists in FOAF today.

1 Introduction

In the past few years, big efforts have been performed in the context of Seman-
tic Web aiming at developing tools and solutions focused on mapping among
ontologies and taxonomies, distributed reasoning, automatic knowledge extrac-
tion, building ontologies starting from databases and so on. In some sense, the
Semantic Web relies on a silent underlying assumption: users throughout the
Web will realize their sets of RDF assertions and then share them with others.
Each set of RDF assertions represent a graph, where the nodes represent the
resources and the edges correspond to properties. The integration between dif-
ferent graphs is obtained by merging the graphs by the means of collapsing the
nodes describing the same resource. This process results in a graph in which
the information regarding a resource is in some sense the sum of the informa-
tion contained within the initial graphs. The integration among different graphs
relies on the possibility to identify nodes describing the same resource.

When defining RDF assertions, the described resources are identified by
Unique Resource Identifiers (URI). Nodes with the same URI in different graphs
refers to the same resource, and so they may be collapsed when merging the

130

graphs they belong to. However, it is unclear how different developers working
on their own ontologies and describing the same resource may be able to con-
sistently use the same URIs for them. This is, in our opinion one of the biggest
issues affecting the Semantic Web: the lack of “reusing and sharing” already
defined identifiers for entities. Indeed, the merging of graphs relies on collapsing
identifiers referring to identical resources, or, equivalently, assertions of identity
binding different identifiers describing the same resource3. In this way, we assist
on a proliferation in the creation of identifiers describing the same resource. We
call this problem “Pirandello’s identity problem”, a more precise description of
which is presented in section 2, and whose actual relevance in the area of social
networks can be inferred from [5].

Under these premises, in this paper we try to prove the benefit arising from
the use of Okkam [2] as means for sharing and reusing identifiers. In order to
perform this experiment we chose to deal with one of the most successful applica-
tions of the Semantic Web, namely Friend-Of-a-Friend (FOAF). The experiment
lead to the development of a new application integrating Okkam and providing
functionalities for the creation of FOAF RDF profiles.

2 FOAF and Pirandello’s Problem of Identity

Luigi Pirandello (1867-1936) was an Italian dramatist, novelist, and short story
writer awarded the Nobel Prize in Literature in 1934. He is author of ”One, No
one and One Hundred Thousand” [7], a novel in which the protagonist discovers
how all the persons around him have constructed in their mind a specific view
of him, and how none of these views correspond to the image he has of himself.
The problem experienced by the protagonist of the book of Pirandello can be
used as a metaphor to explain the nature of the problem we are aiming to solve.

In a sense, every time that a new identifier is created, a new view about a
resource (entity) is created. This multiplication of identifiers makes the concept
of identifier itself weaker. Indeed, if an identifier for a resource is recognized by
a single agent (the creator), or simply within a limited context, then we can
state that this resource does not exist, or cannot be recognized for what it is,
in an external context. The URI identifying a resource has, or should have, the
good property of being unique, but, as long as it can be created arbitrarily, it
cannot fulfil this property. Thus, creating different instances characterized by
different URIs identifying the same resource leads to a parting of the associated
information, and therefore a consistent decrease in the capability of making
inferences and extracting knowledge. It is worthy to underline that this problem
has a subtle difference from the “identity crisis” problem analyzed by Pepper [6].
Indeed, Pirandello’s identity problem, as we mean it, describes the lack of reuse
of identifiers referring to the same resource, and the weak identifying property
of an arbitrarily created URI.

In order to show the concreteness of the described problem, we chose to ana-
lyze a limited context referring to a real world application: namely the Friend-of-
3 This is, for example, the approach pursued by the Linked Data Initiative [1]

131

a-Friend (FOAF) project4. The FOAF initiative regards the definition of a set of
specifications and tools based on the W3C’s RDF language [4] that allow agents
(people, organization, groups etc.) to describe themselves, their place of work,
their main interests, education institutes etc. Furthermore, the set of properties
associated to a FOAF agent are conceived to state some relationship involving
other agents. The most important and used is the “foaf:knows” object property
relating FOAF Person resources. In simple words, by means of this object prop-
erty it is possible to state who is friend of whom and share this knowledge on
the web in a machine readable way.

The vocabulary of FOAF is reasonably expressive, although still in evolution,
and allows to express different types of information describing a person 5.

Analyzing the set of properties describing a FOAF person entity, it becomes
clear that the best identifier currently available is the unique code obtained by
encoding a person’s email address in the field (/foaf:mbox sha1sum). Indeed, an
email address is uniquely identifying a mailbox of a person. Furthermore, often
people use the same email address for long periods of time and this fact make
the email address useful to identify persons along this period.

Any FOAF file describing a person represents an RDF graph. Every single
graph is supposed to be merged with other graphs collapsing the nodes iden-
tifying the same person. Namely, if in two graphs somewhere the same unique
code derived by the mail address is used, then both graphs contain some kind
of information about the same person, therefore the graphs can be merged en-
larging the network of “friendship”. By means of this procedure it is possible
to build a bigger graph containing all the information stated by the respective
social network.

Analyzing superficially this process, everything seems to be at the right place,
but going a little bit deeper some problems arise. The problems are related
mainly to the weakness of the use of the email address based code as identifier.
Indeed, an email address is not a good identifier for the following reasons:

– people change email address (change work/study institution, choose better
provider, drop over-spammed6 email address, etc...)

– people use more than one email address depending on the context of use
(work, on-line gaming and shopping, ‘night activities’, family and friends
relationship, etc...);

– email addresses can act as proxies for more than one person.

The facts listed above raise the following problem: different actors could use
different email address to identify the same person (agents). Thus, a complete
merging of all the information regarding a person is no more even possible.
Despite the analyzed context is pretty simple and circumscribed, it reflects the
more general Pirandello’s identity problem affecting the semantic web evolution.

4 The web page of the project is: http://www.foaf-project.org
5 For more detail about the FOAF vocabulary see http: // xmlns. com/ foaf/ 0. 1/
6 over-spamed means that this address is a constant target of spam email

132

The weakness of the identifier generated on the base of the email address can
be tackled and resolved by means of adding globally unique identifiers that are
not dependent from the context of use. Thereby, there is the need of a tool that
supports the creation of this kind of identifiers, namely Okkam.

3 The OkkamPUBLIC Infrastructure

The work described in this paper relies on the existance of the Okkam in-
frastructure, the initial idea of which was described in more detail in [3, 2]. As
illustrated in Figure 1, at the heart of this infrastructure there is the central
repository for entity identifiers, called OkkamPUBLIC 7. This repository can
be imagined like a very large catalog, where semi-structured descriptions of en-
tities are stored and associated to globally unique identifiers for these entities. It
furthermore provides the functionality to add entities and their descriptions to
the repository that have not existed there so far, and to retrieve their Okkam

identifiers for use in information systems.

Fig. 1. Overview of the global Okkam vision.

Figure 2 illustrates the standard use-case for the okkamization8 of content,
namely to query OkkamPUBLIC for the existance of the entity at hand. This
would usually be achieved through functionality provided by a client application
– in this case Foaf-O-Matic – which accesses the OkkamPUBLIC API, and
presents (if available) a list of top candidates which match the description for
the entity provided within the client application. If the entity is among these
candidates, the client agent (human or software) uses the associated Okkam

identifier in the respective information object(s) instead of a local identifier. If
the entity cannot be found, the client application can create a new entry for this
7 This service is currently under development at the University of Trento, and will be

opened for public access in the near future.
8 We call okkamization the process of assigning an Okkam identifier to an entity that

is being annotated in any kind of content, such as an OWL/RDF ontology, an XML
file, or a database, to make the entity globally identifiable.

133

entity in Okkam and thus cause an identifier for the entity to be issued and
used as described before.

Fig. 2. Sequence diagram of the Okkam standard use case.

The large-scale, global service OkkamPUBLIC provides for the entity repos-
itory and a service infrastructure so that tools and applications can make use
of this new technology. The current version of OkkamPUBLIC is a prototyp-
ical implementation of parts of a larger multi-tier architecture, namely a non-
distributed version of the storage component OkkamSTORE which in a later
phase will move to a distributed layout, a preliminary version of the matching
component OkkamMATCH which performs the search for entities, and a subset
set of the developer API and toolkit OkkamDEV which is available9.

The mechanisms inside Okkam which perform the matching between entity
descriptions provided by the user or agent and the existing descriptions stored in
the repository, display some specifics which should be mentioned at this point.
One of the main characteristics of Okkam is that the description of an entity,
which is necessarily used to distuingish this entity from all others in the repos-
itory, does not follow a fixed schema, i.e. Okkam is specifically not something
like a knowledge base of entities; consequently, Okkam is not providing an on-
tological formalization of which attributes an entity has. The way to describe

9 http://www.okkam.org

134

entities is extremely flexible and semi-structured, realised by way of key/value
pairs which can contain arbitrary strings. The reasons for this decisions have
been laid out in [3, 2], and basically go back to the point that there is an infinite
variety of ways of how to model domains, for which reasons we decided to stay
completely domain independent. As a consequence, the matching algorithms in
OkkamMATCH can take as input any kind of description of an entity, e.g. the
set of properties and values inferred from an ontology or RDF graph, and match
it against existing data. This is how we achieve Okkam support without any
dependence on, or knowledge of, an underlying schema.

4 Foaf-O-Matic – A Solution Approach

In the previous sections we have illustrated that what is missing in a FOAF
Person description is a unique and sole identifier.

Thus, the problem described in Sect. 2 looks to be a perfect example of a real-
world case in which Okkam could play an important role in terms of information
integration, enhancing the merging of RDF graphs describing the same person
or its social network.

The approach applied for tackling the analyzed problem is to provide a tool
allowing users to create/integrate FOAF person descriptions with identifiers con-
tained in, or generated by, Okkam. Thus, what is needed is a new application
extending the functionalities provided by the foaf-a-matic application10. In or-
der to underline the historical relation with the former application, this new
web-based tool has been named Foaf-O-Matic11 (with the ’O’ underlining the
integration with Okkam.)

It is important to notice that the aim of creating the Foaf-O-Matic appli-
cation is not only to replace the slightly ‘obsolete’ foaf-a-matic application and
providing a pretty layout and new description fields. The focal point of the new
application is to allow users to integrate Okkam identifier within their FOAF
document in a user-friendly way. In this way, it will be possible to merge more
precisely a wider number of FOAF graphs describing a person’s social networks,
enhancing the integration of information and reach more easily the goal of the
FOAF initiative.

A view of the new layout of the application is given in figure 3. As it is possible
to see from the figure, the main layout is split in two columns: the left one for
the foaf:PrimaryPerson description, and right one for the friend management.
On the top of this two columns facilities to upload already defined FOAF files
are presented. At the bottom, a “generate FOAF” button is present that trigger
the generation and visualization of the FOAF file in a text area.

Without going too much into details, the Foaf-O-Matic is meant provide
the following set of functionalities:

10 http://www.ldodds.com/foaf/foaf-a-matic — The foaf-a-matic is a tool that al-
low the definition of foaf rdf description by means of a simple form fulfillment.

11 http://www.okkam.org/projects/foaf-o-matic/

135

Fig. 3. Foaf-O-Matic screenshot.

136

– Upload a FOAF file. This functionality is meant to allow the upgrade of
already defined FOAF descriptions and enhancing it with Okkam identifiers.
The file can be loaded providing either its Web URL, loading the file from
the file system as is possible to see in the area marked with 1 in figure 3.

– Describe the foaf:PrimaryPerson aka ’yourself ’. This functionality
supersedes foaf-a-matic by providing of a wider choice of description fields
some under testing FOAF properties. For a matter of dimension, the input
for has been split in three collapsible panels presenting in the top part the
standard description fields, in the middle part some extra information fields
(i.e. birthday), and in the bottom part some chat-id related information
fields (i.e. yahooChatId). A view of this part of the application is presented
in figure 3 in the area marked with 2.

– Add and describe friends. This functionality is meant to allow users to
provide a description of the friends they want to add to their social network.
The information provided will be used to inquire Okkam and retrieve a list
of candidate entities corresponding to the described friends. If no entities will
be found in Okkam a newly created entity identifier will be provided. If none
of the candidate entities match the user requirement in terms “recognition”
a new identifier will be provided as well. “Okkamized” entities12 will be
marked in a special way. A view of this part of the application is presented
in figure 3 in the area marked with 3 and 4. Notice that an Okkam identifier
is now part of the description of the described friend.

– Select one Okkam entity for each described person. This functionality
is meant to allow the user to choose which is the entity representing the
described person among the one matching such description within Okkam,
if any. The chosen entity identifier is used in the definition of the RDF
FOAF file as value of rdf:about attribute of the described person. The list of
candidate Okkam entities is presented in a pop-up panel. The user can select
the correct entity by pressing the “Select” button associated to the entity, or
to state that none of the retrieved entities correspond to the describe person
by pressing the button “None”.

– Retrieve the new FOAF description. The FOAF RDF description con-
taining the informations provided by the used is presented in a text area
below the description areas. The FOAF RDF description containing the in-
formation provided and integrating an Okkam identifier where chosen, is
generated every time the “generate FOAF” button is pressed. The content
of the file reflect the present state of the description provided by the user.

4.1 Foaf-O-Matic Development Framework

The framework used for the development of Foaf-O-Matic is ICEFaces13 open
source project. ICEfaces is the most widely distributed enterprise Ajax14 frame-
work on the market today, providing a rich library of Ajax components. The
12 entities which has been assigned an Okkam identifier
13 http://www.icefaces.org/
14 Asynchronous JavaScript and XML - http://www.ajaxprojects.com/

137

main benefit of Ajax is that it gets rid of the usual submit/reload mechanism of
Web forms and enables the creation of very user-friendly interfaces comparable
to modern desktop windowing systems.

The primary goal behind the ICEfaces architecture is to provide a familiar
Java Enterprise development model, and completely isolate them from the com-
plexities of low-level Ajax development in JavaScript. The key to the ICEfaces
architecture is a server-centric application model, where all application logic is
developed in pure Java, and executes in a standard Java Application Server
runtime environment.

The ICEfaces Framework is an extention to the standard JSF15 framework,
with the key difference in ICEfaces relating to the rendering phase. In standard
JSF, the render phase produces new markup for the current application state,
and delivers that to the browser, where a full page refresh occurs. With the
ICEfaces framework, rendering occurs into a server-side DOM and only incre-
mental changes to the DOM are delivered to the browser and reassembled with
a lightweight Ajax Bridge.

5 Future Work and Conclusion

In this paper we have presented Foaf-O-Matic, an extended service for the
creation of FOAF profiles, which relies on the Okkam infrastructure for issueing
the “friends” with globally unique identifiers, and thus solving a-priory some of
the issues of social network applications illustrated for example in [5].

The application we propose within the FOAF context is only one example
of the potential application on top of an infrastructure – Okkam – which ap-
peases the Pirandello’s identity problem affecting the semantic web. But much
more applications can also benefit from this infrastructure, in fact each applica-
tion domain where some information about the same “thing” is distributed over
different platforms is a candidate for Okkam improvements.

For the next steps we plan to extend Foaf-O-Matic in order to get some
experience with Okkam and its matching algorithms. The benefit of the FOAF
application is that there are many FOAF files distributed over the Internet which
provide a good training base for the matching algorithm. With the FOAF appli-
cation we want to tune Okkam’s and Foaf-O-Matic’s algorithms. With that
experience we explore further application and improve Okkam over time and ap-
plication domains. Also a scalable architecture with a fuzzy entity identification
are subject of investigation.

The Okkam infrastructure itself will experience a great boost in the course of
a European FP7 Integrated Project to start in early 2008 – consequently named
Okkam – which has the aim and the means to implement the infrastructure
briefly illustrated in Sect. 3 at a very large scale.

More information will be made available at http://www.okkam.org.

15 JavaServer Faces - http://java.sun.com/javaee/javaserverfaces/

138

References

1. Tim Berners-Lee. Design Issues – Linked Data. Published online, May 2007. http:
//www.w3.org/DesignIssues/LinkedData.html.

2. Paolo Bouquet, Heiko Stoermer, and Daniel Giacomuzzi. OKKAM: Enabling a
Web of Entities. In i3: Identity, Identifiers, Identification. Proceedings of the

WWW2007 Workshop on Entity-Centric Approaches to Information and Knowl-

edge Management on the Web, Banff, Canada, May 8, 2007., CEUR Work-
shop Proceedings, ISSN 1613-0073, May 2007. online http://CEUR-WS.org/Vol-
249/submission 150.pdf.

3. Paolo Bouquet, Heiko Stoermer, Michele Mancioppi, and Daniel Giacomuzzi.
OkkaM: Towards a Solution to the “Identity Crisis” on the Semantic Web. In
Proceedings of SWAP 2006, the 3rd Italian Semantic Web Workshop, Pisa, Italy,

December 18-20, 2006. CEUR Workshop Proceedings, ISSN 1613-0073, online

http://ceur-ws.org/Vol-201/33.pdf, December 2006.
4. Patrick Hayes. RDF Semantics, February 2004. http://www.w3.org/TR/rdf-mt/.
5. Tim O’Reilly. The Social Network Operating System, October 2007. on-

line http://radar.oreilly.com/archives/2007/10/social_network_operating_

system.html.
6. Steve Pepper and Sylvia Schwab. Curing the web’s identity crisis: Subject indicators

for rdf. Published online., December 2003. http://www.idealliance.org/papers/
dx_xml03/papers/05-01-05/05-01-05.pdf.

7. Luigi Pirandello. One, None and a Hundred Thousand. E. P. Dutton & Co., Inc.,
New York, 1st edition, 1933. Translated from the Italian by Samual Putnam.

139

Semantic Content Annotation and Ontology Creation
to Improve Pertinent Access to Digital Documents

Rocío Abascal-Mena1 and Béatrice Rumpler2

1 Universidad Autónoma Metropolitana - Cuajimalpa, José Vasconcelos 131, Col. San
Miguel Chapultepec, Del. Miguel Hidalgo, 11850, México, D.F., México

2 INSA de Lyon – LIRIS, 7 Avenue J. Capelle Bât 502 – Blaise Pascal, F69621
Villeurbanne cedex, France

mabascal@correo.cua.uam.mx, Beatrice.Rumpler@insa-lyon.fr

Abstract. In order to serve the needs of their current and future users’ digital
libraries must provide access to the relevant data. Since recent developments
are still behind user needs, describing data using metadata has proven to be cru-
cial for building digital libraries and for providing effective access to the infor-
mation. This paper describes the use of concepts, extracted from the document
itself, to annotate documents using them like “metadata tags”. In order to sug-
gest new relationships and new terms to seek, we have built also an ontology
based on the concepts extracted from the theses. We present the process fol-
lowed to add new semantic metadata into the digital theses and the methodol-
ogy followed for the construction of the ontology based on the new metadata.

Keywords: metadata, knowledge markup, ontology, semantic annotation.

1 Introduction

Although there have been substantial advances in the way to structure information,
users must still assess the pertinence of documents presented by the web. Generally,
users need to get only parts of the pertinent documents rather than the complete
documents. It is fastidious to read and evaluate several documents. For this reason,
many pertinent documents are always unknown by users. Therefore, we try to propose
a solution to enable a better access to pertinent documents or parts of documents in
digital libraries.

Our work is situated within the context of a digital library, CITHER of INSA,
Lyon. It concerns the online publishing of scientific theses, which is included in this
study. As in other digital libraries, we encountered the same difficulties to find perti-
nent information in the CITHER system. During a search session, it is impossible to
extract the pertinent contents of several theses. To evaluate the pertinence of a thesis,
users must read several parts of the document. Furthermore, a document may be too
long for a quick evaluation. A promising way to solve this problem is to use metadata
in order to “annotate” and to describe, in a better way, the content of the documents.
In our proposal, we have decided to extract the concepts, that best describe the theses,
to use them as metadata for “semantic tags”. Of course, manual extraction of con-

140

cepts is a long time-consuming and is an expensive task. Tools for automating the
extraction of concepts can overcome these limitations. Another promising way can be
to use an ontology based on these concepts used like “semantic tags”. In our ap-
proach, an ontology is the description of concepts and their relations. We propose the
construction of an ontology from digital theses by following a certain methodology.

In our context, which is a digital library that publishes scientific theses, the intro-
duction of new semantic information into documents has clearly for purpose to ame-
liorate information retrieval. In order to insert new semantic information into digital
theses, we have used a tool able to extract concepts from a given document. Section 2,
describes how we have chosen this tool. Afterward, we present the system developed
to make annotations. Once digital theses are annotated, a search session is based on
the new “semantic tags”. In order to expand users request and to give to users also the
possibility to chose documents that are closer to the pertinent document, we have
decide to construct an ontology. The ontology is composed by the terms of a domain,
which become, in our proposition, “semantic tags” used to annotate theses. In addi-
tion, the ontology is composed by the identification of relations between terms. The
identification of relations among concepts and the methodology followed to construct
our ontology is described and illustrated in Section 3. Section 4 shows the integration,
in the CITHER system, of the semantic annotations and the ontology in order to give
the user the pertinent information. Afterward, we present a brief summary of related
work in Section 5. Conclusions and further research are proposed at the end.

2 Methodology to Annotate Digital Documents

In large document collections, such as digital libraries, it is very important to have
mechanisms able to only select the information requested. The use of keywords to
represent documents is a promising way to manipulate information in order to classify
documents like pertinent or not pertinent.

Annotation is the process of adding semantic markup to documents, but determin-
ing which concepts are tied to a document is not an easy task. To address to this prob-
lem, several methods are proposed to extract concepts from a given document. In the
field of extraction of concepts there are two main approaches: “keyphrase assign-
ment” and “keyphrase extraction”. By the term “keyphrase”, we mean a phrase com-
posed by two or more words, which describes in a general way, the content of the
document. “Keyphrases” can be seen like “key concepts” which are able to classify
documents into categories. “Keyphrase assignment” uses a controlled vocabulary to
select concepts or phrases that best describe the document, instead “keyphrase extrac-
tion” choose concepts from the document itself.

Our approach consists in taking a document as input to automatically generate a list
of concepts as output. In general, this work could be called “keyphrase generation” or
“concept generation”. However, the tool used in our work performs “concept extrac-
tion” which means that the concepts extracted always appear in the body of the input
document.

141

2.1 Concept Extraction

In order to choose one tool for the extraction of concepts able to extract the higher
number of pertinent concepts, we have evaluated four tools: (1) TerminologyExtractor
of Chamblon Systems Inc., (2) Xerox Terminology Suite of Xerox, (3) Nomino of
Nomino Technologies and (4) Copernic Summarizer of NRC. To evaluate the output
list generated by each tool, we have compared this list with one referring list which
contained concepts generated manually. The measure of performance and the method
followed for scoring concepts are described in [1]. The results obtained indicate that
Nomino is the most interesting tool for our approach because of the high number of
pertinent concepts that it can extract.

Nomino is a search engine distributed by Nomino Technologies [15]. Nomino
adopts a morphosyntactic approach. The morphological analyzer makes “steeming”,
which means that the prefix and the suffix are removed to make one single word.
Nomino applies empirical criteria to filter the noise associated to the extracted con-
cepts. These criteria include frequency and category, as well as stop lists. Nomino
produces two types of interactive index, which contain all the concepts that most accu-
rately summarize the content of a given document. One of the index created is very
general, however the other one contains the most interesting concepts for Nomino.
This index is based on two principles: the “gain to express” and the “gain to reach”.
The “gain to express” classifies concepts according to their location in the given
document. For example, if a paragraph is only concerned by one concept then it will
be classified as important. The “gain to reach” classifies concepts according to the
frequency of apparition. So, if a word is very rare, it will be selected as important. For
example, if in a given document we find “computer software” and “developing com-
puter software”, the second phrase is going to be selected as important because it is
more complete and describes the document better. Instead, if the frequency of “com-
puter software” is higher then both phases will appear in the concept list.

2.2 A Tool to Annotate Documents

Since manually annotation can be time consuming and induce to error, we have devel-
oped a tool to add easily knowledge into documents by making selections from one
proposed list.

To exploit concepts extracted by the remarkable index of Nomino, we have pro-
posed a tool to “annotate” documents [1]. The task we consider here is to take a
document as input, in XML format, and to automatically add into it the Nomino’s
concepts by the way of tags. Usually when the paragraph containing the concept is
identified then it is surrounded by a simple tag such as “<concept-name>” and
“</concept-name>” at the end. This annotation scheme is very simple and so it can be
easily applied to a text also by using a XML editor. However, by using the annotation
tool, users can validate concepts proposed by Nomino or even propose other concepts
to be aggregate. This tool allows the management of Nomino’s concepts, the indexa-
tion and the extraction of pertinent paragraphs of the document according to some

142

search criteria. During a search session, the system is going to be focus in XML tags
in order to retrieve the paragraph(s) containing pertinent information.

New work is taking place in order to improve the annotation tool. In the next para-
graph, we describe this work, which concerns the construction of an ontology able to
expand requests or categorize documents.

3 Methodology to Construct the Ontology

Gruber has defined ontology like “an explicit specification of a conceptualization. A
conceptualization is defined by concepts and other entities that are presumed to exist
in some area of interest and the relationships that hold among them” [6]. An ontol-
ogy in the artificial intelligence community means the construction of knowledge
models [2], [6], [12], [19] which specify concepts, their attributes and inter-
relationships. A knowledge model is a specification of a domain that focuses on con-
cepts, relations and reasoning steps characterizing the phenomenon under investiga-
tion.

Our ontology is composed of two elements: the “domain terms” and the “rela-
tions” among them. The “domain terms” are words or groups of words that are used
to characterize a specific field. The “relations” among these domain terms are of type
associative and hierarchic. Two main approaches can be taken when building an on-
tology. The first one relies on a “top-down method”. Someone may use an existing
ontology and specify or generalize it to create another one. The second way to build
an ontology is by using a “bottom-up method”. This method consists on extracting
from the appropriate documents all the elements needed to compose an ontology. We
believe that this method is accurate in our case because it does not exist yet an ontol-
ogy of our domain. This method relies on two main stages: the extraction of domain
terms (Section 3.1.1) and the identification of relations among these domain terms
(Section 3.1.2).

Various methodologies exist to guide the theoretical approach chosen, and numer-
ous tools for building ontology are available. The problem is that these procedures
have not coalesced into popular development styles or protocols, and tools have not
yet matured to the degree one expects in other software practices. Examples of meth-
odologies followed for ontology building are described in [4], [8], [10]. In general, the
following steps can define the methodology for the ontology building: (1) “ontology
capture” and (2) “ontology coding”. The “ontology capture” consists in the identifi-
cation of concepts and relations. The “ontology coding” consists in the definition of
concepts and relations in a formal language. These two steps are going to be described
in the following paragraphs in order to present the construction of our ontology.

3.1 The Ontology Capture Phase

The ontology capture phase consists in designing the overall conceptual structure of
the domain. This will likely involve identifying the domain's principal concrete con-

143

cepts (Section 3.1.1) and their properties and identifying relationships among concepts
(Section 3.1.2).

3.1.1 Concepts Extraction
This section reports on our methodology used towards defining concepts to describe
the content of theses. The backbone of our ontology is a hierarchy of concepts, which
had been extracted of the theses themselves.

The concepts of the ontology are used to automatically categorize documents and
thus to allow a thematic access to documents. The problem of retrieving concepts and
their structure come from the using of tools able to retrieve candidate concepts. Like
described in Section 2, we have used Nomino for concept extraction. Given a docu-
ment or a group of documents, Nomino constructs a specific index, which contains
phrases composed by two or more words that are supposed to define the field. These
concepts are called CNU (Complex Noun Units), series of structured terms composed
by nominal groups or prepositional groups [5]. We used the CNU Nomino results as a
starting point to construct our ontology. The use of NLP tools (Natural Language
Processing), like Nomino, often produces “errors” that have to be corrected by a
specialist of the field. Some of these “errors” include phrases that are not concepts or
phrases that do not really describe the document. The “errors” found in our work, by
using Nomino, were generally about the kind of: (1) verbs frequently used (e.g.
“called”), (2) abbreviations of names (e.g. “j.”), (3) names of people, cities, etc., (e.g.
“John”), and also (4) phrases that were composed like CNU concepts but that they
were not interesting (“next phase of the development”).

Until now, we have not talk yet about the corpus used to make the ontology. The
corpus used was composed of scientific documents. Once, these documents were ana-
lyzed by Nomino, we have obtained 78 possible concepts to be included in the ontol-
ogy. We have gotten concepts like: “information research”, “information system”,
“research system”, “remote training”, “abstract ontology”, representation of ontol-
ogy”, etc.

The next step to construct the ontology is to define the relations between the con-
cepts. In the next paragraph, we describe the process used to find relations by using
Nomino’s results as input.

3.1.2 Extraction of Semantic Relations
With regard to the acquisition of semantic relationships, there exist several approaches
for acquiring semantic information. Once concepts have been retrieved, by using
Nomino, they must be structured. One of the best-used techniques to discover rela-
tions among terms in documents relies on the number of terms co-occurrences. This
technique identifies terms that often occur together in documents.

Different techniques exist to identify relations among terms; they are based on con-
texts of their co-occurrences. The idea is that two similar terms do not necessarily
often occur together, as described above, but occur in similar contexts, they often
appear surrounded by the same words. A first method based on this principle is de-
scribed in [16]. This method represents the contexts in which words occur using a
variety of lexical features that are easy to identify in large corpora. These contexts are

144

then converted into similarity or vector spaces which can then be clustered using a
variety of different algorithms. A second method relying on this idea of similarity of
contexts of terms occurrences is the one described by [11]. This method combines
various text-based aspects, such as lexical, syntactic and contextual similarities be-
tween terms. Lexical similarities are based on the level of sharing of word constitu-
ents. Syntactic similarities rely on expressions in which a sequence of terms appears as
a single syntactic unit. Finally, contextual similarities are based on automatic discov-
ery of relevant contexts shared among terms.

In our approach, we use a NLP tool called LIKES [17], which is able to extract re-
lations among concepts. LIKES (Linguistic and Knowledge Engineering Station)
extracts concepts by looking to those concepts that are repeated in the document.
LIKES, based on statistic principles, is a computational linguistic station with certain
functions able to build terminologies and ontologies. The concepts extracted by
Nomino have been paired in order to find relations between them. Thus, we have
paired manually all the concepts. These pairs have also been compared in the opposite
way, for example for the pair “knowledge /language” it has been also evaluated:
“language /knowledge”. In this way, instead of having for example 200 pairs of con-
cepts, we are going to have 400 pairs of concepts. Identifying relations by using
LIKES it is an intense work because it takes a long time to process the corpus and to
visualize the possible relationships. Furthermore, sometimes the relationships found
are not very pertinent.

LIKES allows the representation of relationships in order to find similar relations in
other pairs of concepts. One example of phrases that contained some relationship
among the pair of concept “knowledge / language” is the following (we have kept the
same sentence structure in English as in French language):

• A core of knowledge is represented by all languages;
• Other knowledge is represented by some languages;
• Knowledge is represented in all languages.

In the next paragraph we present the phase of the ontology coding where we are go-
ing to explain how we use the relations, identified by LIKES, to model a formal ontol-
ogy.

3.2 The Ontology Coding Phase

The ontology coding is defined as the structuring of the domain knowledge in a con-
ceptual model [20]. In our case the concepts are extracted by using Nomino, in some
formal language.

To represent concepts and their relationships we have chosen Protégé. Protégé is a
knowledge-engineering tool that enables developers to create ontology and knowledge
bases [7], [9], [12], [18]. In this way, having the concepts extracted by Nomino and
the relationships among concepts identified by LIKES we have used Protégé to model
the ontology. Some relationships among concepts were missing and so we have added
some relations like “has” or “kind-of”. Thus, we have constructed a domain ontology
able to represent the main concepts included in the corpus. To have a clear idea of

145

how the ontology is seen, we represent, in the Figure 1, some concepts and their rela-
tionships, especially for the concepts “language” and “knowledge”.

Ontology
Method
Type

Knowledge

Semantic

Subclass

Class

Class

Is-a

Specification

Interface

Class

Has
properties
or
subclasses Is-represented

Is-a
Class

Is-a

Language
Description
Model
Rule

Description

Characteristic
Context
Introduction
Profile …

Fig. 1. The classes or concepts “Knowledge” and “Language” are modeled in order to show
their relationships among other classes or subclasses like “Specification”

The Figure 1 shows that the class “Specification” is a subclass of the classes “Lan-
guage”, “Ontology” and “Knowledge”. Therefore, “Specification” is going to be
included in these three classes. The relationship “Is-represented” is the one that we
have found by using LIKES. Subclasses included in each class also have properties or
subclasses. For example in the class “Knowledge” we found the subclasses “Descrip-
tion” that itself has the subclasses: “Characteristic”, “Context”, “Introduction”,
“Profile”, “Theme”, “Proprieties”, etc. In our ontology, we have represented not
only concepts with their relations but also “slots”. A “slot” is an attribute of a class in
an ontology. For example, we have the relationship “Is-represented”, which can have
some values or value types that are typically string type. Some of the values for the
“Is-represented” relationship are: “by all”, “in some” and “in all”.

4 Semantic Annotation and Ontology Integration

The initial CITHER project proposes the online access to the scientific doctoral
theses of the INSA of Lyon, since January 1997. It allows the consultation, the con-
servation of the theses and the promotion of the research of laboratories. The distribu-
tion of theses, in PDF (Portable Document Format) format is done by the way of a
server. However, by using the PDF format, it is not easy to automatically exploit the
content of the theses. Therefore, we decided to use the XML format to store the the-
ses. The new CITHER system, using XML documents, is under development. The
new system’s architecture was designed to satisfy the users’ requirements. These re-

146

quirements include selecting pertinent information during a search session. We will
briefly summarize the workflow and describe the associated functions.

Information Capturing. After the theses are scanned, they are annotated by in-
cluding “metadata tags”. These “metadata tags” come from the concepts extracted
from the thesis itself. These “metadata tags” describe the semantic content. During this
phase, we use NLP tool to extract concepts from the documents. The meta-
information discovered during “pre-processing” is then stored with the corresponding
documents in the repository. The storage is carried out by the “XML content man-
ager”, which adds new information to the theses. Indeed, the domain knowledge con-
tained in the “ontology manager” is based on the meta-information contained in the
theses.

User Request. Given a search term, the ontology is used to recommend closer
terms and to significantly enrich the request of the user. Users will be able to navigate
between terms in order to choose pertinent documents. Once, terms are chosen by
users, the “XML content manager” search in the “metadata tags” to find and retrieve
pertinent fragments of the theses. By this way, if the fragments are pertinent for the
user, this one can decide to retrieve the complete thesis.

5 Related Work

The terms are linguistic representation of concepts in a particular subject field [14].
Like this, applications in automatic extraction of concepts, called terms in many cases,
include specialized dictionary construction, human and machine translation, indexing
in books and digital libraries. Work in this area has been follow in order to produce
tools for automatic extraction.

The University Michigan Digital Library (UMDL) ontology [21] delineates the
process of publications using six formal concepts: “conception”, “expression”,
“manifestation”, “materialization”, “digitization” and “instance”. Each of these
concepts is related to other concept by using: “has”, “of”,” kind-of” or “extends”
relationship. An ontology in the domain of the digital library is presented in the work
of [2]. This ontology tries to represent the way in which new work is expressed. As a
result, using the ontology researchers will no longer need to make claims about the
contributions of documents (e.g. “this a new theory”, “this a new model”, “this is a
new notation”, etc), or contest its relationships to other documents and ideas (e.g. “it
applies”, “ it extends”, “ it predicts”, “it refutes”, etc).

Some of the methods used to specify ontologies in digital library projects include
vocabularies and cataloguing codes such as Machine Readable Cataloguing (MARC).
Other projects are based on the use of thesauri and classifications in order to describe
different components of a document like the title, the name of the auteur, etc. In this
way, some algorithms can make use of already existing thesauri in order to provide the
user with useful suggestions in the integration of ontologies [3].

147

6 Conclusion and Further Research

We have presented an approach to improve the document retrieval by using the se-
mantic content. Our approach has a double advantage, first, it can exploit the entirely
content of digital theses by using semantic annotations and it can provide other alter-
natives to the user requests. We have noticed that by adding related words (concepts
words) in a document, it increases the number of relevant documents identified during
a search session. In addition, ontologies can be used to support the operation and
growth of a new kind of digital library, implemented as a distributed intelligent system
[21]. In consequence, an ontology can be used to deduce characteristics of content
being searched, and identify operations that are appropriate and available to access
content or manipulate it in other ways. We have constructed an ontology by following
a methodology. As long as there are not tools able to construct automatically ontolo-
gies from documents, the process carried out by using NLP tools will be fastidious and
need the help of field experts. The extraction of relations by hand is very complex and
by using NLP tools we have noticed that it still remains relations to be instantiated by
the expert of the field. It is evident that there are still some needs in the ontology con-
struction domain but at this moment, we are able to build ontology to support an entire
domain. The construction of our ontology is only the first step to make a better access
to the information in the digital library.

Further research should investigate the use of dictionaries or thesaurus in digital li-
braries to detect similar and not identical terms. The use of synonyms to complete our
ontology could be another attempt.

References

1. Abascal-Mena, R., Rumpler, B. Adaptive Hypertext Annotations for a Digital Library. Inter-
national Transactions on Computer Science and Engineering. Vol. 32, No. 1. pp. 7-14.
ISSN: 1738-6438, ISBN: 89-953729-5-8. July 2006. (2006)

2. Benn N., Buchingham S., Domingue J. Integrating Scholarly Argumentation, Texts and
Community: Towards an Ontology and Services.5th Workshop on Computational Models
and Natural Argument. IJCAI’05: International Joint Conference on Artificial Intelligence,
Edinburgh, July 2005. (2005)

3. De Bo J., Spyns P., Meersman R. Assisting Ontology Integration with Existing Thesauri. On
the Move to Meaningful Internet Systems 2004: CoopIS, DOA and ODBASE. Lecture
Notes in Computer Science. pp. 801-818. ISSN: 0302-9743. (2004)

4. Fortuna B., Mladenic D., Grobelnik M. Semi-Automatic Construction of Topic Ontology.
Proceedings of ECML/PKDD Workshop KDO 2005. October 2005. (2005)

5. Golebiowska, J.: SAMOVAR – Knowledge Capitalization in the Automobile Industry Aided
by Ontologies. In Proceedings of the 12th International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW 2000). Juan_les-Pins, France, October 2,
(2000)

6. Gruber, T. R.: A Translation Approach to Portable Ontology Specifications, Knowledge
Acquisition, 5, 2, pp. 199-220 (1993)

148

7. Hogeboom M., Lin F., Esmahi L., Yang C. Constructing Knowledge Bases for E-Learning
Using Protégé 2000 and Web Services. 19th Conference on Advance Information Network-
ing and Applications (AINA 2005). Vol. 1. pp. 215-220. ISSN: 1550-445X. (2005)

8. Kim J-M., Choi B-I, et al. A Methodology for Constructing of Philosophy Ontology Based
on Philosophical Texts. Computer Standards & Interfaces. Vol. 29. Issue 3. March 2007.
pp. 302-315. (2007)

9. Musen, M. A., Fergerson R. W, Grosso W. e., Noy N. F., Crubézy M., Gennari J. H.: Com-
ponent-Based Support for Building Knowledge-Acquisition Systems. In Proceeding of the
Conference on Intelligent Information Processing (IPP 200) of the International Federation
for Information Processing World Computer Congress (WCC 2000), Beijing, (2000)

10. Nanda J., Simpson T. W., Kumara S. R. T. A Methodology for Product Family Ontology
Development Using Formal Concept Analysis and Web Ontology Language. Journal of
Computing and Information Science in Engineering. June 2006. Vol. 6. No. 2. pp. 103-113.
(2006)

11. Nenadic G., Ananiadou S. Mining Semantically Related Terms From Biomedical Litera-
ture. ACM Transactions on Asian Language Information Processing (TALIP). Vol. 5. pp.
22-43. ISSN: 1530-0226. (2006)

12. Noy N. F., Musen M. A. Ontology Versioning in a Ontology Management Framework.
IEEE Intelligent Systems. July/August 2004. Vol. 19. No. 4. pp. 6-13. ISSN: 1094-7167.
(2004)

13. Noy, N. F., Fergerson, R. W., Musen, M. A.: The Knowledge Model of Protégé-2000:
Combining Inter-operability and Flexibility. In Proceedings of the 12th International Con-
ference on Knowledge Engineering and Knowledge Management (EKAW’2000), Juan-les-
Pins, France, October 2, (2000)

14. Pazienza M. T., Pennacchiotti M., Vindigni M., Zanzotto F. M. AI/NLP Technologies
Applied to Spacecraft Mission Design. Proceedings of the 18th International conference on
Innovations in Applied Artificial Intelligence. Lecture Notes in Computer Science. pp. 239-
248. (2005)

15. Plante, P., Dumas, L., Plante, A.: Nomino version 4.2.22 updated the 25 July 2001.
http://www.nominotechnologies.com. (2001)

16. Purandare A., Pedersen T. Discriminating Among Word Meanings By Identifying Similar
Contexts. Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-
04). (2004)

17. Rousselot, F., Frath, P.: Terminologie et Intelligence Artificielle. In Traits d’Union,
G.Kleiber and N. Le Queler, dir., Presses Universitaires de Caen. pp. 181-192, (2002)

18. Taboada M., Martínez D., Mira J. Experiences in Reusing Knowledge Sources Using Pro-
tégé and Prompt. International Journal of Human-Computer Studies. Vol. 62. pp. 597-618.
(2005)

19. Vallet D., Fernández M., Castells P., Mylonas P., Avrithis Y. A Contextual Personalization
Approach Based On Ontological Knowledge. International Workshop on Context and On-
tologies (C&O 2006) at the 17th European Conference on Artificial Intelligence (ECAI
2006), (2006)

20. Wache H., Vogele T., Visser U., et al. Ontology-Based Integration of Information – A
Survey of Existing Approaches. Proceedings of IJCAI 2001. Workshop “Ontologies and In-
formation Sharing”. (2001)

21. Weinstein, P.: Seed Ontologies: Growing Digital Libraries as Distributed, Intelligent Sys-
tems. In Proceedings of the Second International ACM Digital Library Conference, Phila-
delphia, PA, USA, July, (1997)

149

RELEVANTNews: a semantic news feed aggregator	

Sonia Bergamaschi1, Francesco Guerra2, Mirko Orsini1, Claudio Sartori3, and
Maurizio Vincini1

1 DII-Università di Modena e Reggio Emilia
via Vignolese 905, 41100 Modena

firstname.lastname@unimore.it
2 DEA-Università di Modena e Reggio Emilia

v.le Berengario 51, 41100 Modena
firstname.lastname@unimore.it
3 DEIS - Università di Bologna

v.le Risorgimento 2, 40136 Bologna
claudio.sartori@unibo.it

Abstract. In this paper we present RELEVANTNews, a web feed reader that auto-
matically groups news related to the same topic published in different newspapers
in different days. The tool is based on RELEVANT, a previously developed tool,
which computes the “relevant values”, i.e. a subset of the values of a string at-
tribute. Clustering the titles of the news feeds selected by the user, it is possible
identify sets of related news on the basis of syntactic and lexical similarity.
RELEVANTNews may be used in its default configuration or in a personalized way:
the user may tune some parameters in order to improve the grouping results. We
tested the tool with more than 700 news published in 30 newspapers in four days
and some preliminary results are discussed.

1 Introduction

Many newspapers publish their news in Internet. A recent research from the Italian
Institute of statistics4 shows that there is an increasing trend of mastheads publishing
their contents on the Net often joining to the paper edition an Internet edition with spe-
cial and more complete information 5. Internet newspapers may update their contents
frequently: thus there is not a daily issue but the news are continuously updated and
published. As a consequence, hundreds of thousand of partially overlapping news are
daily published.

The amount of information daily published is so wide that is unimaginable for a
user. On the other hand, the availability of news generates new updated information
needs for people. The RSS technology supports Internet users in staying updated: news
	 This work was partially supported by MIUR co-funded project NeP4B

(http://www.dbgroup.unimo.it/nep4b) and by the IST FP6 STREP project 2006 STASIS
(http://www.dbgroup.unimo.it/stasis).

4 http://www.istat.it
5 Istat report about the Italian online newspapers (years 2005-2006), available at

http://culturaincifre.istat.it/

150

are published in the form of RSS feeds that are periodically downloaded by specific ap-
plications called feed readers. In order to improve the users’ selection of the interesting
feeds from different newspapers, publishers group feeds in categories.

The RSS technology and the news classification in categories does not solve all
the “news overload” issues. First, the categories are not fixed, and then the same topic
may be called in different sites in different ways. Consequently, a user that wants to
be updated about a specific topic has to manually browse the categories of potentially
all the newspapers looking for interesting news. Then, the amount of news feeds daily
published is so wide that automatic tools are required. If we consider the feeds pub-
lished only by the five main Italian newspapers in one day, more than one thousand
of news are available in their websites 6. Such news are partially overlapping, since
different newspapers publish the same information in different news. RSS feeds from
different newspapers may carry the same information in different places, and therefore
can confuse the reader. A great improvement might be to show groups, and leave to
the reader the optional task of drilling down the group, if necessary, to compare the
different flavours of the same information given by the different sources.

This work relies on RELEVANT 7 [1], a tool for calculating the “relevant values”
among the string values of an attribute. The tool has been conceived for improving the
user’s knowledge of the attributes of database tables: by means of clustering techniques,
RELEVANT provides to the user a synthetic representation of the values of the attribute.
In particular, RELEVANT takes into account syntactic, dominance and lexical relation-
ships for defining similarity measures among the attribute values. Such measures are
then exploited for producing clusters of values, which are related. RELEVANT is inde-
pendent of the attribute domain: a set of parameters allows the user to tune the relevance
of the similarity measures and the clustering thresholds in order to produce best results.

In this paper we propose RELEVANTNews, a web feed reader with advanced fea-
tures, since it couples the capabilities of RELEVANT and of a feed reader. By applying
RELEVANT to the titles of the feeds, we can group related news published by different
newspapers in different times in semantically related clusters. In particular, each cluster
contains news related under the following dimensions: 1) Spatial perspective: the news
with the similar titles published in different newspapers; 2) Temporal perspective: the
news with the similar titles published in different times.

Several feed readers have been proposed in the literature (see section 5 for related
works), but at the best of our knowledge RELEVANTNews is the only lexical knowledge
based feed aggregator.

The outline of the paper is the following: in order to ease the comprehension of
our news aggregation technique, section 2 recalls the description of the RELEVANT
prototype together with a detailed description of our technique for computing relevant
values. Section 3 shows the RELEVANTNews architecture, and in section 4 we discuss
some preliminary results. Section 5 shows some related works and, finally, section 6
introduces future work.

6 We considered the feeds on average available in the newspapers “Il Corriere della Sera”, “La
Repubblica”, “La Gazzetta dello Sport”, “Il sole 24 ore”, “La Stampa” in a week of analysis.

7 See http://www.dbgroup.unimo.it/relevant for more references.

151

Fig. 1: The RELEVANT functional architecture

2 The RELEVANT prototype

RELEVANT is based on the idea that analyzing an attribute domain, we may find values
which may be clustered because strongly related. Providing a name to these clusters, we
may refer to a relevant value name which encompasses a set of values. More formally,
given a class C and one of its attributes At, a relevant value for it, rvAt is a pair rvAt =
〈rvnAt ,valuesAt〉. rvnAt is the name of the relevant value set, while valuesAt is the set of
values referring to it.

Figure 1 shows the functional flow diagram, including the following tasks:

1. Data pre-processing: like most cluster tasks with non-numeric attributes, the prob-
lem is to find an effective representation of the points (i.e. the attribute values) in a
space, and to devise a suitable similarity function to be exploited by the clustering
algorithm. After usual stemming, we build a binary representation of the attribute
values, exploiting three different kinds of measures: 1) syntactic, mapping all the
words of the attribute values in an abstract space, and defining a syntactic similar-
ity function in such space; 2) dominance, expressed by the root elements described
later on; and 3) lexical, which identifies semantically related values expressed with
a different terminology.
The syntactic similarity is based on the assumption that words related to the same
object may have the same etymology and then share a common root. Thus, we
group different attribute values sharing common words. However, syntactically
similar values may refer to different objects. As a consequence, a similarity com-
putation based only on a syntactical method may generate clusters containing el-
ements with different meanings, but in conjunction with the similarities described
below, it provides satisfactory results.

152

A similarity measure may be extracted from the Dominance relationships between
the attribute values. Considering two attribute values a1 and a2, we say that a1
dominates a2 if the meaning of a1 is more “general” than a2. Any partial order
on attribute values could be used to define dominance. We observed that it is fre-
quent to have string domains with values composed of many words and including
abbreviations and that the same word, or group of words, may be further quali-
fied (i.e. specialized) with multiple words in many ways. Thus, we approximate
the dominance between attribute values, a semantic property, with the Contains
function, a syntactic property. Contains is a function based on string containment:
Contains(X ,Y) = true iff stem(X)⊇ stem(Y), where X and Y are sets of words and
stem is a stemming operator. The dominance is a partial order and can be repre-
sented by an oriented graph. Dominance is useful to build clusters of values around
root elements. A root element is an attribute value with only outgoing edges in the
domination graph, and can be taken as a representative of the cluster composed by
the nodes recursively touched by its outgoing edges.
Finally WordNet is exploited for providing lexical similarity. In WordNet, English
words are grouped into sets of synonyms (synsets), each one expressing a distinct
concept. Synsets are described with a definition (a gloss) and are interlinked by
means of conceptual/semantic and lexical relations. Since a word may be associated
to different synsets due to the polysemy, a user is generally requested to manually
select the appropriate synset for each term. On the other hand, by exploiting the
WordNet lexical similarity it is possible to group different values which refer to
semantically related synsets. Two different values, sharing one or more synsets
are potentially similar. We can thus compute similarity on the basis of the shared
synsets.

2. Similarity Computation: two tasks are enabled: the selection of the metrics for
computing the similarity between pairs of attribute values and the selection of
the similarity measures to be used (syntactic, dominance, lexical or a combina-
tion of the three). Concerning the first task, RELEVANT considers the choice of
the metrics as a parameter, which can be chosen by the integration designer and
changed to compare different settings. The tool implements some of the metrics
commonly adopted in information retrieval (Simple Matching, Russel & Rao mea-
sure, Tanamoto Coefficient, Sorensen measure, Jaccard’s Similarity [10]). Due to
the sparseness of the binary matrix, the Jaccard similarity measure, which only
considers the positive values in both the attribute value representations 8, is set as
default. Concerning the second task, the user may balance the weight of the differ-
ent similarity measures by setting specific parameters.

3. Clustering technique: this module implements some clustering algorithms to com-
pute the set of relevant values on the basis of the selected similarity computation.
The designer may choose between a classical clustering algorithm (generating par-
titions), and an overlapping clustering algorithm to compute values. At present we
implemented a hierarchical clustering algorithm (see [4]) and an overlapping one

8 Let us define B11 as the total number of times a bit is ON in both bit strings, B00 as the total
number of times a bit is OFF in both bit strings, and L as the length of the bit string, the Jaccard
Measure is defined as B11/(L−B00)

153

based on “poles”, which are a rough partition of the domain (see [2]). Poles can be
either the output of the hierarchical clustering algorithm or the set of root elements.

4. Name selection: The simplest way to detect a list of rvni candidates, i.e. the maxi-
mal values among values, is to use the Contains function. The integration designer
may select the most appropriate name among them.

5. Decision dashboard: the integration designer may interact with RELEVANT in
two ways: with the simple or advanced mode. The simple mode uses some default
parameters and provides four sliders: the first to select the precision of the relevant
values set. The slider ranges from rough, producing a small number of large relevant
values where an attribute value may belong to different relevant values, to accurate,
generating a large number of small relevant values each of them containing closely
related attribute values. The second/third and fourth slider allow the selection of the
weight of the similarity computation method. In the advanced mode, the designer
may set among about hundred different configurations and clustering thresholds.

6. Feedback: The system provides a feedback on the results of a run that may be
exploited to refine the relevant values set. A set of standard quality measures allows
the tuning activity:

– countRV: number of relevant values obtained for the configuration;
– average, max elements, variance: the descriptive statistics over the number

of elements;
– count single: number of relevant values with a single element;
– Rand Statistic index, Jaccard index, Folkes and Mallows index [6]: com-

pute the closeness of two sets of clusters evaluating couples of values that be-
long to the same cluster in both the sets;

– silhouette [9] (only if the hierarchical clustering algorithm is used): calculates
a width for each cluster based on the comparison of its tightness and separation;

– overlapping degree (only if the overlapping clustering algorithm is used):
number of elements which are in more than one relevant value.

In the simple mode, the tuning activity is automatic: RELEVANT iteratively com-
putes sets of relevant values to obtain a set of relevant values according to the slider
indication. In the advanced mode, the designer may autonomously change the set-
tings obtaining a set of relevant values satisfying his requirements.

3 RELEVANTNews architecture

RELEVANTNews is a web application including three components:

– A feed aggregator is in charge of collecting the feeds selected by the user;
– A RSS repository: RELEVANTNews requires a database for sharing feeds published

in different days by different newspapers;
– RELEVANT computes and groups similar news.

The RELEVANTNews functional architecture is composed of four steps (see figure 2):

1. selection of the news feeds: a simple graphical user interface allows the user to
select the interesting news feeds (by means of their URL) and to setup the updating
policy, i.e. how frequently the feed has to be checked for new items;

154

Fig. 2: The RELEVANTNews functional architecture

2. repository population: a database supports the collection of the feeds. Thus it is
possible to provide to the user news that are related to a topic, but are no longer
published. The user may select a deadline for the maintenance of the news;

3. news clustering: by means of RELEVANT similar news are grouped, and for each
cluster, a news, representative of the cluster, is selected. Concerning the clustering
process, a simple graphical interface may allow the user to parametrize the algo-
rithm settings, establishing the dimension of the clusters (big clusters with loosely
related news, or small clusters containing strictly related information), and tuning
the weight of the different similarities (lexical, dominance and syntax). Concerning
the selection of the news representative of the cluster (the relevant news), the user
may choose: a) the name extracted by RELEVANT ; or b) the last published news;

4. Relevant news publication: a web interface shows the news in terms of title,
source, date and content. In case of clustered news, the relevant news is visualized
together to the list of cluster related news.

In figure 3, a screen-shot of the RELEVANTNews interface is shown. Each box con-
tains a different news. In case of similarities, the relevant news text is shown in the box
and the cluster related ones can be reached through a link in the bottom box.

4 Preliminary results

We tested RELEVANTNews analyzing 730 news from 30 feed providers, published from
the 1st to 4th of October 2007. The limited number of feeds allows us to evaluate the
results by means of quality indexes provided by the tool, and of some qualitative, user-
supplied evaluations. Since a gold standard for news does not exist, and different clus-
ters for the same set of feeds may be provided by a domain expert due to the different

155

Fig. 3: RELEVANTNews screen-shot

grouping criteria may be adopted, in the following, we will analyze several settings pro-
ducing different clusters of news. Later on, after a brief explanation of the dataset, we
will discuss some results and some numerical evaluations of 12 configurations.

4.1 Dataset analysis

The case study is defined by choosing 16 different news publishers with similar RSS
feeds topic, i.e. world news, U.S. news and Europe news, analyzing altogether 30 RSS
feeds. In particular, we considered 9 newspapers (6 from U.S., Chicago Tribune, New
York Times, Wall Street Journal, Time, USA Today and U.S. News, and 3 European,
Daily Telegraph, The Guardian and International Herald Tribune), 5 TV Network (4
from U.S., ABC News, CNN, CBS and Discovery Channel, and BBC from U.K.) and
2 International Press Agencies (Reuters and NPR).

During the period of time in analysis (4 days), each publisher provided on average
45 news, with a peak of Daily Telegraph, 141 news and ABC, 89 news, while Chicago
Tribune only 5 news. Since the news topics are partially overlapping, the news are also
partially overlapping: the same information may be published in different feeds at the
same moment.

4.2 Evaluation of the results

Since it is not possible to compare the results produced by RELEVANTNews with a gold
standard, we will discuss and compare the results computed with different settings. In
particular, we considered three different thresholds for the clustering algorithm (since
the optimal number of clusters is not known , we considered thresholds producing re-
spectively 300, 450 and 600 clusters) and two different tunings of the similarity param-
eters. Concerning these parameters, we evaluated a “lexical configuration”, where the

156

lexical similarity among the news titles assumes a main role, and a “syntactic configu-
ration”, where the syntactic similarity is the main similarity measure. We did not take
into account a “dominance configuration” as its application in the analyzed dataset is
not significant, i.e. only few title are “contained” in other titles.

SYN 300 LEX 300 SYN 450 LEX 450 SYN 600 LEX 600
single 241 217 388 348 527 511

Max elem 268 78 30 20 9 7
Avg elem 2.49 2.40 1.55 1.61 1.22 1.24
Variance 16.17 7.31 2.13 1.96 0.81 0.81

Silhouette 0.31 0.34 0.35 0.35 0.45 0.49
Table 1: Qualitative results

The results computed by the RELEVANT feedback module are summarized in table
1. The Silhouette values highlight a good clustering process in all the settings (ranges
from -1, worst to +1, best). Another interesting information is provided by the “count
single” value, that in all the settings is closed to the number of obtained cluster (almost
80% of the computed clusters contains only one element in all the settings). These
values, which may be symptom of weakness of the tool are due to news for which
no significant similarity has been found. The analysis of the dataset confirms that the
observed news are related to general/generic topics from the world, and in the period
of time in observation no event with a worldwide importance happened. Thus, we may
suppose that clusters similar to the ones computed by RELEVANTNews may be produced
by a human reader.

In table 2, the clusters obtained considering two different configurations are ana-
lyzed. Qualitative analysis shows that lexical similarities improve the results. Table 2.a,
where the clusters are computed with the syntactic configuration, shows that the news
related to the recover of a stolen Leonardo da Vinci painting are grouped in two clus-
ters. On the other hand, in Table 2.b the news are grouped in the same cluster, due to
the lexical similarities among the news titles. Similar considerations may be done for
news titles represented in Tables 2.c and 2.d. In this case, it is interesting to observe that
the syntactic configuration produces three clusters, but the first news is correctly not
included in a overall cluster (see Table 2.d) in the lexical configuration, since it refer to
a different topic.

5 Related Work

There is a rich literature about metadata extraction and clustering techniques both in the
area of Semantic Web, where metadata support automatic applications to understand
web-site contents and in the area of Information Retrieval, where they allow document
classification. For some references about this topic, see [1].

Several aggregators have been developed and implemented. Most of them are avail-
able as commercial products and their internal mechanisms are not known 9. It is pos-
sible to group them in three different categories:

9 See http://www.dmoz.org/Computers/Software/Internet/Clients/WWW/Feed Readers/ for a
non complete set of aggregators.

157

(a) News related to the “Da Vinci” stolen
grouped with the syntactic configuration

Arrests after da Vinci work found
Da Vinci masterpiece “will go back on display”

#1 Four held as stolen da Vinci painting found
Stolen da Vinci painting “recovered”

#2 Police recover Leonardo painting stolen from Scot-
tish castle in 2003
Police Recover Stolen Leonardo Painting

(b) News related to the “Da Vinci” stolen
grouped with the lexical configuration

Arrests after da Vinci work found
Da Vinci masterpiece “will go back on display”

#1 Four held as stolen da Vinci painting found
Stolen da Vinci painting “recovered”
Police recover Leonardo painting stolen from Scot-
tish castle in 2003
Police Recover Stolen Leonardo Painting

(c) News related to the “Sputnik” grouped
with the syntactic configuration
#1 Nobel Winner: Global Warming Is the New Sputnik

Did Sputnik Have a Fiery or Fractured End?
Former cosmonauts, officials celebrate 50th anniver-
sary of Sputnik launch

#2 Happy 50th Birthday Sputnik!
Sputnik “was force for peace”
Russia marks 50 years of Sputnik

#3 Sputnik Turns 50
Sputnik, 50 Years Later: Life Beyond Earth

(d) News related to the “Sputnik” grouped
with the lexical configuration
#1 Nobel Winner: Global Warming Is the New Sputnik

Did Sputnik Have a Fiery or Fractured End?
Former cosmonauts, officials celebrate 50th anniver-
sary of Sputnik launch
Happy 50th Birthday Sputnik!

#2 Sputnik “was force for peace”
Russia marks 50 years of Sputnik
Sputnik Turns 50
Sputnik, 50 Years Later: Life Beyond Earth

Table 2: A clustering example

1. Simple readers provide only a graphical interface for visualizing and collecting
RSS feeds from different newspapers. Simple functions supporting the user in read-
ing are provided (e.g. search engine, different ordering, association of news to a
map, ...);

2. News classifiers show the news classified on the basis of criteria sometimes decided
by the user. Simple classifications may exploit the categories and/or the keywords
provided by the web sites;

3. Advanced aggregators provide additional features for supporting the user in read-
ing, clustering, classifying and storing news.

There are several interesting proposals of advanced aggregators in literature. In [5],
Velthune, a news search engine is proposed. The tool is based on a naive classifier that
classifies the news in few categories. Unlike this approach, RELEVANTNews computes
clusters of similar news on the basis of their title. Classifying thousands of news in
few categories produces large sets of news belonging to the same category that are not
easily readable by a user. In [7] the authors propose an aggregator, called RCS (RSS
Clusgator System), implementing a technique for temporal updating the contents of
the clusters. NewsInEssence [8] is an advanced aggregator that computes similar news
on the basis of a TF*IDF clustering algorithm, and provides to the reader a synthesis
of them. Although RELEVANTNews does not provide any synthesis, it implements a
parametrized clustering algorithm based on syntactic/lexical/dominance relationships,
that may be properly tuned for improving the creation of the clusters. Finally, the idea of

158

RELEVANTNews may be compared with Google News 10 where each news is associated
with a list of related information. Differently from us, Google News does not allow
the user to select the newspapers. All the newspapers are analyzed and the news are
provided to the user on the basis of a collaborative filtering [3].

6 Conclusion and future work

In this paper we proposed RELEVANTNews a news feed reader able to group similar
news by means of data mining and clustering techniques applied to the feed titles. As
usual in data analysis, the startup phase requires the setting of several critical parame-
ters. Nevertheless, for a given parameter setting, the technique calculates the relevant
news without any human intervention. Moreover the parameters and similarity metrics
selection determine the quality of the relevant value news. Therefore, the designer has to
carefully evaluate the results and possibly change some parameters in order to improve
the result quality.

Future work will be addressed on developing new techniques suitable for the feed
domain. In particular, the preliminary results demonstrated that the dominance is a too
restrictive condition: it is not frequent for news titles to be contained in other news
titles. Moreover, some other techniques to compute the similarity may be exploited.
For example, we are studying a similarity based on term frequency-inverse document
frequency (TD*IDF), which takes also into account the word-spread. The idea is that
unusual words and specific terms may be related to the same news.

References
1. S. Bergamaschi, F. Guerra, M. Orsini, and C. Sartori. Extracting relevant attribute values for

improved search. IEEE Internet Computing, pages 26–35, Sep-Oct 2007.
2. G. Cleuziou, L. Martin, and C. Vrain. PoBOC: An overlapping clustering algorithm, applica-

tion to rule-based classification and textual data. In Proceedings of the 16th ECAI conference,
pages 440–444, 2004.

3. A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online
collaborative filtering. In Williamson et al. [11], pages 271–280.

4. B. S. Everitt. Cluster Analysis. Edward Arnold and Halsted Press, 1993.
5. A. Gulli. The anatomy of a news search engine. In Allan Ellis and Tatsuya Hagino, editors,

WWW (Special interest tracks and posters), pages 880–881. ACM, 2005.
6. M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation techniques. J. Intell.

Inf. Syst., 17(2-3):107–145, 2001.
7. X. Li, J. Yan, Z. Deng, L. Ji, W. Fan, B. Zhang, and Z. Chen. A novel clustering-based rss

aggregator. In Williamson et al. [11], pages 1309–1310.
8. D. R. Radev, J. Otterbacher, A. Winkel, and S. Blair-Goldensohn. Newsinessence: summa-

rizing online news topics. Commun. ACM, 48(10):95–98, 2005.
9. P.J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis. J. Comput. Appl. Math., 20:53–65, 1987.
10. C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979.
11. C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy, editors. Proceed-

ings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007. ACM, 2007.

10 http://news.google.com/

159

���������	
�����	�����������������������������

�������������	�
�

����

	�������	����	
�

�����	��������	
�

����	�	���������	
�

���
�����
�������	����������������	��#������
�����	������$���	%�������	��*����	��	%�

�
�
�+�
�<��$�+�$�����	�����	���������>��������	�
�+�>+\�^`���	
���+���{�

|����<
������}~	
�	<���<	���
�
���	���
	�{�������*����	��������������+���{��

����	����~��	��<	���������<
�	��#��~	��	��<	����
%
���	���
	�{��$�������	�����
������+���{�

�	���<���$���	~��	���<	��������	��	<�����	�~���	�<����

������	��������	�������� $�	����� 	
���
��������	�	����
{������������� ������
��
����������� $�������������� ���� ����	�	�{� 	�� ���� ���������� ��
����� ������	�
<�
>��� ��������� �>`��� �����������`>�+�� �	�
� ��� ����	�	��� ��� 	������	���
����$�����$�
���	��
���	����	��� 	������� ���������

�
��$��	����
	
��������
	
�
���� ������{� ����	
	��� 	�� ���� ������ $�	����� ����	�<� >��� ����� �$� ���� ����$����
	�����	������ 	
� �� ��	�	���� ���	
	��� �������� �{
����� ��
	����� �{� 	�������	���
	������	������������������
�����	��������	#��
������{��	�����
��	���������
��
����	�����	����������������
�$�����������{
	
��$��	����
�	������<��+����	
�������
��� �	
��

����� ��� �����
	���
�����	�� ���� ���������	�
� $��� 	��������	��� ��
������
	��	$	�������	�	����
�����	��������	���������	�	��������
���$���������$�	�����
���	���<���

������������	
	������������{
���
���������	�
��`��
��	��<�

�� �������	�����

�������	����� ���� 	
� �� �������� ��	�	����
{������� ��
���	��� $���� ��{�
�������������
$����	���������	����	
������������	���	���	�
�������	�	�{��$����������	�������$	����	������
�����������<�+��	�
������	��$�������	
������$�������
���������������������������
�$���
����������� ���� ����	�	�{�� �
���	���{� 	�� ���� ���������� ��
����� ������	�
�� �	��� ��

������	������	������
��$�
��	�������������	���$$���
����<��

>��� ��������� �>`��� �������� ���`>�+�� ���� ���������� ��
��� ����$���� �$�

���	��
� $���
������	��� ���	���\��	�	���� ������������$� ���������� $�	����� �	��	�� ����
������{� �������	����� �	�
� ��� ��$	�	��� �$$	�	���� ���� �$$���	��� ������� ����� ���	���{�
�����	���	�����������������������
�$�����������	�����������������$�������<�

>��� ���`>�+�� ����$���� ����� ��
� ����� �����	���� �
� ��� 	���������� ����
	�������������
{
���������� ��� �����������������������$�
���	��
� ����� ������ $���� ����
��#�	
	�	��� ���� ����������� �$� ���� ����� ��� ���� ����	
	��� �$� �$$���	��� �	����
�	��

������� �����	�	�	��
<�����	$	����{�� ����������$���� 	
� ������	�	�������	
	�����������

160

�{
���� �������� ��	��� ��
� ����� ����$���{� ��
	����� �{� ����	�	��� 	������	���
���������� �����
�����	��� $�����	
�
�� ����
�� ���� ���	����� ���������� ���������
��
��
������ 	������������ �������
������� 	������	���������
� $����	����
�	�� 	����
�����
�	����	����
	����
������

	�����������{
	
����<�������	���������������	�
�����������

�������� �
� ���� ��
�� ��������� ����
� $��� ���������� $�����	���	���� ��\�
	��� ����

���	����$���	�$�����	������
��	��������$�������	�������	���������
{�����

�������������
�$�
���	��
<�

>�	
��������	�
����
���	������������������
������
�����	���������������	�
����
����� ��
	����� ���� ��� ���
���	��� ���� �	
��

	��� ���� �������� ��
���
� �$� ����
	����������	������	�	�{����	����	������$	���	����	������<��

��� �	���
����� �{� ��	�$�{� ���	��	��� ���� �
�� �$�
�����	�� ���� ���������	�
� $���
���	
	���
�����������������	����������������`>�+�������������{���
��	�	��������
�����	��	�	�
�������	�� $����	����	�	�
<�����������
���
�����	��������������
�����	������
$	����{����
�����������	
��

��<�

�� �����	����	������������������������	� ��!	
��������

>����������������$���������	��������	���	��
�$���
������	����������������	���
�	
����
��������
�	�����	���#��
���
�����������������%��{���
������	�� ��������{�����
�������	���
�
����	���������
����	������	��
��$�	�����
������������<�+�����	����	�{����	�	�{���������
����������	�	����
������ �������	�����{�$�������	����������$����������
�� ����	��� $����
���	��� �	$$	����� �	����
�
�� ��� 	������� ���	���
�� #���	�{� �$� �	$��� ���
��	��� ����{��
��	�����������$	��$�����$$���	���
��������$���������	��������	���	��
����<��
����������$�
{
���
��������������$���
������	������	�������	
	����{�
����{	�����

���	��{� �$�
���	��
�� $���� 	�$�����	��� ����	����� ���� ������	����
������	��� ����
������	���	��
�� �����
�\�$$���	����

���������������	����
�$��{������ 	������������$�
������������#���	�{<�>�����
�������������	���	��
�	���������������	�����	����������
�
�%��� ��������	���� �����
� ���� ���	����
� ����� ��	�	���� ��	���	��
� $�����	���	��
� �����
����	��������������	�
�������	����
�	��
����������<�

>�����{����������$�����������{�����	�
�	
����������
��$�"���	�����������
�����
����

��{� ������	
�� ���� ����\���� $��� ��	��	��� ������� ����� ��� �$$���<� `����
���	���
���������� 	
� ����� ���� ��	���{� ��
�� �$� ����� ������������ ���� �������
�
�����
����	������
	��	��������	��������	�����{
��$�$������{����	�����������������
����

��{� $��� ���	�	��� ������ ����������� �����	��� $������ ���	�	�	�
�� ����
���	���
�������
� ����� �������{� ��#�	��� ������ ������	
�<���	������ 	��������� ��� �����	�����
�����
���$������������������
�����	���������
����	������#���	�����������$���$�����
��	�	����������	
�<��
����{������$�����	
��	
������	�
����������$������	�
������������
��� �%�����������$������$� ���� $�����	��� $�����	
�
&� �	�� ����� ��
���� �		�� $����� ��
����
�			������������
�������� �	��� ���	����
��� ���<�����$������
��� �����
�����	��� 	
���
��
�����	��� ����\������� �
���	���{� $��� �����	��� ��	���	��
� ������ ����<� ���������� 	��
������� {���
� �������	�
� ���� �����	��� �
� �� �����$��� ���������� �����
�����	���
$�����	
����	���	
������������{��#�	��������������$�������
����������$	�
�����������	��
�������������������<�

>����$�	
������	�����{����������������������	��������

�
����	������	�$�����	���
$��� $�������	��� ���� ������
	��
� ���� ��
���	��� #��
�	��
<� ����������	� ���
��	��� 	
�

161

�����{��� $��� 	�$���	��� ���� ���������� $���� ���� �$� �{� ������	���� 	�����	��� ���
������	��<�
������	������>��������	�
����>������������	�����������������������	����	��	��

����
������ �$� ��	�	���� ���	
	���
�������� �����
� ��
�� ��� ���� ����{
� �	����
��������	���	��� �$� ��	�	����
{
���
� ���� ��� ���� 	�����
	��� ���	���	�	�{� �$� 	��������
�������	��
<������
	��	$	�����{�����{������
����	�
�������
�$����	�����
����	��
��������
��{� �������
� �$� ����� �������������
���� �
� ����� 	�������	���� ����������
�����
�����	�������
��	�������	�����	����������
<������
	��	$	������	
���
�	$	����$	�
���$�
����� �{� ���� �	
�� �$�
������� �������{\�	��� $�����	���	��
� �$� ���	���� ����	��� �<�<� ����
�{
�����	���� ^������������ �$� ���	�	��� ��^������ ��%��� ���� ��	$	��� ���	����
��������� �{
���� ������� ����� ��� ���� ���	���� ������������	��� ������� ������ ���
�������$��<���������������������$�
{
���
����������������������{��
	�����>���<�<�
$��� �

	
�	��� ���	
	���
������� 	�� ����
�� ������� ����������� ������ ��� $��� ������	���
��	�	���������	�����	���	��
�����<��

>��� ���� ��
� 	

����
������� �����������	��
� ������ ��>�� ��{	��� ��� �
����	
��
$������
�������
<� �����{� �$� ����	��� 	
� ���� �������
� ���� ��
���	���� ���
"� �����
��	���
����
�
����	
���$�	�
�������
�
�����
����������������{���������������������
$�����$	�	����������	�
���
��������������\$�����
��������
�����	������������������$���
��	
� ��
��� ���� ���` �� �
� �� ��������� $��� #���{	��� �������	�
� ����<� ���������� 	��
������	��
�����	�����������$�����
�$���$	��	��������
�����	�������
��$��������	�
�����	��
��	
���������������
�������� 	
�������������������� 	<�<� ����`���� +�����������������
�`+����������	����	��������
�����
�����������
���������������	$$����������� ��������
�
�������
�����
$�������������������
{
���
<��
������	�������$������
���$���>������`+�
����	��������������������
����
���	��	���������	����$	���<��

+��	
�	������������������	��������������������	��������$������������������
�����	���
���������������	�
�������
����>�������
�$$	�	�������
�����	����������������
�
����
�
������	��� �	��������
��������
���	��
�������������	��{<���� $�����������
������{�����
�
����{����������������������<�

'� !
��(�)!������������������	� ��������	
������������
�	���������������������

���`>�+�� �	�
� ��� �����{	��� ��� �$$���	��� ����$���� �$�
���	��
� ���
������� ��
����	��������	��<����� ���� $����	����	�	�
�����
���	��
�
����	����{� �������	������ $����
	������������������������
�&��	��������
�	�����
�		�
����������������������������
��� ���� ��#�	
	�	��� ����
��������$� ����	����
� $���
��$� 	�$�����	��� �	��	�������������

��������
�� ���	��� ���	���� ��
�	���	���	��� ���� ������	���� �	
	�
�� $���� ����{
	
�
���������	�
�������	��	����������������������{� ��	���������������	���
������	�	��
��
�		��"���	���*������
������������������
����	������� 	
�
������	����������	
	�����
������� ������ ������� ����� ��������
�� �{� ���	��� ����� �$$���	��� ���� �$$	�	���� ���� ����
�����

�
� �������� ����	����
	
��������
	
�� ������{��������������������
����	���	����$�
������ ���	���
�� � ���� �			�� ��*����� ���	�
�������� ��	��� ����	��� ���� ������{� ��� ��
����	����� �$� ���\�
��� ��	�	�	�
� ����
���	��
��
���� �
� ����

	��� ��� ��������	�� �������
������� ���`��� #���{	��� ���� ������ ����{	��� ��������� �����
� ���� ������
� $��� ����
�������	����$��������������������
��$����<�

162

����$���
�	
�����������	���	
�������$��������������
��������$�������������<���
����$��� 	���
�	���	��� ������ ���� ����
� �$��� �����	�	����
� ���� ���� �$$���	��� ����$	�
�
�

����� �{� ���	
	���
������� ��
����$�����&� $�����������
� ����� ����� 	����	$	��� �
�
�	���{� ����$	�	��� �$����`>�+�� ����� ��	��\�$\����� 	��������	���� 	<�<� �	����
	
��
������
	
�� ������{����� $�����\��<�����������������{
	
��$� ���������
��$� ����������
�	���	������ ���
���������
� ��	��{� ���	��� ��� ���� ����	�� ����\���� ���� ���� ��	�	����
��	���	��
<� ^���������

�� ����
����	��� �$�
���� �$� �����
������
�	��� �������� 	�� ����
���	���� ������	�{�� ���� ��� ���� ����� �$� ���	������ ���� �

�

��� ��	�����
�� �<�<�
������
	
<� +��
������
�
�����	��������	
	��� ��#�	��
���� 	���
�	���	������ �����	������
����������$�������\�	�������������	��
�����������������������	����	��\����������{�	����
�����

	��� $����	��
<� >��� ���������� ������� $��� ����
����	���
������� ������ ���
��#�	���� �	�����{� $���� ����� ����
��+�� "���	����� ����
������ 	�� �� ������ ��<�<�
������
��	�/����	�/�����"�����������¡�
�����0�
������������� ��� 	���������*�����	�
�
����������$����������\��	���������

	�������<�
���`>�+�� ����� ��
� ����� ��
	����� $��� 	���������	��� �	$$������ ���
��	���

�����
� ���� ������	��� ��� �� ����	������ ����������	���	���
������ $��� �	
�	���	
�	���
������ �	�� ���� "���	���� 	�+�	�� �����
����	��� ��� ���� ���� 	�$�����	���������� �{� ����

{
���� $��� ���$���	��� ��
�
�� �<�<� ������ ����	�� ����������� ��������	����� ���	
	���
�����
�� �		�� ���� ���
������� 	�+�	�� ���
	
�	��� �$� ����
{
���� ���������
� ����� ����
��
���
	�����$���
�
��������	
�������{��
	�������������������������			��������*�����
���	�
������ 	�+�	�� 	�����	��� ����
{
���� ���������
� ���
�� $����	����	�	�
� ����

���	$	����{���$	����$���	�������	����	��������
��<�>�	
�
������	����

���
����	���������
�$� $���	�	�	�{��
	���� ��{� ������� �$� ���� $�����	���� ���������� �	��� ���� �$$���� ����
�����

	��������<�

���������� ���� ���������� ������ ��
� �������� �{� 	�������	��� �� $�����	���	��� �$�

{����	������������������������	��������
��	��������
���#�	�����{����
���	$$	�����
�����	
	����������
��
�����
�������
	
��

�

�������������{�������	����$����	����
�
�
�����������<��

+������	����������������	�����������
	
�
��$�����$�����	������������
��	�<���&�
�� ������� #���	���� ������ ���
	
�	��� �$� ���� ����	�� ����������� $�����	����

$���� ���� ��������� ��	���	��
� $��� ���� �	����
	
� ���� �����������$� �����	����
����������	�	�	��
������\������

�� 0��	������������	�	���������������	��������	
	��������
��
	����
�����	����
�
�����

	���������
�������������
�����	������������
��

�� 0���� #���	���� ����1� �����
��� �{� ����
������{� ���������� ������ ����
�����	���	����$��������
�
<��

�� �����������
{
�����������������������	����������
��	��������	�	�{���
�� �%�	����������
�	���������	�	�������
���������	��������
	��
������<�

>���$��	�� ��
� �������� �{� $����	�����{�
������	��� ������� 	�+�	�� �������� ��� ��
��
�������	
������ ���� �����	���	���� ���� ��� ��2�
�� 	�+�	�� ��
���
	���� �$� �������{�
���$���	��� ��
�
�� �{� ���
��	��� ��� ���� ��������	����� ���� ����	�� ���������<� ��
��������� ������		��� ��
� 	�
������ $��� ���$���	��� ���� ����� ������ $����	����	�	�
�� �{�
�����
����	��������������������
��$�������������������	<�<������������
�����������������
0��	�0������<�

�

163

�
��������>������������	����$��������`>�+�����������	��������¢���
���������
������
�����
�����$���������������������	�
����	������������
�����������	�����������	���	��<�
�
��������	�����������	������������$�
����������	�
�����	�����	�������
������

���
��� �
� �����
�����	��� $�����	
��
	���� ��
�� �

���
� ��
{� ��\�
�� ����
���	��� �$�
���������<� �$���� �� ����	�	���{� �������{�� ��	��{� �����
����	��� ��� ��
����������
����	�����{��$���������	������������������������������������{��{�	�
���	������������
�������	�
�����

�
����������	��
�$���������������������������
	���$�����	���	������
��
	����������������
�����������	�����������	�
��
�����
�����<�>��������������������

�
�����	�������������	����������������$���	���
{
������������������	���
���������
�����������������������	�
<�>�	
���
��������	���������

	���������
��	����
����
�
�
�������	
	�����
����������
�������#�	����������
�������������	��������������������������
���	���
� ���� ����	�� 	�$�����	��� ��������
� �$� ����� �������	�
� ���� ���������
0��������3�������������� �
�
����
���� ���� �������� �$� ������ �������	�
� ����
���������
4��
�����������������<����$���������$���	
��������{�	
�
�����	��	�<��<��

�
�������������������������

�
������������	�
��$������������{�

`���
� ������
��� ��� $	��� ���� ���	���� ����
��$��������	�
� ��	��
� ���� ����� ��	�	����
$��������������	���	��
������	�����
������	�������	����	���������	�	�	��
<������������

164

����� $��� ������{�
����
�	���� ��	�	���� 	�� ���������� ��������� 	���	���	��� $�����&� ������
������������5����¡�����
	���2�
��������
�����£¤�67¥������� ��������������
���� ���
��������� ���� ����������� ��� ���8� ��� ��� ��� �� ���
����	� �����
����� ����� ��
��������������������
������������+�������������������	�
"����<��$�����
����	
�$	�
��
���
�$�����
���
�	�������������
����{����	������
�
����������������	
	����������	���$����
�$����
��	����{���$	�	�������
������������	�
��������������	�	�������<�
��� 	�$������� ���	��� ��
� ���	
��� $��� ���� �����
����	��� 	�$�����	��� ���
��	���

�����

�
�� �{� 	�����	��� ���� ������	��� ��� ���� $�����	���� ���������� $��� �

�

	���
���	���
��
����
��$�������	����	����
	
�����������
	
���

	
�	���������{������	��������
���	���
�� ���	���	��<� +�
�������
�
�������� $��� ������������ ���� �	
��

��� 	�� ����

����

	���
���	��<��
��� ��
� ���	
��� $���
����{	��� �� ������� �$�
���	��
� ���� �����	���� $���

���
�	��
�{� �	
��	���	��� ���� ����� ����� ������ ���� ���	��
� ���������
<� >�	
� ����
�
������ ��� ���	�� ������	��� ���� ������ ������ ���������
� ����� 	�
������ $��� �	�	��� ����
�$$���	����

��$� ����
�������
���	��
<�>��	�� ������������ ��
� �	
��	������������ ����
�������
��$������������<���
�������$���������$�����	����������������
�	�������	����	���
��������� 	
�
����� 	��	�<��<������`����������
� 	�
������$���
�	����{������	�	����
�	
���	�	��� ���� �����	��� ���	���
�� ������
������ 	���� ���� ����$���� `���
	���{<� +��
����	������� �� ���	������ ����
	���{� $���
���	��� ����	���	��� 	����
� ��
� �����	���� 	��
����������� ��� �����+����
�������<��������������������
� 	��������$��������	���
���	���
������������	�����<�<��
������	��������	
	�
�����
��	�	�����������	���	��
�����

�� $����<�>����
��� +����$������
���
	������
��� $���������������������� ��
���
	����
$�����������	�������	��
�����������	���	��
��	��������
��
<�

�
�����'����
�������$�����	����������������
������	���������	�����������<�

>����	$$���������������
��$� ��������$���������
�����
�������
�����{�+�����	�9����
���� ������	��
� ��#�	���� $��� ���	�� ����������<� ����� 	��������� ���� �	$$������
���������
������{���	����{�	����������$���
����{	���
���	
�	���������������$���	����
����	���	��
<�>�����
���
	�����$����������	��� 	�������	������� 	����������	�	�{�������
��������������������
���
���$	�����
���������$�����	������������	���	������
�����
�����������
�����

��{�$��������	�����	���	��<����
	���	${	�����������	
	����$��	$$������

���	��
�� �� ����	��� ����������� ��
� �����	
��� $��� �����	��� ����$���� �����
� ����
	����	��� ���� ������ ���������
<� +�� ��	
� ���
����	���� ���� ����� ���������� ��
�
��
	������
��� ��
����������� ����$$�������������$� $����	����	�	�
����� ��� 	���������	���
������������
�����
�$������$���	���	�
���
�
<���������	
	��\���	�������������
�������
����
������	��������:����������
	���������:����������	��������������������	���	
������
���	��������*����<�>���
{
����������
�����{���#��
��������	��������
���	$	�����	�{�

165

�������� 	�� ���� ����� �$�� ���� 	�������	���� ����� �������� �	��� ���� ������ ����$����
���������
<�

 � ���������!�)�����������)����	������

+�� ����������� ��� ���� �����������	��
�� ���
�������� ���� $��� ��$	�	��� ����
�������	�
���������¦�¦������������
���	���
<������$	�	�����������
��$���������������
��
���������
����`����%�������������	������`�����������������	�	�����������
`��������������	���	
���
���	

	���������������������
�����
����$�������	��
����
	������� ����\�	��� ����
<� ��� ����	�	��� ���� ���
��	��� ����������� §���� ����� ��
�

���������
���§������������	������	��������������
�
���������` ������	������
�
�� ����\��
��� 	�$����������	��<�>�� 	������� ���� ���
��	��������	�	�{��$� ���� �����������
��
������
����`�������
���
���$�

������������������������������	������������`��
��	��	�
��$$����<��
���
����
��
�����	�� ��
����
��� 	�������� ���
	��������� �������
�� ����� 	
�����	��� 	$�

������������������	���������������	�������
������
���������������������������������
����
��� 	����������<� ������	��� ��� �����
������ 	�� ���� ����	��
�
���	���� ��� ����������

�������������������	�
&�	�<�%�
���
���$���������$�����>�����{�������������{<�

�
����� ������������$��������������{�������������{�

>���
����$� ����
���	�	�����
	����� ���	�� 	���	���	��� $������ 	���������� �����������
�
�����
	���{�����
$������	������
����$���`������
<�����������������	
�
�����	��	�<�
���
�	����
��������$	����	������¦�¦<��

�
�����;�������������������	����`�<�

166

�������{� �{���� ����� ����
������ 	���� ������������
� ������	����� ���� ¨���� ����
�	
��	������������
�
��{���	�	�	��
�����	���
��������	��
<�+�
������$��
	���
��
��$�����
�
���	$	���	��������������	��� ��������� $�������
$���	��������	�����������	����$�������
������$������ ��� ��	���	�� ���� �{������������� ����
$���� ����� 	���������
	���¨���
����	��� $	��
� ���`� ���� ¨ ���{�<� >�	
� �������� �
� ��� ��	���	�� 	������������ �$�
�������	�
����� ����
� $������������	�������$���� ���� 	�$����������	������	����
	���

�������
<�

��������{� ���� ����\������ 	
� ���{� �������� ��� ��
�� �������	
������ ����
��\��
�
�
�����	���	���� ���� $��� �����	��� ���� ��#��
�
� $���� ���� ������
� ���� ������ ���
���������
<���$������������������������
��������	��������
������{��������	�������
������
$���
��� ������
	
� �{� ����	��� ���� ��
���
� ���	��� $���� ���� 	�$������� ���� ���� ������
�����
����������<����������	��
��$�{�
	�������^������^������
�<�

�����
��������
	���������
����
����������	��	
���	������������<�������
	���������
{���
��������	�����$������
�������
�$$��	���$�����{������
	���$����
�������{���
<�>���
���	����	
����������	��������������	������	������������������	���	���
���	��
��$$������{�
��������$�����������	�����<�+�$�����	����������������	����
�
����
�����
��������������
�������� �����
���$����	��
� ����������

�������{����
������	���<<<�������{����� $���
�
$	��	��<�������������������	�������	��	����{���
���
���#��
�	����	������������	
����\
��
��� �
��� 	����$���� ����
���
� ���� 	�$�����	��� ��� ���� ��� 	����$���� ����� �����
�
�	

	��� �����
<� >���� ���� ����	��� �����������
����
� ��	
� 	�$�����	��� 	���� ����
����
	���{�� ���
� �	
���	���� ����� ���� ����������{� 	�����
� ����
���	$	�� �����
���	���
��
���
	�����$������	���������#��
�<�>������������{��
������������
���
�
����{	���
���� �������� ���	����
�
����
�� �<�<� ���
��	��� �$�
{�����
�� ���� ��
��� �$�
����
����
���	��
� ���� ��	�	�	���
������ ����������� �<�<�
�������� �� ���� �	
	��� ������� ���� ^���
©�����������

��	��	����^©�������

�����������������������{�����
��$����<��

>������������	��������������
����
���
���
�	������������
	���{������������	����������
����� ������
	��
�� 	$� ���	����
	����	��� 	
� ���
��	��� ������ ���� ��	�	�	��� ��� ���{��

���	�����
�
����������	�����������
���$�
����	�{��$�����������
����
�	���������$����
���	
	�<��

����������������������{����
�	���������������	
���$����	���
�	
��	
���{�����������
�{����	��
����	�{�
����
����������	��
������$�������
�����������������	�<���\���$��<��
>���� ��� ����
�
� ��� ����{��� ���� ���	����
�
	����	��� ���� ���� ������� 	�� �	
�
����
� 	
�

������������	��������	
���$�
����
�������	��
��$���	�
�������
����	
���$�������	��
������
�������
�������<����������������
�����
���������$������	
	��������������	��������������
$������
� ���� ��#��
�� ��� ���� ������� ����� ����������{� ������
� 	�� ���� 	�$���
� ����
���	���<����������
�	��������	��������	
	���������{
	�	���	�
���
��	
���
�����	��
�	��������
���	����
���������������	��
������������������������$�����^©������

��	�<���\��	����&�
���
�����
� ���� �����
����	��� ���	��� �	��	�� ���� �	
�� ���� ��������	��� ����������� ����
�
������$����	
���	��������������	���������	����
�������<������*�	
���������$������$���
$�������	���
�	���	��
<����������	�$�����	�������	�����{�������*���������������������
�� ��#��
�� $��� 	�
� 	����������	��� 	
�
�����{� ��������	�������������� ��� ������������	���

����
�
����$���	��� ��� ��������	������{� �
� �	
���{��� 	�� ���� ������������ ���	��
�
�	
�<��� ������� �$� ���������	��
������{� 	
� ���	���� �{� ���� ��	�	�	���
��������� �{� ����
������	�<���<�
������ ���	�	�	�
� �	��� ���
	
�� 	�� $	���	�	��� ���� ����$���� 	����������	��� �{�

�������	�����������	���	����$� ��������	������������$�
������������	���
������	����

167

	������������$�
����������$��	���	������	�������$�	�
������������	�����������	�������������
����������������
���������	����$���<�

�	"�����������

>�	
� ��
������ ����� 	
�
��������� �{� ���� ��������� ������	�{�� ������ ���� �	����
��������������������+�$�����	������	��{�>��������{�¢�+�>�$������������	��	������
�>`���������������`>�+����+�>\����\�������������\����<�

�
�����=�����������$����������	���
����	�������������	���������^©���������	���	���

�

�
�����>�������
����
�	���$��������	����������	����
����������	��
������{�

168

)!��	��

�<� ���������������<� ��� ��<�� >��� >�
������� $��� ���� �	����
	
� ���� �����������$� ����$� ����
��������� ���	��{� �$� ����	����{�� �*�	���	��
� $��� ���� �	����
	
� ���� ���������� �$� �����	��
�������	����&�$����������������������������������#�����?�����	��������%������
<�

�<� <<<��<<� ����	����� ����	$	���	��
� �$� ����� �����

	��� ���� ���	
	��� �������� ����	��
<�
���	�����������������������>`��������������`>�+��+�>\����\�������������<�

�<� *�����
���<�������<��	���
�	���
�������������$�������������<�������	�����

<�
%<� ��	

������<������	����§<��>����{���`<�����
��	��©<�>���	�������$���������	���������������
�

��� �	����$$	�	���{��$���{
	�	��
��������
�
&���
{
�����	�����	��<�?����0�������������
%�
�����������������\��<�

�<� §���
�����<�<��>����<��$������^<����������$<�������
��+<^<��
	���
�����	�
�	�������	���	
��
��
�������������	���	��
�$�����	���{�����<�+���0�������<�����������\��<�

�<� *��� �&&'7*7&� ������� ���
���
������ ����@���	���� �	�������0��	� K@�08*��
������
0��	������	���
�	�4��
��
��@���	�������>��+�������	�����������<��

�<� ����
���	����§<��*���	����<�����$��	���<�<��

���	��� $����	�������#�	������
� $�������$$���	���
��������	�������	�$�����	���
{
����	������
�	���<�+���?��	���4�����
�	�����%�%������%�����<��

�<� +<��	����<�*�������`<��<�*�����
��`<�$<���{��
������<���	�	�������	
	������������{
���
�$���
���������	����$���	�����\��
������	�	��<� §�������� +�$�����

��<� �����^��¢���������&�
���¢��%<�

�<� ����	����<�#���	������������������� ��� ���� �������
�� ���/�����	�5������������	������
$���	�����	���������^���©���<��������

��<� �	�����
����<����$$	���<��$�	����	���<�� ����	�	���<�����$�����	���<�����	���	��������������

{
���<�0���������%����\��<�

��<� $��������<�<����������<��>����<������<�*�+�&��������
�����	���$������$���
����������������\
	���������������	�	���������	�����	���	��
<�?%�������������%������������%���%�\���<�

��<� ������
�� `<�� *������ �<�<�� $�����$���� �<��������{\��
��� ���������� `����
�����	��� $���
$	�	�$�����	�
<��������������������������
�����%������������¢%��<�

��<� $�{������ �<� � � ^{����� �<� � � *�	�
���� �<� �������	�
� $��� ���������� �����
�����	��� 	�� ��
��������\��
������	����������<�'6�����������%�����%�������	�������������
��	�������������<�

�%<� ���<
�����<���ª��^�����
��<� ����&ªª���<���<�	�<���ª��
�����ª���
ª������
��<� ����&ªª���<���<�	�<���ª��
�ª������
��<� �<� ��
����������� �� ��������� $� ���� �� ���	
�� �� ���	
�� �� ��	

���	���� ^� ��������<�

�������{\$�
������	
	�����������$�������	�	
�	��	���{�������������$�$���
��������<� �+��
����<��$�+�������	���������
��������	�	��������������{������%��

��<� �<���

�	����<� `������	�	���<��<� `������	�	<�������	�� ������������� $������������\
�����	�� ��	�	�������	
	��� �������� �{
���
<� +�����	$	�	��� +�����	������ 	�� ���	�	���� �^���
���	������<��<��%��%��������%��\%���

��<� ����&ªª���<��<���ª����ª>���
ª����\
�\���>���������ª«��������������
��<� ����&ªª���<��<���ª>`ª���\$������
ª�����������������{����������
��<� ����&ªª���<��<���ª>`ª��$\
���#�\#���{ª����` �� ���{����������$���`��
��<� ����&ªª���<��<���ª>`ª����ª��\�	$\���\��������ª�`+��
����
�
�����`�#�	������
�
��<� $	
����� �<�<�� 4������� ��
��������� ���0�
����� 5��������� ���	������ $���	�����	���������

^���©����������<�
�%<� ����&ªª���<��<���ª����	

	��ª��`�ª���`�&���������	������`�������������
��<� ����&ªª���<������<���ª�>���`�����������+�	�	��	���
��<� ��$�	����$<� §���&� +��������	��� ����`�������������{���������	$	���	��<� +�����&77'1�

�������
��������"�����������<�
��<� ����&ªª��

��<�������

<���ª�$�

���`���ª����`��
�����
��<� ����&ªª������<�����<���ª�����������
������

169

Applying Semantic Web Services

Stefania Galizia, Alessio Gugliotta, Carlos Pedrinaci, John Domingue
Knowledge Media Institute, The Open University,

Walton Hall, Milton Keynes, MK7 6AA
United Kingdom

{S.Galizia, A.Gugliotta, C.Pedrinaci, J.B.Domingue}@open.ac.uk

Abstract. The use of Semantic Web Services (SWS) for increasing agility and
adaptability in process execution is currently investigated in many settings. The
common underlying idea is the dynamic selection, composition and mediation -
on the basis of available SWS descriptions – of the most adequate Web
resource (services and data) to accomplish a specific process activity. In this
paper we describe IRS-III, a framework for creating and executing semantic
Web services, which takes a semantic broker based approach to mediating
between service requesters and service providers. We describe the overall
approach of IRS-III from an ontological perspective. We then illustrate our
approach through three different applications to domains of Business Process
Management, e-Learning and e-Science.

Keywords: Semantic Web Services, SWS Applications, Ontologies.

1 Introduction

The continuous diffusion of Web services increases the sharing of resources –
services and data – on the Web. The specific nature of Web services - self-contained
and platform-independent computational elements – gives them high availability and
facilitates their reusability and interoperability across several application domains.
One of the advantages of Web service technology is indeed the fairly simple
aggregation of complex services out of repositories of simpler or even atomic
services. However, Web service standards – [10], [12] and [14] - do not completely
describe the capability of a service and cannot be understood by software programs. A
human developer is thus required to interpret the meaning of inputs, outputs and
applicable constraints, as well as the context in which services can be used. Therefore,
the automatic discovery and selection at runtime of the most adequate resource for a
given activity is limited, as well as the automatic solution of possible mismatches at
the level of data format, message protocol and underlying organizational processes.

Semantic Web Services (SWS) research aims to automate the development of Web
service based applications through the semantic Web technologies. By providing
formal descriptions with well defined semantics, SWS facilitate the machine
interpretation of Web service – functional and not functional - properties. The
research agenda for SWS identifies a number of key areas of concern, namely:

170

� Discovery: finding the Web service which can fulfil a task. Discovery usually
involves matching a formal task description against semantic descriptions of Web
services.

� Mediation: we can not assume that the software components which we find are
compatible. Mediation aims to overcome all incompatibilities involved. Typically
this means mismatches at the level of data format, message protocol and
underlying business processes.

� Composition: often no single service will be available to satisfy a request. In this
case we need to be able to create a new service by composing existing
components. Artificial Intelligence (AI) planning engines are typically used to
compose Web service descriptions from high-level goals.

Significant results are already available, in terms of reference ontologies, e.g.
OWL-S [9] and WSMO [5], comprehensive frameworks (e.g. DIP project1 results),
and more recently standards, e.g., SAWSDL2. Therefore, further research efforts are
now investigating how SWS can be effectively applied – and in case improved - to
solve other (Web-) service oriented computing problems.

In this paper we describe IRS-III (Internet Reasoning Service), a framework for
creating and executing semantic Web services, which takes a semantic broker based
approach to mediating between service requesters and service providers [2], [3]. More
specifically, we have extended the core epistemological framework of our previous
IRS-II framework [8] and incorporated the Web Services Modelling Ontology [5]
conceptual model into the IRS-III framework.

In Section 2 we describe IRS-III specifically from an ontological point of view. In
Section 3 we outline how SWS based systems can be successfully developed and
deployed using IRS-III and we illustrate our approach through three different
application domains: Business Process Management, e-Learning and e-Science.
Section 4 concludes the paper.

2 IRS-III: A broker-based approach for SWS

IRS-III [2], [3] is a platform and broker for developing and executing SWS. A core
design principle for IRS-III is to support capability-based invocation. A client sends a
request which captures a desired outcome or goal and, using a set of semantic Web
service descriptions, IRS-III will: a) discover potentially relevant Web services; b)
select the set of Web services which best fit the incoming request; c) mediate any
mismatches at the conceptual level; and d) invoke the selected Web services whilst
adhering to any data, control flow and Web service invocation constraints.

To achieve this, IRS-III adopts a semantic Web based approach and is thus
founded on ontological descriptions. At the heart of IRS-III there is the SWS Library,
where semantic descriptions of various aspects of Web services, reference Domain
Ontologies and Knowledge bases (instances) are stored using OCML representation

1 http://dip.semanticweb.org/
2 http://www.w3.org/2002/ws/sawsdl/

171

language [7]. Specific IRS-III components interpret such descriptions to discover and
select the appropriate Web service, choreograph and ground to the Web service
operations [4], orchestrate multiple Web services, and mediate semantic descriptions
by running mediation rules or invoking mediation services [1]. Note that IRS-III
supports grounding to standard Web services with a WSDL description, as well as
stand-alone Java and Lisp code. Similarly, Web applications accessible as HTTP GET
requests are handled internally by IRS-III.

2.1 IRS-III Service Ontology

The IRS-III service ontology forms the epistemological basis for IRS-III and provides
semantic links between the knowledge level components describing SWS and the
conditions related to its use. These descriptions are interpreted by the OCML
reasoner. We describe the commonalities and differences between the service
ontology and WSMO and then how the service ontology is used within IRS-III.

The IRS-III service ontology contains the following main items, which are also
part of the Web Services Modelling Ontology [5]:
� Non-functional properties – these properties are associated with every main

component model and can range from information about the provider such as the
organisation’s legal address, to information about the service such as category,
cost and quality of service, to execution requirements such as scalability, security
or robustness.

� Goal-related information – a goal represents the user perspective of the required
functional capabilities. It includes a description of the requested Web service
capability.

� Web service functional capabilities – represent the provider perspective of what
the service does in terms of inputs, output, pre-conditions and post-conditions.
Pre-conditions and post-conditions are expressed by logical expressions that
constrain the state or the type of inputs and outputs.

� Choreography – specifies how to communicate with a Web service.
� Grounding – associated with the Web service choreography, a grounding

describes how the semantic declarations are associated with a syntactic
specification such as WSDL.

� Orchestration – the orchestration of a Web service specifies the decomposition of
its capability in terms of the functionality of other Web services.

� Mediators – a mediator specifies which top elements are connected and which
type of mismatches can be resolved between them.

The differences between our ontology and WSMO are described below:
� Meta-classes for the top-level SWS concepts – meta-class definitions for goal,

mediator and Web service have been defined. These classes have a ‘meta-’
extension (e.g. meta-goal) and enable the IRS-III components to reason over the
top-level concepts within the service ontology as first class entities.

� SWS user definitions as classes – following from the previous item, we enable
users to define the required goals, mediators and Web services as subclasses of
the corresponding WSMO concepts rather than as instances. In our view a class
better captures the concept of a reusable service description and taxonomic

172

structures can be used to capture the constitution of a particular domain. For
example, goals for booking flights may have sub-goals for booking European
flights and for booking long-haul flights. A proposal for extending WSMO with
goal templates, similar to our goal classes, has been suggested recently [11].

� SWS invocation contexts as instances – we reserve instances for invocation.
When IRS-III receives a client request, instances of relevant goals, mediators and
Web services are created to capture the current invocation context.

� Explicit input and output role declaration – in the interests of simplifying the
definition of goals and Web services, our ontology incorporates explicit input and
output role declarations. The declared input and output types are imported from
domain ontologies. This feature enables SWS developers to view goals and Web
services as ‘one-shot’ thus minimizing the need to consider complex interaction
when appropriate.

� Orchestration and choreography language – the representation of our
orchestration and choreography are defined within the service ontology.

Using SWS descriptions for implementing internal components, we implement
several IRS-III internal components using the service ontology and OCML. Our
assumption is that IRS-III components described through goals, mediators, and Web
services and through ontological concepts and relations are easier to understand and
maintain than if they were implemented purely in a programming language.

2.2 Using the Service Ontology

Before we describe the IRS-III server and its components we first highlight the main
ways in which the service ontology is used to implement the core functionalities.

� Web services are linked to goals via mediators - if a wg-mediator associated
with a Web service has a goal as a source, then this Web service is
considered to solve that goal. An assumption expression can be introduced
for further refining the applicability of the Web service.

� GG-mediators provide data-flow between sub-goals – in IRS-III, gg-
mediators are used to link sub-goals within an orchestration and so they also
provide dataflow between the sub-goals.

� Web services can inherit from goals - Web services which are linked to goals
‘inherit’ the goal’s input and output roles. This means that input role
declarations within a Web service are not mandatory and can be used to
either add extra input roles or to change an input role type.

Client choreography – the provider of a Web service must describe the
choreography from the viewpoint of the client. Within WSMO the choreography
expresses a number of constraints which should not be violated when a deployed
service is invoked. Within the IRS-III we evaluate the client choreography in order to
interact with the deployed Web service.

Mediation services are goals – a mediator declares a goal as the mediation service
which can simply be invoked. The required data transformation is performed by the
associated Web service.

173

3 Creating Semantic Web Service Based Applications

Our generic application architecture is depicted in Fig. 1. As can be seen, the
architecture is composed of four layers and enables collaboration between one or
more stakeholders in a distributed fashion.

Fig. 1. The generic architecture used when creating IRS-III based applications

In particular, our approach enables the functionality provided by existing legacy
systems from the involved business partners to be exposed as Web services, which are
then semantically annotated and published using the IRS-III infrastructure. From the
bottom up the four application layers are:
� Legacy system layer - consists of the existing data sources and IT systems

available from each of the parties involved in the integrated application.
� Service abstraction layer - exposes the (micro-)functionality of the legacy

systems as Web services, abstracting from the hardware and software platforms.
In general existing Enterprise Application Integration (EAI) software will
facilitate the creation of the required Web services. Note that for standard
databases the necessary functionality of the Web services can simply be
implemented as SQL query functions.

� Semantic Web services layer – given a goal request, this layer, implemented in
IRS-III, will: a) discover a candidate set of services; b) select the most
appropriate; c) resolve any mismatches at the data, ontological or process level;
and d) invoke the relevant set of Web services satisfying any data, control flow
and invocation requirements.

� Presentation layer – a Web application accessible through a standard Web
browser which is built upon the semantic Web services layer. The goals defined
within the semantic Web services layer are reflected in the structure of the
interface and can be invoked either through the IRS-III API or as an HTTP GET
request. We should emphasize that the presentation layer may be comprised of a
set of Web applications to support different user communities. In this case each
community would be represented by a set of goals supported by community
related ontologies.

174

In order to successfully create applications from semantic Web services as depicted
in Fig. 1 above four key activities need to be carried out as follows:
1. Requirements capture – during this step the requirements for the overall

application are captured. Although there is no prescribe methodology, the
resulting documents should describe the stakeholders, the main users and roles,
any potential providers for Web services, and any requirements on the deployed
infrastructure and interfaces.

2. Goal description – using the requirements documents above, relevant goals are
identified and described in IRS-III. During this process any required supporting
domain ontologies will be created.

3. Web service description – descriptions of relevant Web services are created
within IRS-III. Again, any domain ontologies required to support the Web
service descriptions are defined.

4. Mediator description – mismatches between the ontologies used, and mismatches
within and between the formal goal and Web service descriptions are identified
and appropriate mediators created.

All of the above steps are carried out by the SWS application developer. The first
two steps are user/client centric and therefore involve discussions with the relevant
client stakeholders, whereas Step 3 will require dialogue with the Web service
providers. Steps 2 and 3 are mostly independent and in the future we expect libraries
of goals and Web services to become generally available to support re-use.

3.1 Business Process Management

Business Process Management (BPM) intends to support “business processes using
methods, techniques, and software to design, enact, control, and analyze operational
processes involving humans, organizations, applications, documents and other sources
of information” [13]. BPM aims to support the complete life-cycle of business
processes, however, by doing so BPM has made more evident the existing difficulties
for obtaining automated solutions from high-level business models, and for analyzing
the execution of processes from both a technical and a business perspective. The
fundamental problem is that moving between the Business Level and the IT Level is
hardly automated.

Semantic Business Process Management (SBPM) that is, the combination of
Semantic Web and Semantic Web Services technologies with BPM, has been
proposed as a solution for overcoming these problems [6]. SBPM aims at accessing
the process space of an enterprise at the knowledge level so as to support reasoning
about business processes, process composition, process execution, etc. Major efforts
are currently devoted to pursuing the SBPM vision in the context of the European
project SUPER3. The project follows a multi-layered approach where a number of
standard languages and notations have been mapped to a stack of ontologies
supported by a suite of semantically enhanced tools.

Within this project IRS-III is playing several key roles centered on its capabilities
as a Semantic Web Services platform and its strong ontology reasoning support. The

3 http://kmi.open.ac.uk/projects/super/

175

research in IRS-III carried in the context of SBPM is focused in several issues such
as:
� Supporting the design of business process models – Adding formal semantics to

business process models enabling business analysts to:
o Find relevant existing process models for solving a business task, which

match a given business context (e.g. business domain regulations or
organizational policies),

o Create new processes through the composition of processes exposed as
Semantic Web Services,

o Mediate between incompatible processes which are required to be to be
connected.

� Generating an executable process model – Using ontological descriptions to
move from an informal (usually diagram-based) business-level process model to
a model which can be executed within an engine.

� Monitoring the progress of a running process – providing semantically rich
information on the status of currently running processes, within a corporate ICT
infrastructure, in a fashion which is understandable to the business analyst.

3.2 E-Learning

E-Learning aims to support students to achieve a predefined learning outcome.
Current approaches consider the usage of software systems – e.g. Learning Content
Management Systems (LCMS) – that provide the learner with composite learning
contents: the so called Learning Objects (LOs). Based on either proprietary or
standard metadata, a LO usually defines the learning process - i.e. the sequence of
activities the learner has to follow to achieve his/her learning objective – as well as
the set of learning resources – data or services - associated to each activity of the
process. Since metadata standards mainly rely on syntactic descriptions, human
developers are needed to understand the intended meaning of the metadata and carry
out manually the activities related to learning process composition and resource
allocation. Therefore, current approaches limit the reusability of existing learning
resources available on the Web and restrict the ability of a learning application to
adapt automatically to specific learning requirements and learning contexts.

In the context of the European project LUISA4, we propose to move from the
existing data and metadata based paradigm to a highly dynamic service-oriented
approach based on semantic Web service technologies. To enable this vision, we
adopt a semantic approach which abstract from data, services and existing process
metadata standards. By making use of ontologies, we represent (i) a process in terms
of sequences of learning goals to achieve and (ii) the learning context – i.e. domain
requirements or learner profile and preferences - where the process is performed. At
runtime, given a learning goal and the reference process context, IRS-III can identify
and deliver the most appropriate resources that allow the learner to accomplish such a
goal.

4 http://kmi.open.ac.uk/projects/luisa/

176

As a result, we enhance the current state of the art by enabling context adaptive e-
Learning applications based on distributed, flexible and open infrastructures. Starting
from our semantic representation of processes, we can ground to multiple existing
metadata standards and thus reuse the respective runtime environments. Instead of
grounding the metadata standard activities to static learning resources, we link them
to our learning goals. When the standard-compliant application processes an activity,
the associated learning goal is invoked. Several services on top of repositories from
different organizations can be linked to and thus provide resources for a specific
learning goal. Their selection is based on axioms that declare the assumed learning
context for a service. If a specific goal is not achievable by existing services, an
opportune SWS orchestration can create on-the-fly integrated services. Note that for
each goal new services can be easily integrated by simply introducing the respective
semantic descriptions, without affecting the existing structure. Finally, each service
can provide resource following different standards (or not following any standard at
all), since appropriate mediation services can be used to address existing data
heterogeneities.

3.3 E-Science

A number of large research initiatives5 aim to develop computer models of human
physiology that span multiple dimensional and temporal scales. EuroPhysiome6 is an
initiative to promote the development of the Virtual Physiological Human (VPH), a
methodological and technological framework that will enable medical investigators to
consider the human body as a single (though still hugely complex) system.

While the VPH will have a sizeable impact on all branches of biomedical research
and clinical medicine, a primary target domain is the Musculoskeletal System, which
we address in the Living Human Digital Library (LHDL7) project.

In LHDL, we serve a virtual community comprising students and professionals
engaged in researching the musculoskeletal system. They are interested in accessing
and managing complex biomedical data. Using Web services, LHDL researchers can
share data, algorithms, and community services. In a large and complex domain like
the biomedical one, understanding and coordinating these services is a major task. By
adding formal semantic descriptions of the Web services, we can recruit computers to
perform much of this reasoning for us.

IRS-III uses these semantic annotations to alleviate many of problems that usually
impede full and easy interoperability between the kinds of heterogeneous resources
deployed in huge context such as VPH. IRS-III assists in the technical tasks of
finding, composing, and resolving mismatches between Web service components, as
well as reason about high-level policy issues such as patient privacy, data security and
provenance, and computational resourcing. In more detail, Web services represent the
services that each VPH community will expose. A VPH user performs a request by a
VPH portal; the portal sends the request which captures a desired outcome or goal

5 http://www.mygrid.org.uk/, http://www.esnw.ac.uk/
6 http://www.europhysiome.org/
7 http://kmi.open.ac.uk/projects/lhdl/

177

and, using a set of semantic Web service descriptions, IRS-III will: a) discover
potentially relevant Web services in any VPH sub-community; b) select the set of
Web services which best satisfy the user request; c) mediate any mismatches; and d)
invoke the selected VPH Web services according with any Web service invocation
constraints.

The execution sequence of a complex semantic Web service is not hard-coded, but
it is dynamically created using goal-based discovery and invocation: several Web
services may be associated with a goal, and only the most applicable will be
discovered and invoked at runtime (late binding). If a new service is available within
one VPH community, the developers simply need to describe and then link it to an
existing goal; if a service is altered, only the specific semantic description will be
affected, and not the whole business process.

4 Conclusions

Semantic Web services research has the overall vision of bringing the Web to its full
potential by enabling applications to be created automatically from available Web
services in order to satisfy user goals. Fulfilling this vision will radically change the
character of all online interaction including the nature of e-Commerce, e-Science, e-
Learning, and e-Government. Key to achieving this vision is the provision of SWS
platforms able to support the development and use of online libraries of reusable
software components indexed through generic and domain specific ontologies. In this
paper we have presented our SWS platform IRS-III, which contains a suite of tools to
enable the development and management of semantic descriptions. Using the
semantic Web service descriptions, IRS-III, through orchestration, mediation and
choreography components, can broker between incoming goal requests and applicable
Web services.

Over the past few years we have used IRS-III to create a number of SWS based
applications. Within a number of new EU funded projects we are currently creating
applications in the areas of: business process modelling, linking IRS-III to a BPEL
engine3; e-learning, integrating IRS-III with learning resource repositories4; and, bio-
informatics, describing Grid services related to the human musculo-skeletal system7.
The diversity of the domains in which we are able to deploy IRS-III is evidence of the
utility and robustness of our approach, and, we fully expect to gain further valuable
insights into the overall requirements for semantic Web services during the
deployment process. In this respect we welcome external parties to use our platform -
the IRS-III API and browser for can be downloaded from the IRS-III Web site at
http://kmi.open.ac.uk/projects/irs/.

Acknowledgments. This work was supported by the SUPER (Semantics Utilized for
Process management within and between Enterprises) project, (FP6 – 026850);
LUISA (Learning Content Management System Using Innovative Semantic Web
Services Architecture) project (FP6 – 027149); LHDL (Living Human Digital
Library) project (FP6 – 026932).

178

References

1. Cabral, L., Domingue, J.: Mediation of Semantic Web Services in IRS-III. In Proceeding of
the Workshop on Mediation in Semantic Web Services in conjunction with the 3rd
International Conference on Service Oriented Computing, Amsterdam, The Netherlands,
(2005).

2. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V., Pedrinaci,
C.: IRS-III: A Broker for Semantic Web Services based Applications. In Proceedings of the
5th International Semantic Web Conference, Athens, USA, November, (2006).

3. Domingue, J., Cabral, L., Galizia, S., and Motta, E.: A Comprehensive Approach to
Creating and Using Semantic Web Services, In Proceedings of the W3C Workshop on
Frameworks for Semantics in Web Service, Innsbruck, Austria, June 9-10, (2005).

4. Domingue, J., Galizia, S., and Cabral, L.: Choreography in IRS-III- Coping with
Heterogeneous Interaction Patterns in Web Services. In Proceedings of 4th International
Semantic Web Conference, Galway, Ireland, (2005).

5. Fensel, D., Lausen, H., Polleres, A., De Bruijn, J., Stollberg, M., Roman, D., Domingue, J.:
Enabling Semantic Web Services: Web Service Modeling Ontology. Springer, (2006).

6. Hepp, M., Leymann, F., Domingue, J., Wahler, A. and Fensel, D.: Semantic business
process management: A vision towards using semantic web services for business process
management. In ICEBE, pages 535–540, (2005).

7. Motta, E.: An Overview of the OCML Modelling Language, In Proceedings of the 8th
Workshop on Knowledge Engineering Methods and Languages (KEML '98). (1998).

8. Motta, E., Domingue, J., Cabral, L., and Gaspari, M.: IRS-II: A Framework and
Infrastructure for Semantic Web Services. In Proceedings of the 2nd International Semantic
Web Conference (ISWC2003), 20-23 October 2003, Sanibel Island, Florida, USA.

9. OWL-S Working Group: OWL-S 1.2 Pre-Release,
(http://www.ai.sri.com/daml/services/owl-s/1.2/). (2006).

10. SOAP: SOAP Version 1.2 Part 0: Primer, (http://www.w3.org/TR/soap12-part0/. (2003).
11. Stollberg, M. and Norton, B.: A Refined Goal Model for Semantic Web Services. In Proc. of

the 2nd International Conference on Internet and Web Applications and Services (ICIW
2007), Mauritius, (2007).

12. UDDI: UDDI Spec Technical Committee Specification v. 3.0, http://uddi.org/pubs/uddi-
v3.0.1-20031014.htm. (2003).

13. Van der Aalst, W., Ter Hofstede, A., and Weske, M.: Business process management: A
survey. In Business Process Management, pages 1–12, (2003).

14. WSDL: Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/2001/NOTE-wsdl-20010315. (2001).

179

Improving Responsiveness of Ontology-Based
Query Formulation

Ivan Zorzi, Sergio Tessaris, and Paolo Dongilli

Free University of Bozen-Bolzano, Italy
<lastname@inf.unibz.it>

Abstract. Recent research showed the benefits of adopting formal on-
tologies as a means for accessing heterogeneous data sources. The use of
an ontology not only provides a uniform and flexible approach for inte-
grating and describing these sources, but it can be used to improve the
usability of an integrated system by guiding the final user to formulate
his/her information needs. More precisely, the task of formulating queries
can be supported by an intelligent use of the ontology describing the in-
formation sources. In fact, it has been proved that an appropriate use
of automated reasoning techniques can support a user in formulating a
precise query —which best captures her/his information needs— even in
the case of complete ignorance of the vocabulary of the underlying infor-
mation system holding the data. Previous work has been carried out on
intelligent interfaces for query formulation and this paper describes how
to improve usability of such systems by reducing the calls to reasoning
services.

1 Introduction

In this paper we introduce the reader to the features of an intelligent query
interface. We simply call it Query Tool and it was devised to enable users to
access heterogeneous data sources by means of an integrated ontology. The Query
Tool supports the users in formulating a precise conjunctive query, where the
intelligence of the interface is driven by reasoning services running over a given
logic-based ontology.

The ontology, which describes a given domain, defines a vocabulary which
is richer than the logical schema of the underlying data, and it is meant to be
closer to the user’s wide vocabulary. The user can exploit the ontology’s entities
to formulate the query, and she is guided by such a richer vocabulary in order
to understand how to express her information needs more precisely, given the
knowledge of the system. This latter task —called intensional navigation— is
the most innovative functional aspect of our interface. Intensional navigation
can help a less skilled user during the initial step of query formulation, thus
overcoming problems related to the lack of schema comprehension and enabling
her to easily formulate meaningful queries. Queries can be specified through an
iterative refinement process supported by the ontology via intensional naviga-
tion. The user may specify her request using generic terms, refine some terms

180

of the query or introduce new terms, and iterate the process. All details are
thoroughly described in the coming sections.

Furthermore we draw the attention of the reader towards the optimisation
techniques we are applying to the Query Tool in order to improve the usability of
the system. Improvements are made working on three fronts: reducing as much
as possible the calls to the reasoner, storing the taxonomy, and caching query
information.

The paper is organised as follows. First of all we describe the technologies
and techniques underlying the system, then we present the actual system (Query
Tool) from the user perspective, with a complete exposition of the functionali-
ties of the interface. Afterwards we illustrate the interaction with the reasoning
services followed by a section on the optimisations of such a system. Finally,
in the discussion section, we show how we are also leveraging natural language
generation technologies to enhance user interaction with the interface.

2 Background

2.1 Ontology mediated access to data sources

The purpose of the presented Query Tool is to support query formulation in
the context of information access mediated by ontologies. More specifically, the
scenario in which we consider the deployment of the tool consists of one or more
data sources providing their own query language (e.g. they can be relational
sources). The information provided by the sources is described by means of a
global ontology together with mappings relating the ontology vocabulary to the
vocabulary of the data sources. We do not impose any constraint on the kind of
mappings and/or architecture underlying the integration system.

The Query Tool relies on the availability of an ontology providing the vo-
cabulary for the queries and a query engine capable to retrieve the data. These
minimal requirements enable the Query Tool to be used in simple cases in which
data are retrieved from a knowledge base (see [10]) as well as more complex
architectures in which query answering requires complex processing (e.g. using
rewriting [2]).

The ontology language adopted by the tool is OWL-DL (see [6]), therefore the
conceptual model exposed to the user centres around the concept of classes and
properties. While the user is guided to the construction of queries structured in
terms and properties which can be refined (see the next sections for details), the
system generates conjunctive queries composed by unary (classes) and binary
(attribute and relation) predicates.

2.2 Queries

The Query Tool represents queries to the user as trees, in which nodes are
labelled by classes and edges by properties. Each node of the tree correspond to
a different variable and properties (edges) constitute the joins between a node

181

and the rest of the query. In this way the conjunctive queries generated by the
system are acyclic.1

Users interact with the system to refine the query by a set of operations which
can be performed on nodes of the query tree. Once selected, a node becomes the
focus for the operations which can be divided into substitution (when a class
is substituted by more general or specific one) and incremental refinement by
addition of compatible classes or properties. Additionally, the system allows the
deletion of part of the query.

For each focus the tool suggests the terms and/or properties which can be
used to refine the query. This step requires the interaction with an OWL-DL
reasoner in order to establish which properties or classes are “compatible” with
the current query. This must be done in real time when the user interacts with the
tool, since both the query and the focus affect the responses from the reasoner.

For more details on the query language and the user perspective over the
tool, the reader is referred to [4]; in this paper we concentrate on showing how
we increased the responsiveness of the system by optimising the use of the OWL
reasoner.

2.3 Reasoning services

An OWL reasoner is employed to derive the information required to drive the
interface. These information range from the taxonomical position of an OWL
expression w.r.t. the terms of the ontology, to the satisfiability of an expression.

To allow for the maximum flexibility, the tool communicates with the rea-
soner by means of the DIG API (see [1]). To one side this enables the possibility
of using any compliant reasoner; but on the other side the use of HTTP as under-
lying transport introduces additional overhead in terms of network connections.

For this reason, one of the first goal we wanted to achieve is to minimise the
number of calls to the reasoner (see Section 5).

2.4 An Example

Now we want to present an example that will be referred throughout the paper
to better understand the operations involving the reasoner. To do so, we employ
an excerpt of the Wine Ontology which is shown in Fig. 1. We adopted the UML
notation to represent the is-a relationships among terms and we introduced
constraints of disjointness where needed.

We have Wine Descriptor as root concept and Wine Taste and Wine Colour
as specialisations of Wine Descriptor.The concept Wine has a property has Colour
towards concept Wine Colour; the inverse of this property is colour Of when
seen from concept Wine Colour. Wine Colour specialises in Red and White while
Wine in Red Wine, White Wine, and Table Wine respectively. Because of lack
of space, we are not going to present the axioms of this sample ontology that
can anyway be represented in OWL-DL.
1 From the technical point of view cyclic queries wouldn’t pose any problem; however,

usability tests conducted in the context of a previous project suggested that the
users don’t find co-references intuitive enough.

182

Wine_Descriptor

Wine_Taste Wine_Color

<<disjoint>>

Wine

Red_Wine White_Wine

<<disjoint>>

Red White

<<disjoint>>

has_Colour colour_Of-

Table_Wine

<<disjoint>>

Fig. 1. An excerpt of the Wine Ontology.

3 Query Tool

In this section we present a brief description of the end user system. It is a
Java-based application adopting the Standard Widget Toolkit (SWT) [11] for
creating the graphical user interface. The system requires at least JRE 1.4 and
a DL reasoner providing a DIG 1.x interface.

The query interface is provided with four Tabs:

– Admin: administrative interface used to load the ontology and connect to
the reasoner.

– Compose: main query composition interface.
– Query: displays the actual query, mainly for debugging purposes.
– Results: displays the results of the query evaluation.

Initially the user is presented with the Admin Tab (see Figure 2). Here, some
preliminary operations necessary for the query formulation have to be executed:

1. Connection setup: one of the operations the user has to carry out consists
in testing the reasoner connection. A reasoner with reference to the ontol-
ogy is used by the system to drive the query interface: in particular, it is
used to discover the terms and properties which are proposed to the user to
manipulate the query.

2. Loading and managing ontology files: all the operations the system
provides cannot be accomplished without loading an ontology. The interface
allows the user to specify an ontology in DIG 1.x format to be loaded into the
system. Once the ontology is loaded into the system, the user has also the
possibility to adjust the content of that ontology, depending on her needs;
if the user wants that the modifications take a permanent effect, she can
save them back to the file. As a matter of fact, users might frequently have
the necessity to extend an ontology in order to obtain different results or to
correct it as a consequence of unexpected behaviour.

3. Loading a metadata file: the interface gives the possibility to the user
to specify a metadata file to be loaded into the system. Metadata files con-
tain valuable information about the terms in the ontology; that information
concerns essentially the lexicalisations of those terms. Actually, as the terms

183

contained in the ontology could be expressed by a sort of shorthand, their
lexicalisations are provided so that the user can deal with clearly under-
standable terms.

4. Customising lexicalisations: given the metadata file, the interface offers
to the user the opportunity to apply desired variations to the lexical infor-
mation of the terms. Those variations can be saved back to a metadata file
or just saved temporarily in the system. The query to be generated should
be as unambiguous as possible: if the user can assign to the terms the lexical-
isations which best give significant importance to her, the query formulation
will be transparent and therefore the really intended result will be retrieved.

Fig. 2. Administrative interface of the Query Tool.

As you can see in Figure 2, the reasoner connection has been tested by means
of the “Connect” button. An ontology has been loaded (“Load” button) and also
a metadata file (“Browse” button). Subsequently, the “Create Schema” button
has been clicked and all the lexicalisations of the ontology terms are presented
in the “Lexical Information” table. Here the user can change the lexicalisations
by clicking on the cell corresponding to the lexicalisation she wants to modify.

In the Compose Tab (see Figure 3) the user can formulate the query by
means of pop-up menus presenting the possible operations. Initially the user
is presented with a choice of different starting terms (all the concepts in the
ontology or a subset defined by means of the metadata file): she selects the first
term to be added in the query. Subsequently, the interface gives the possibility
to perform the following operations:

184

– Add compatible terms: other terms specified in the ontology can be added
to the query. The compatible terms are automatically suggested to the user
by means of appropriate reasoning tasks on the ontology describing the data
sources. Indeed, the system suggests only the operations which are compat-
ible with the current query expression.

– Substitute terms: the system gives the opportunity of substituting the
selected term of the query with a more specific or more general term. It can
also be the case that in the ontology there are terms which are equivalent to
the selected one: in this case the user is offered to replace the selection with
an equivalent term.

– Delete terms: as the query is specified through an iterative refinement
process, it could be the case that the user needs to delete some terms from
the query.

– Add or delete properties: analogously, the user can add properties to the
query. A property can be a relation or an attribute. The interface suggests
a list with the possible alternatives. The user can specify some restriction
values to attributes.

Fig. 3. Query composition interface.

The first operation to compose a query consists in selecting the starting term.
By clicking on a pop-up menu (“Choose starting term”) the user is presented
with a windows showing all the terms that can be used as starting term.

Once the user has selected the starting term, it is possible to refine the query
using again the pop-up menu. The operations allowed are listed in the pop-up

185

menu; the user can add a compatible term, add a property (relation or attribute),
substitute the term or delete it.

If the user selects an attribute, it is possible to set it as distinguished variable
or to add a restriction to the attribute. The user can also delete properties or
terms from the query and select new ones.

Once the user has formulated the query, the Query tab shows the query in
XML and DIG formats (the menu bar “Options” allows also to view the query
in the corresponding SQL code). Finally, in the Results tab the user can retrieve
the results (if any) corresponding with the formulated query.

In the menu bar, by clicking on “View” menu, the user can have a look to
the log file (“View” log) of the application and also a concise description of the
schema with all the taxonomy (“View” schema).

4 Reasoner interaction

In this section we describe all the operations (w.r.t. the reasoner) that users can
perform during the query formulation process. Refinement of the query expres-
sion can be done by the following operations:

– addition of a compatible term;
– addition of a property;
– substitution of a term with an equivalent, more specific or more general term.

In primis we present the approach which enables the system to interact with the
reasoner and then the formalisation of the above operations.

4.1 Query rolling-up

Before discussing the actual operations in terms of their use of logical deductions,
we need to introduce a fundamental manipulation of the queries which enables
us to exploit the reasoning services provided by a DIG reasoner. This operation
is the so called rolling up of an acyclic conjunctive query (see [8]).

Roughly speaking, the rolling up transforms an arbitrary query without cy-
cles into an equivalent DL expression. The key idea behind is the fact that a
(sub)query of the form P (x, y), R(y) is equivalent to the DL expression (∃P.R)(x).
Any variable can be selected as the root of the tree (since we consider acyclic
queries) and the rest of the query can be “rolled-up” starting from the leaves.2

To analyse the properties of a given query focused on a specific variable, say
qx, we roll-up the query using the focus as the root (with variable x associated
with concept F) and then we interrogate the reasoner using the resulting complex
concept QF (x). In the following sections we describe in detail the procedure we
employ.
2 Inverse roles provide the possibility of collapsing queries of the form P (y, x), R(y) as

well. If the ontology doesn’t include transitive roles and nominals, cyclic queries can
be handled in the same way (see [7]). We’re considering techniques to allow more
expressive languages.

186

4.2 Addition of a compatible term

This operation requires the list of terms “compatible” with the given query. In
terms of conjunctive queries, it corresponds to add a new term to the query.
The term is compatible and can be added to the query if the resulting query
is satisfiable. Let us formally define a compatible term w.r.t. a query. Given an
ontology Σ and a focused query QF (x) we want to find all the terms Y ∈ C

(where C are all the unary atomic terms) such that:

Σ �|= QF (x) � Y � ⊥ Y is not disjoint with QF (x)

Σ �|= QF (x) � Y Y is not among ancestors of QF (x)

Σ �|= Y � QF (x) Y is not among descendants of QF (x)

The reasoning service makes use of satisfiability to check which predicates
in the ontology are compatible with the current focused query. This check cor-
responds simply to the addition of the term Y to the focused query QF (x),
and verify that the resulting query is satisfiable. Actually, this operation is very
expensive because the number of reasoner calls matches the number of unary
predicates.

Going back to the example of Sec. 2.4, if we have a query with concept
Red Wine and we want to find all the concepts which are compatible with it,
it will turn out that concept Table Wine is compatible with the query while
concept White Wine is incompatible since it is disjoint with Red Wine.

4.3 Addition of a property

The addition of a property requires the discovery of both a binary term and its
restriction (or range). The system should check all the different binary predicates
from the ontology for their compatibility. Formally, a property P is compatible
with a focused query QF (x) if

Σ �|= QF (x) � ∃P.� � ⊥,
where � represents any possible concept of the domain.

This is practically performed by verifying the satisfiability of the query
QF (x)�∃P.�, for all atomic binary predicates P in the signature. Once a binary
predicate is found to be compatible with QF (x), repeated satisfiability is used to
select the least generic unary predicate Y ∈ C such that the query QF (x)�∃P.Y
is satisfiable. In other terms, the operation would consist in determining which
are the compatible properties first, and then establishing which are the restric-
tions applicable to P . To discover all compatible properties, we need a number
of reasoner calls equal to the number of properties in Σ. In addition, for each
property found, to determine its restriction, we need as many reasoner calls as
the number of unary predicates.

Again, returning to the example (see Sec. 2.4), this time we want to discover
the properties which are compatible with the query Wine Descriptor. As com-
patible properties propagate upwards in the hierarchy, property colour of would
be among the compatible properties of Wine Descriptor. If the user instead
composes a query with the concept Wine Taste, the property colour of would

187

be incompatible because the concept Wine Taste is disjoint with the concept
Wine Colour.

4.4 Substitution of a term

Here we want to substitute a focused term of the query with an equivalent, more
specific or more general term. Let us examine the substitution with a more spe-
cific term. In this case we need to perform a containment test of two conjunctive
queries. Given a query focussed on concept F (QF (x)), we are interested in the
unary terms Y subsumed by QF (x), where Y must be the most general concept
among the terms found (i.e. there is no other concept Y subsumed by QF (x) and
containing Y). Formally, given an ontology Σ and a query QF (x), we want to
find all the terms Y ∈ C such that:

Σ |= Y � F,¬∃Z ∈ C | (Z � F, Y � Z, Z �= Y).
Σ �|= F � QF (x) � Y � ⊥.

From Figure 1 it is possible to see that if the query is composed by concept Wine
and we want to substitute it with a more specific term, we would get Red Wine,
White Wine, and Table Wine as candidates for the substitution since they are
direct children of concept Wine.

The cases of substitution with more general and equivalent terms are analo-
gous.

For the sake of clarity we report the sequence of operations needed to retrieve
the substituting terms:

– query rolling-up;
– retrieval of incompatible classes: the descendants of negation of the query;
– retrieval of parents and children of the substituting term;
– filtering using incompatible terms.

We will see in Section 5.1 that a similar procedure is adopted to reduce the
calls to the reasoner when looking for compatible terms.

5 Optimisation

As discussed in Section 2.3, the system relies on a DL reasoner to drive the query
interface. If on one hand reasoning services with satisfiability and classification
allow only to formulate consistent queries, on the other hand they introduce
performance issues. Reasoner calls are expensive and should be therefore min-
imised as much as possible. The expensiveness of reasoner calls depends both
on complexity and the fact that DL reasoners exploit the HTTP protocol to
communicate.

In the following we present some optimisation techniques which can improve
the usability of the system via a more responsive interface. Aim of the optimi-
sation is to reduce the transitions between the query interface and the reasoner.
Some techniques have already been exploited to reduce the number of reasoner

188

calls especially in the retrieval of compatible terms to be added to the query. An-
other important improvement comes from the storage of the taxonomy. Finally,
information concerning the query can be cached during the query formulation
process in order to extract some deductions to reduce reasoner calls.

5.1 Reducing reasoner calls

Concerning the refinement of the query by compatible terms, the basic policy
to retrieve the compatible terms is to use the satisfiability reasoning service to
check which unary predicates in the ontology are compatible with the current
query. This check corresponds simply to the addition of the term to the current
query, and to verify that the resulting query is satisfiable. Actually, this kind of
operation is very expensive because the number of reasoner calls corresponds to
the number of unary predicates in the ontology.

We adopted a different implementation in the current system. We classify
the query and retrieve the its equivalents, ancestors, and descendants; then we
classify the negation of the query and retrieve the descendants which are in-
compatible. The remaining unary predicates are the compatibles (see Section
4.2).

In reference to the addition of a property, as we discussed in Section 4.3, this
operation requires the discovery of both a binary term and its restriction. One of
the advantages of OWL-DL is the possibility of expressing the inverse of a role
which is extremely useful for determining compatibility of binary terms. Hence,
to discover the restriction of a property we use classification instead of repeated
(and expensive) satisfiability. The idea is to classify the inverse of the property
restricted to the query.
For example, to discover the restriction of property has Colour applied to the
query expression

{x1 |Red Wine(x1), Table Wine(x1)},
we classify the expression ∃has Colour−(Red Wine � Table Wine).
The reasoner returns the list of concept names more general and equivalent
as range candidates of the relation has Colour, when restricted to the domain
(Red Wine�Table Wine). This method, not only lets us discover the least general
predicate(s) which can be applied to the property in the given context, but also
allows us to discard those properties which are incompatible with the query,
i.e. bottom (⊥) is returned as range whenever a given property is incompatible
with the query. Summarizing, we are able to both check the compatibility of a
property with the query and find out the property’s range by means of one single
reasoner call.

5.2 Taxonomy storage

The taxonomy of the ontology provides static information concerning primitive
concepts. If we store the taxonomy before starting to compose a query, initial
operations like substituting a concept, would not involve the reasoner, thus im-
proving efficiency.

189

The taxonomy is actually a partial order ’<’ from Top (�), the whole domain,
to Bottom (⊥), the empty set, where the partial order relation is subsumption.
The partial order can be represented by a directed acyclic graph (DAG), i.e. a
directed graph that contains no cycles. An edge is drawn from a to b whenever
a < b. A partial order satisfies the following properties:

– transitivity, a < b and b < c implies a < c;
– non-reflexive, not(a < a).

These condition prevent cycles because a < b < ... < z < a would imply that
a < a, which is false. The only exception where the property a < a holds is for
the equivalent concepts.

The idea is to save not only the taxonomy but also other information pertain-
ing each concept such as e.g. its incompatible classes and the list of incompatible
properties.

5.3 Caching query information

The focus plays an important role during the query formulation process; in
particular the system proposes the available operations on the query w.r.t. the
current focus (i.e. the variable which is currently selected). The focus is crucial
also for caching dynamic information concerning the query and the idea is to
cache both the query and its actual classification at the focus level. In other
words, we want to associate to each single variable which gets the focus the
overall status of the query. Of course, cache at the single node level would be
invalidated as soon as the user further refines the query.

An intuitive approach to exploit the cache would consist in modifying the
system in a way that the user can only remove terms by following the exact
inverse order of the one which has been used to formulate the query. This means
that only the last operation can be undone. In this way we could reduce or even
avoid reasoner calls because the information we need has already been cached
at the node.

We know that refinement of the query is monotonic and therefore whenever
the user adds new terms to the query, the domain is going to be restricted.
This property can also lead us to some conclusions for reducing reasoner calls
in further refinements of the query. This property does not hold when the user
deletes a term from the query; in this case all the cache has to be removed.

6 Discussion

Optimising the communication and the quantity of exchanged messages behind
the scenes between the Query Tool and the reasoner is only the first action we
are taking to make the use of the interface more comfortable for the user.

The interaction time we are able to save with these enhancements is partially
re-invested in the demands of a new and more complex interface we are building,
based on state-of-the-art natural language generation (NLG) technologies.

190

The main challenge is that the query (now with partial verbalisation of single
concepts and roles) is to be presented to the user in natural language with full
verbalisation, and stepwise refinements of the query composed by the user are
presented as natural language refinements that maintain the grammaticality of
the sentences representing the query. Our solution adopts the paradigm called
wysiwym (‘What You See Is What You Meant’), a user-interface technique
which uses (NLG) technology to provide feedback for user interaction [9]. The
differences between our approach and that used by available systems employing
wysiwym are explained in [5], while [3] reports our experiments in terms of
discourse planning strategies of a complex concept description (query).

References

1. Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG Description Logic
Interface. In Proceedings of the 2003 International Workshop on Description Logics
(DL2003), volume 81 of CEUR Workshop Proceedings, 2003.

2. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, and Riccardo Rosati. Ontology-based database access. In Proc.
of the 15th Italian Conf. on Database Systems (SEBD 2007), 2007.

3. Paolo Dongilli. Discourse planning strategies for complex concept descriptions. In
Proceedings of the 7th International Symposium on Natural Language Processing
(SNLP-2007), Pattaya, Chonburi, Thailand, December 2007.

4. Paolo Dongilli, Enrico Franconi, and Sergio Tessaris. Semantics driven support for
query formulation. In Description Logics, 2004.

5. Paolo Dongilli, Sergio Tessaris, and John Bateman. Leveraging Systemic-
Functional Linguistics to Enhance Intelligent Database Querying. In Proceedings
of the Sixth International Conference on Intelligent Systems Design and Applica-
tions, Jinan, China, October 2006.

6. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

7. Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and Stephan Tobies. How to decide
query containment under constraints using a description logic. In Logic for Pro-
gramming and Automated Reasoning (LPAR 2000), volume 1955 of Lecture Notes
in Computer Science, pages 326–343. Springer, 2000.

8. Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal approach.
In Ian Horrocks and James Hendler, editors, Proc. of the 2002 International Se-
mantic Web Conference (ISWC 2002), number 2342 in Lecture Notes in Computer
Science. Springer-Verlag, 2002.

9. Richard Power and Donia Scott. Multilingual Authoring Using Feedback Texts.
In Proceedings of the 17th International Conference on Computational Linguis-
tics and 36th Annual Meeting of the Association for Computational Linguistics
(COLING-ACL 98), pages 1053–1059, Morristown, NJ, USA, 1998. Association
for Computational Linguistics.

10. Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In 3rd
OWL Experiences and Directions Workshop (OWLED-2007), 2007.

11. SWT. The Standard Widget Toolkit. http://www.eclipse.org/swt, 2007.

191

Using WordNet to turn a folksonomy into a
hierarchy of concepts

David Laniado, Davide Eynard, and Marco Colombetti

Politecnico di Milano
Dipartimento di Elettronica e Informazione

Via Ponzio 34/5, 20133 Milano, Italy
{david.laniado,eynard,colombet}@elet.polimi.it

Abstract. As the volume of information in the read-write Web increases
rapidly, folksonomies are becoming a widely used tool to organize and
categorize resources in a bottom up, flat and inclusive way. However, due
to their very structure, they show some drawbacks; in particular the lack
of hierarchy bears some limitations in the possibilities of searching and
browsing. In this paper we investigate a new approach, based on the idea
of integrating an ontology in the navigation interface of a folksonomy, and
we describe an application that filters del.icio.us keywords through the
WordNet hierarchy of concepts, to enrich the possibilities of navigation.

1 Introduction

As the amount of information available in the Web grows every day faster, the
task of classification is getting harder, the traditional top down approach is
getting inadequate [1], and the new collaborative approach of folksonomies is
emerging [2].

In folksonomies users can associate freely chosen tags to resources and in this
way they produce knowledge for the entire community. Beside their dynamism
and low cost, folksonomies present many disadvantages: in particular, their lack
of hierarchy limits the possibility of searching and browsing related information.

Our purpose is to enrich the possibilities of navigation in a folksonomy by
adding some explicit semantics, provided by a static hierarchy of concepts, to
help users orient themselves among keywords. We chose to start with del.icio.us1,
one of the most popular folksonomies for social bookmarking, and to develop
an alternative tool for the suggestion of related tags, based on the WordNet
hierarchy of concepts.

In this paper, after a brief description of the current related work (Section
2), we describe both the design and the implementation of our project (Section
3). In Section 4 we show some results of our tests and an evaluation of the
application, then in Section 5 we conclude with a summary and a discussion of
future work.
1 http://del.icio.us

192

2 Current Work

Joshua Schachter, founder of del.icio.us, defined it as “a way to remember in

public”; in folksonomies each user can generally explore two spaces, the one of
his bookmarks and the one of everyone’s bookmarks; tags can be used to filter
items.

As the work of categorization is performed by users, folksonomies are demo-
cratic, scalable, current, inclusive and have a very low cost. On the other hand,
the absence of an authority and of a unique coherent point of view on the do-
main bears several limitations: the lack of hierarchy, the absence of synonym
control, the lack of both precision and recall, the possibility of gaming [3] [4].
While the traditional classification schemes, based on taxonomies, favor search-
ing and browsing, folksonomies encourage another paradigm of navigation, based
on finding and serendipity [5].

Despite their strong limitations, folksonomies are rapidly gaining momentum:
according to Clay Shirky, “The mass amateurization of publishing means the

mass amateurization of cataloging is a forced move”2.
As tags are just text strings, with no explicit semantics associated, it is not

trivial to organize them for presentation to the user. The most common way
to show a set of tags are tag clouds, visual representations where each tag is
displayed with a font size which is proportional to its popularity. Tag clouds,
however, don’t keep into account relationships among tags or their meaning.

To allow the discovery of interesting and related items many applications
have introduced links to related tags, where relatedness is generally measured
with metrics based on co-occurence data. For example in del.icio.us, when a user
visits the page containing all the bookmarks tagged with a certain tag, a list of
tags related to that one is shown inside a sidebar.

Flickr3, a popular folksonomy for photo sharing, introduced clustering as an
interesting feature to help navigation in the space of a tag. The system is able
to find clusters of related keywords, so items corresponding to different contexts
for that tag are grouped together.

These features are very useful but often insufficient, for different reasons.
First of all, they leave the lack of hierarchy problem unsolved: they build flat
spaces of tags, so there is no criterion to organize them and only a small set of
items can be displayed. Furthermore, there is no explicit connection with the
meaning of keywords or semantic relationships among them, that might help
users to orient themselves in the tag space.

An interesting study to integrate a top down classification paradigm with
folksonomies is presented in [6]. Some investigations about the challenge to derive
ontologies from folksonomies are presented in [7] and [8].

2 http://many.corante.com/archives/2005/01/22/folksonomies are a forced move a
response to liz.php

3 http://flickr.com/

193

3 Our Project

The goal of our work is to investigate the possibility of integrating an ontology
in the navigation interface of a folksonomy, filtering tags through a predefined
semantic hierarchy to improve the possibilities of searching and browsing. In
particular we chose to improve the related tags panel in del.icio.us; filtering a
set of related tags through WordNet noun hierarchy it is possible to display a
much higher number of them, organized according to a semantic criterion. As
WordNet is a semantic lexicon of English, developed to reflect the semantics of
natural language and the way in which humans classify objects, the relations
and categories that it contains are likely to be immediately understood by most
people [9].

The first problem when trying to map tags to WordNet is the one of tags
that are not recognizable as words in the lexicon, even after a stemming process,
and therefore cannot be mapped. To evaluate the relevance of the excluded
data we have collected a large dataset, relative to about 30,000 del.icio.us users
and containing about 480,000 different tags. Studying these data we found that
only about 8% of the different tags used are contained in the lexicon, but we
also observed that the most popular tags have a much higher probability of
belonging to WordNet. This distribution in particular follows a power-law curve,
very common in the field of collaborative systems, as showed in Figure 1. Of the
20 million total tagging relations present in our dataset, about 68.1% involve
words contained in WordNet. We think this data might be much increased by
using local wordnets in other languages and domain ontologies to cover more
specific terms.

There is then the problem of words that are recognized as belonging to the
lexicon, but not as nouns: these tags too can’t be mapped, as the hierarchy of
WordNet is only defined on nouns. According to the distinction formulated in
[10] among factual, subjective and personal tags, we can argue that factual tags
tend to correspond to nouns, as nouns fit better to describe factual knowledge,
while adjectives tend to correspond to subjective tags. Further studies about
this issue can be found in [11]. From a quantitative point of view, our dataset
confirms the intuition that most of the tags, and especially most of the most
popular tags, are nouns. Indeed the 85% of the different tags recognized by
WordNet are nouns, while of the over 20 million total tagging relations, about
64.9% involve WordNet nouns, and just about 3% involve words belonging to the
lexicon without being nouns; in other words this data tells that, in our dataset,
about 95% of the times that a tag belonging to WordNet is used it has almost
one meaning as a noun: the power law distribution is accentuated for nouns.

The application we have developed is based on a client-server paradigm,
where all the tasks relative to the processing and storing of information are left
to the server and the client has only to manage the visualization of results. The
system architecture is shown in Figure 2.

The server is composed of a scraper, that extracts the data from del.icio.us
HTML pages and stores them on a database, a module for tag disambiguation

and a core module that builds the semantic tree of tags related to a given one,

194

Fig. 1. The image shows the probability that a tag belongs to WordNet, in (inverse)
function of its popularity. Along the X axis are represented tags from our dataset,
grouped by 1000 and ordered by decreasing popularity; the Y axis shows the number
of tags belonging to WordNet for each group of tags. The most popular tags are much
more likely to belong to WordNet, following a power law distribution.

based on the hierarchy of concepts of WordNet. On the client side, according to
the principle of active navigation, a JavaScript script executed inside the browser
dynamically modifies the pages visualized by the user, integrating the additional
information provided by the server.

3.1 Tag disambiguation

One problem when trying to map tags on an ontology is polisemy: as no ex-
plicit semantics is associated to tags by the users, the same tag can have differ-
ent meanings according to different acceptation of the word, and consequently
different positions in the ontology. For example the word “turkey” may refer
to the country or to the animal, and in the second meaning you could want
to distinguish between biological and gastronomic meaning, according to the
context. In WordNet semantic relationships are not defined among words, but
among synsets, groups of synonyms that represent units of meaning; each word
can belong to different synsets according to its different acceptations. The word
“turkey”, for example, belongs to five synsets, where the first one is “turkey,
Meleagris gallopavo” and the second is “Turkey, Republic of Turkey” .

To properly map a tag to the corresponding position in the ontology you
need first to disambiguate it, in relation with the context in which it has been
used. A fair solution naturally offered by a folksonomy is to use the other tags
associated by some users to the same resource as the context for disambiguation.

Our algorithm for tag disambiguation acts for each tagged resource in the
following way: the C most used tags for the resource are compared among them,

195

Fig. 2. The system architecture

and for each of them the meaning that is more strictly related to the other
tags is selected; semantic relatedness among tags is calculated according to a
choice of metrics based on WordNet [12] (adapted lesk, Hirst and St. Onge) and
disambiguation is performed using the Perl library SenseRelate [13]. In the same
way the remaining tags are disambiguated using the first C as a context. This
solution is effective, as it reduces the sensitivity to less used tags, and efficient,
as it avoids the exponential growth of the algorithm complexity with the number
of different tags associated with a resource.

3.2 Building the tag semantic tree

The core module, for the construction of the tree of related tags, acts in four
steps: tree building, compression, branch sorting and result output. All the algo-
rithms developed have linear complexity with the number of input tags.

The set of tags to be considered is selected by collecting, for each of the
latest N sites associated with the given tag, the M most frequent tags for that
site; M and N are parameters that can be specified in the HTTP request. The
construction of the tree is performed by an iterative algorithm; for each different
tag present in the set of interest in a particular acceptation, the chain of the
hypernyms is created as a path till the unique root of the noun hierarchy of
WordNet and then merged with the existing tree. At the end of this process the
tree is a subpart of WordNet noun hierarchy, chosen to contain all the tags of
the set of interest.

As WordNet is very fine-grained, it can take more than 10 steps to descend
from the root to a word; the tree has to be compressed to be useful for navigation,
eliminating the useless nodes. The compression algorithm performs a breadth-
first visit of the tree, in which all nodes considered unnecessary are deleted and

196

replaced by their children. On one hand, all the nodes corresponding to high level
categories in WordNet, contained in a black list, are deleted; the information
content of these nodes is generally too low to be useful for navigation. On the
other hand all the nodes that do not correspond to any tag and have a branching
factor lower than K or have no siblings are replaced by their children. The default
value for K is 2; in this way the structure of the hierarchy is preserved and at
the same time the most specific terms can ascend in the tree.

The branches are ordered by weight, where the weight of a node is calculated
as the number of resources in the set of interest that have been tagged with
the corresponding word in that acceptation. This guarantees that the branches
of the hierarchy that are most strictly related to the given tag are shown first
to the user. As a last step, the tree is output by the server in HTML or XML
format.

Fig. 3. A screenshot from the del.icio.us page for tag “pasta”, where the inner sidebar
shows an expandable hierarchy of related tags, provided by our application.

3.3 User interface

The system rests on Firefox Browser and Greasemonkey extension to execute
some JavaScript code inside the browser . When the user is visiting the del.icio.us

197

page for a certain tag, the script connects to our server to get the semantic tree of
related keywords for that tag; as soon as the information is ready, a new sidebar
is dynamically integrated in the page, showing an expandable tree. For each node
of the hierarchy there are two links, one directed to the del.icio.us page for that
tag and one to the page of the resources tagged both with that tag and with the
given one; the size of each tag’s intersection with the current keyword is shown
in parenthesis and represents an indicative measure of relatedness for the users.
Tooltips guide users showing WordNet definitions of the concepts corresponding
to each node and indicating the destinations of links.

Figure 3 shows the result obtained for tag “pasta”, where all the tags associ-
ated to the latest 300 sites tagged with “pasta” are displayed; in the picture you
can see the first branches (i.e. the most related ones, in this case those about
“food”), that have been expanded.

4 Tests and evaluation

We tested the system with different kinds of tags, according to different dimen-
sions. The first dimension is the specificity of the tag from which the exploration
starts; it’s very different to display the space of a keyword situated in a specific
domain or in a generic one. In the first case the resulting tree tends to be compact
and to allow easier navigation, while in the second case it tends to have a high
branching factor and a high number of first level nodes; anyway, as the branches
are always ordered by weight, the most interesting concepts in relation to the
given one are reachable exploring the first branches, also in case of very general
keywords. The second dimension is given by the popularity of a tag, while the
third one is given by the semantic field; each semantic field has its specificity
and some of them rest on more conventional and ordered sets of words, such as
the food context, visible in Figure 3, while some others are more prone to slang
and neologisms, such as the one of software.

Figure 4 shows the result obtained for tag “blog”; as “blog” often refers to a
kind of site more than to the content it can be considered a particular case, and
a very general tag as there are blogs almost about everything. “Blog” is also one
of the most popular tags in del.icio.us, so it is an extreme case also according
to the second dimension. We obtained this result considering the latest 2000
del.icio.us bookmarks tagged “blog”, and only the 15 more used tags for each
of them, to cut the long tail of less used tags. In the picture you can see the
hierarchy of scientific disciplines expanded.

According to this and other tests, the main problem for scalability seems to
be the high number of nodes in the first level of the tree; some improvements
could be obtained by making the tree compression algorithm more dynamic.

Comparing the related tags suggested by del.icio.us with the results we ob-
tained, we observed that they are always somewhere in the first branches in
the new sidebar. An exception must obviously be done for the words that don’t
belong to WordNet, that are absent in the new sidebar. Experimenting, for ex-
ample, with the “Greasemonkey” tag (the experiment is possible even though

198

Fig. 4. A screenshot from the del.icio.us page for tag “blog”, where the inner sidebar
shows an expandable hierarchy of related tags, provided by our application.

199

the word itself is not contained in the lexicon) we found that many important
related tags, like “JavaScript”, are not recognized, while other important words,
such as “extension”, are interpreted in a wrong way as WordNet doesn’t contain
the acceptation related to software; all the tags for which there is in WordNet
an acceptation related to software have instead been correctly interpreted by
the system. These limitations could be addressed by resting on some domain
ontologies to integrate WordNet and on Wikipedia for reconducting slang forms
to more conventional ones (for example, Wikipedia recognizes “nyc” as an alter-
native form for “New York City”, while WordNet does not).

In many cases synonyms or just different ways of spelling a word happen to
be close to each other and easily recognizable in the tree provided by the new
sidebar: the semantic hierarchy helps to face the problem of the synonym control
to which a folksonomy is naturally prone.

As a last consideration we want to mention the problem of gaming. It’s not
unusual in del.icio.us to see the related tags sidebar entirely mucked up by spam,
as we found in some of our examples. Gamers can trick del.icio.us to gain a good
position for the tags they want to show and, as there are just a dozen tags
suggested, the whole sidebar can easily be compromised. In the new sidebar the
problem is embanked: as a much higher number of tags is shown, the presence
of some spam tags doesn’t make the whole suggestion system unuseful;however,
the order of branches could be gamed .

5 Conclusions and Future Work

We have proposed a new approach to integrate the navigation interface of a folk-
sonomy adding explicit semantics provided by an ontology; we have developed a
tool that uses WordNet to build a semantic hierarchy that helps users navigate
and find related resources in del.icio.us.

We have shown that in this way it is possible to combine some advantages
of the traditional top down approach to classification with the ones of the col-
laborative paradigm that is emerging on the Web, providing richer possibilities
of searching and browsing, and dealing with some of the limitations to which
folksonomies are prone, such as lack of recall, synonym control and gaming.

Our application is actually just a prototype and can be improved in several
directions. The algorithm for the tree compression is one of the most delicate
issues and could be improved by making it dynamic also for higher levels of the
hierarchy, instead of just eliminating words contained in a black list.

Many improvements might be reached in tag recognition by using local word-
nets in different languages and domain ontologies for specific terms.

As future work, it would be also interesting to use the results of tag disam-
biguation, performed by our application, to filter resources and not only tags;
in this way it might be possible, for example, to show, among the del.icio.us
bookmarks tagged as “turkey”, only the ones that have been individuated as
related to the geographical acceptation.

200

References

1. Clay Shirky. Shirky: Ontology is overrated – categories, links, and tags, 2005.
http://shirky.com/writings/ontology overrated.html.

2. Emanuele Quintarelli. Folksonomies: power to the people. June 2005. http://www-
dimat.unipv.it/biblio/isko/doc/folksonomies.htm.

3. Ellyssa Kroski. The hive mind: Folksonomies and user-based tagging, December
2005. http://infotangle.blogsome.com/2005/12/07/the-hive-mind-folksonomies-
and-user-based-tagging/.

4. Harry Halpin, Valentin Robu, and Hana Shepard. The dynamics and semantics of
collaborative tagging. In Proceedings of the 1st Semantic Authoring and Annotation

Workshop (SAAW’06), 2006.
5. Adam Mathes. Folksonomies – cooperative classifica-

tion and communication through shared metadata, December
2004. http://www.adammathes.com/academic/computer-mediated-
communication/folksonomies.html.

6. E. Quintarelli, L. Rosati, and A. Resmini. Facetag: Integrating bottom-up and
top-down classification in a social tagging system. In IA Summit 2007, 2007.

7. Christoph Schmitz, Andreas Hotho, Robert Jschke, and Gerd Stumme. Mining
association rules in folksonomies. In V. Batagelj, H.-H. Bock, A. Ferligoj, and
A. iberna, editors, Data Science and Classification. Proceedings of the 10th IFCS

Conf., Studies in Classification, Data Analysis, and Knowledge Organization, pages
261–270, Heidelberg, July 2006. Springer.

8. Celine Van Damme, Martin Hepp, and Katharina Siorpaes. Folksontology: An
integrated approach for turning folksonomies into ontologies. In Bridging the Gap

between Semantic Web and Web 2.0 (SemNet 2007), pages 57–70, 2007.
9. C. Fellbaum. WordNet – An Electronic Lexical Database. MIT Press, 1998.

10. Scott Golder and Bernardo A. Huberman. The structure of collaborative tagging
systems, Aug 2005. http://arxiv.org/abs/cs.DL/0508082.

11. Hend S. Al-Khalifa and Hugh C. Davis. Towards better understanding of folkso-
nomic patterns. In HT ’07: Proceedings of the 18th conference on Hypertext and

hypermedia, pages 163–166, New York, NY, USA, 2007. ACM Press.
12. Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet: : Similarity

- measuring the relatedness of concepts. In AAAI, pages 1024–1025, 2004.
13. S. Patwardhan, T. Pedersen, and S. Banerjee. SenseRelate::TargetWord - A Gen-

eralized Framework for Word Sense Disambiguation. In Proceedings of the ACL

Interactive Poster and Demonstration Sessions, pages 73–76, Ann Arbor, MI, June
2005.

201

Reasoning with Instances of Heterogeneous Ontologies�

Luciano Serafini and Andrei Tamilin

Data & Knowledge Management Group
Foundation Bruno Kessler - IRST

Via Sommarive 18, 38100 Povo di Trento, Italy

Abstract. We address the problem of reasoning with instances of heterogeneously
formalized ontologies. Given a set of semantic mappings, reconciling concep-
tual and instance level heterogeneity between the input ontologies, we build our
approach upon the capability of mappings to enforce a propagation of concept
membership assertions between ontologies. The approach is formally grounded
on a distributed description logic framework, which formally encodes ontologies
as description logic knowledge bases and mappings as bridge rules and individ-
ual correspondences. We first give a logical characterization to the propagation
of concept membership assertions along bridge rules and individual correspon-
dences between the input SHIQ-ontologies, and further define a sound and com-
plete tableau algorithm for capturing such a propagation.

1 Motivation and Approach

Ontology heterogeneity is one of the crucial problems to be solved on the semantic web.
To sustain this claim it is enough to give a glance on the actual situation on the web –
different ontologies although representing the same or largely overlapping domains do
it in different, heterogeneous ways.

The state of the art approaches to the problem of reconciling heterogeneity between
ontologies are built upon the utilization of semantic mappings. Roughly, a mapping
comprises relations between semantically related elements of different ontologies. For
example, a mapping can express the fact that the concept Automobile in one ontology
is semantically equivalent to the concept Car in another ontology, or that the instance
ferrary enzo in one ontology semantically corresponds to the instance f60 in the other
ontology. To discover mappings a number of (semi-)automated techniques and tools can
be applied; we refer the reader to the comprehensive overview of the state of the art by
Euzenat and Shvaiko in [5].

Once mappings are stated, it is necessary to provide a method for reasoning with
them. Formally, this amounts to evaluating logical consequences of mappings on the
mapped ontologies. Mappings form a source to a target ontology can be used to transfer
knowledge between the two ontologies. Due to the formal correspondences of ontolo-
gies to DL knowledge bases, there are two types of knowledge that can be transferred:
terminological knowledge (i.e., mappings can force new concept subsumption axioms
� This is a revised version of the paper “Instance Migration over Heterogeneous Ontology En-

vironments” accepted for presentation at ISWC2007

202

in the target ontology) and assertional knowledge (i.e., mappings can force new instance
assertions to concepts in the target ontology).

The main objective of the paper is to provide a logical characterization of the as-
sertional information enforced by a set of mappings and on the base of this characteri-
zation enable reasoning with individuals of mapped ontologies. Our approach relies on
the logical framework of distributed description logics (DDL) introduced by Borgida
and Serafini in [3]. In such a framework a distributed knowledge base consists of a
family of standard DL knowledge bases, corresponding to each given ontology, a set
of bridge rules, corresponding to mapping between pairs of terminologies (T-boxes),
and individual correspondences, corresponding to mapping between pairs of elements
in instance storages (A-boxes).

This work presents: (1) the logical characterization of the capability of bridge rules
and individual correspondences to propagate concept membership assertions across
mapped ontologies and its affection on reasoning with instances of the ontologies; (2)
the overview of a sound and complete tableau algorithm for reasoning with instances
of SHIQ-ontologies, built as an extension to the classical SHIQ-A-box tableau [10]
with the backward chaining strategy for computation of propagated concept member-
ship assertions; (3) the outline of the practical implementation of the A-box reasoning
algorithm in a distributed DDL Reasoner DRAGO.

The paper is organized as follows. In Section 2 we recall a definition of DDL’s
distributed knowledge base with bridge rules and individual mappings. In Section 3
we investigate reasoning with instances in distributed knowledge bases; we start with
analysis of knowledge propagation along bridge rules and individual correspondences
and further introduce in Section 4 a tableau reasoning algorithm capturing it. We end
up with an overview of related work and concluding remarks.

2 Distributed Knowledge Bases

Given a setting of multiple ontologies interconnected by directed semantic mappings,
the distributed description logics allows to formally encode it in terms of a distributed
knowledge base. Following the original definitions of Borgida and Serafini in [3], in
this section we recall the basics of distributed knowledge bases and reasoning tasks
available for them.

2.1 Syntax and Semantics

The first component of a distributed knowledge base is a family of knowledge bases
K = {Ki}i∈I . According to a standard DL definitions, each Ki consists of a termino-
logical component Ti (T-box) and an assertional component Ai (A-box). Since the very
same symbol can be used in two knowledge bases with different meaning, to unam-
biguously refer to elements of Ki, they are prefixed with the index i of the knowledge
base. The notations i:a i:C, i:C � D, i:C(a) and i:R(a, b), stand for an individual
a, concept C, subsumption C � D, assertions C(a) and R(a, b), respectively in the
knowledge base Ki.

203

Mappings from Ki to Kj (i �= j) are encoded as sets of bridge rules
– i:C �

−→ j:D (into-bridge rule)
– i:C �

−→ j:D (onto-bridge rule)
and individual correspondences

– i:a �−→ j: b (individual correspondence)
where C and D are concept names of Ti and Tj , and a and b are individuals of Ai and
Aj respectively1.

Both bridge rules and individual correspondences from Ki to Kj express a sub-
jective possibility of Kj to translate some of the concepts and individuals of Ki into
its local concepts and individuals. For example, the following mapping between two
ontologies describing the domain of cars

i:Transmission
�

−→ j:Gearbox (1)

i:Motor
�

−→ j:V Engine (2)
i:sequential manual transmission �−→ j: f1 gearbox (3)

can be given with the following intuitive reading: from Kj’s point of view, i’s con-
cept Transmission is more specific than its local concept Gearbox, i’s concept Motor

is conversely more general than its local concept V Engine, and finally that i’s in-
dividual sequential manual transmission can be translated into its local individual
f1 gearbox. Note that in the general case, DDL admits that an individual can have
more than one translation.

A distributed T-box T consists of T-boxes Ti and a collection B of bridge rules be-
tween them. A distributed A-box A consists of A-boxes Ai and a collection of individual
correspondences C. A distributed knowledge base K is then a tuple 〈T,A〉.

The semantics of DDL is defined with a fundamental assumption that each knowl-
edge base Ki in the family is locally interpreted on its local interpretation domain. To
support directionality, (i.e., mappings from i to j only propagate in the i-to-j-direction),
we admit the hole interpretation Iε with empty domain (see more details in [12])2. By
definition, we impose that Iε satisfies any knowledge base.

A distributed interpretation I of a distributed knowledge base K = 〈T,A〉 consists
of a family of local interpretations Ii on local interpretation domains ΔIi and a family
of domain relations rij ⊆ ΔIi ×ΔIj between pairs of local domains. Domain relation
rij is defined to denote {d′ ∈ ΔIj | 〈d, d′〉 ∈ rij}.

A distributed interpretation I satisfies a distributed knowledge base K = 〈T,A〉, is
called a model of K, if all its’ components are satisfied according to the following rules:

– Ii satisfies Ki

1 In this work we concentrate only on individual correspondences, and don’t consider complete
correspondences as introduced in [3].

2 Classically, DL interpretation maps every individual into an element of the domain, while
the hole maps everything into the empty set. To allow homogeneous treatment of standard
DL interpretations and holes, we require that any individual x is standardly interpreted into a
singleton set, rather than into an element of the domain. Hence, Ii |= C(a) ⇐⇒ a

Ii ⊆ C
Ii ,

rather than a
Ii ∈ C

Ii .

204

– rij(CIi) ⊇ DIj for all i:C �

−→ j:D

– rij(CIi) ⊆ DIj for all i:C �

−→ j:D
– bIj ⊆ rij(aIi) for all i:a �−→ j: b

2.2 Distributed inference services

Although both in DL and DDL the fundamental reasoning services include checking
concept subsumption and instance checking within a certain ontology, in DDL, besides
the ontology itself, the other related by mappings ontologies should be taken into ac-
count. Given a distributed knowledge base K = 〈T,A〉, DDL defines the following
distributed inference services:

Subsumption: A concept C is subsumed by a concept D in i with respect to K if for
every distributed interpretation I of K we have that CIi ⊆ DIi . In this case we
will write K |= i:C � D.

Instantiation: An individual a is an instance of a concept C in i with respect to K if
for every distributed interpretation I of K we have that aIi ⊆ CIi . In this case we
will write K |= i:C(a).

Subsumption service is typically called a terminological reasoning service, while
instantiation service is called assertional reasoning service. So far, the task of termino-
logical reasoning has been undisclosed in [12]. It has been shown that certain combina-
tions of into- and onto-bridge rules can lead to the propagation of knowledge in form of
subsumption axioms across ontologies participating in DDL. Moreover, in case of DDL
with SHIQ components without instances adding these additional propagation rules
to existing DL tableaux algorithms leads to a correct and complete reasoning in DDL.
In the following sections we close the gap by addressing the question of assertional
reasoning in DDL.

3 Characterization of Reasoning with Instances

For the sake of clarity, we start considering the case of DDL with two component knowl-
edge bases and unidirectional sets of bridge rules and individual correspondences. The
general results and proofs can be found in the technical report [13].

3.1 Inference patterns

In the following we characterize the knowledge propagated from a knowledge base i

(the source) to j (the target) by a set of propagation rules of the form:

(1) facts in i, (2) bridge rules from i to j, (3) individual mappings from i to j

(4) fact in j

which must be read as: if the facts in (1) are true in Ki, the bridge rules in (2) are
contained in Bij , the individual correspondences in (3) are contained in Cij , then the
fact in (4) must be true in Kj .

205

Following the semantics of mappings in DDL outlined in the previous section, it
can be observed that the individual correspondences can interact with into-bridge rules
with the effect of propagating concept membership assertions:

i:C(a), i:C �

−→ j:D, i:a �−→ j: b
j:D(b)

(4)

Because bIj ⊆ rij(aIi) ⊆ rij(CIi) ⊆ DIj , we indeed have that I |= j:D(b).
In languages that support disjunction, the above propagation can be generalized to

the propagation of concept membership assertions over a disjunction of n � 0 concepts:

i: (C1 � . . . � Cn)(a), i:Ck

�

−→ j:Dk (1 � k � n), i:a �−→ j: b
j: (D1 � . . . � Dn)(b)

(5)

Rule (5) appears to be the most general form of assertion propagation in DDL when
individual correspondences are restricted to be functional. A set of individual corre-
spondences Cij is functional if for every individual a of Ai the set Cij contains at most
one individual correspondence i:a �−→ j: b. For the sake of presentation, in this paper
we restrict ourself to functional individual correspondences, leaving the most general
case to the technical report [13])3.

It is also important to note, that when n = 0, the inference pattern in (5) becomes
the following inference rule:

i:⊥(a), i:a �−→ j: b
j:⊥(b)

(6)

which states that to propagate the inconsistency of Ki to Kj it’s enough to have one
single individual correspondence. From the representational point of view this inference
rule is very fragile. We currently do not see an easy solution to fix this sensitivity to
inconsistency propagation. This topic will be subject for further studies.

3.2 Soundness and completeness

To demonstrate the correctness and completeness of the inference pattern presented in
Section 3.1, we follow the approach similar to the one taken in [12]. The main idea con-
sists in construction of an operator which essentially applies the generalized inference
pattern (5) to extend knowledge bases with new assertions induced by mappings.

Given a set of bridge rules B12 and set of individual correspondences C12 from K1

to K2, the individual correspondence operator C12(·), taking as input a knowledge base

3 To give an intuition of the effect of non functional individual mappings, consider the case in
which there are two into-bridge rules i : C1

�

−→ j : D1 and i : C2

�

−→ j : D2 and, the non
functional set of individual mappings {i : a �−→ j : b, i : a �−→ j : c}. Then the fact that
Ki |= C1 �C2(a) entails the disjunctive assertion (D1(b)∧D1(c))∨ (D2(b)∧D2(c)). This
implies that the general case requires technicalities for disjunctive A-boxes.

206

K1 and producing an A-box of K2, is defined as follows:

C12(K1) =

⎧
⎨

⎩
(D1 � . . . � Dn)(b)

∣
∣
∣
∣
∣
∣

K1 |= (C1 � . . . � Cn)(a)

1:Ck

�

−→ 2:Dk ∈ B12 (1 � k � n)
1:a �−→ 2: b ∈ C12

⎫
⎬

⎭

It is remarkable that onto-bridge rules do not affect instance propagation. The reason is
that onto-bridge rules impose only existence of preimages of objects that already exists
in the target ontology. Into-bridge rules, instead, constraint the individual mappings to
be defined whithin a certain range. The individual correspondence operator formalizes
the assertional knowledge that is propagated across ontologies.

The characterization of the propagation of the terminological knowledge is charac-
terized by an analogous operator, called bridge operator, introduced in [12] and defined
as follows: B12(·), taking as input a knowledge base K1 and producing a T-box of K2:

B12(K1) =

⎧
⎪⎨

⎪⎩
B � D1 � . . . � Dn

∣
∣
∣
∣
∣
∣
∣

T1 |= A � C1 � . . . � Cn

1:Ck

�

−→ 2:Dk ∈ B12 (1 � k � n)

1:A �

−→ 2:B ∈ B12

⎫
⎪⎬

⎪⎭

With the remarkable exception of inconsistency propagation—by rule (6)—the individ-
ual correspondences do not affect the propagation of terminological knowledge. The
inferences formalized by the two operators described above completely describe the
possible propagations that are forced by a set of bridge rules and individual correspon-
dences. This is formally stated in the following theorem.

Theorem 1 (Soundness and completeness). Let K12 be a distributed knowledge base
consisting of K1, K2 SHIQ knowledge bases, and B12, C12 mappings between them.
For any statement φ (of the form C � D or C(a)) in the language of K2

K12 |= 2 : φ ⇐⇒ 〈T2 ∪ B12(K1), A2 ∪ C12(K1)〉 |= φ

The proof of the generalization of the Theorem 1 is fully described in the technical
report. Some remarks are necessary.

Independence between terminological and assertional propagation From the char-
acterization above one can see that propagation of terminological and assertional
knowledge are orthogonal. The two effects can be computed independently in par-
allel. What is more important, however, is that the change of the A-box does not af-
fect the propagation of the terminological knowledge. This means that if the source
T-box does not change the terminological propagation is computed once for all.

Local propagation of assertional knowledge Assertional propagation operator ensures,
if a change of the source A-box involves only the set of individuals {a1, . . . , an},
then assertional propagation must be computed only for the portion of the target
A-box A2 concerning the set of individuals {b | 1 : ai �−→ 2 : b ∈ C12}.

Upper bound and complexity If the mapping from 1 to 2 is finite and contains m

into-bridge rules, n onto-bridge rules, and o individual correspondences, then the

207

bridge operator B12 generates at most n ∗ 2m subsumption statements, and the in-
dividual operator C12 generates at most o ∗ 2m instance membership statements.
Since the propagation of statements needs checking subsumption and instantiation
in the source knowledge base, which is EXPTIME complete, we have that comput-
ing subsumption and instantiation in a distributed setting is EXPTIME complete in
the dimension of the source knowledge base plus mappings.

Vanilla implementation The above theorem supports a vanilla implementation of for-
ward chaining inference engine for DDL. The implementation consists of three
steps: computation of propagation operators B12(K1) and C12(K1), construction
of extended version of knowledge base K2 as 〈T2 ∪ B12(K1), A2 ∪ C12(K1)〉,
and finally applying to this knowledge base one of existing DL reasoners, such
as FaCT++ [15], Racer [7], or Pellet [14].

The vanilla approach to reasoning has a strong advantage of reuse of existing highly
optimized DL reasoners, however it can be very costly for situations when semantic
mappings are changing dynamically or when the number of reasoning questions to be
verified is relatively small. In the next section, we propose an alternative, backward
chaining approach to reasoning, which does “lazy” computation of propagated axioms
and hence better fits to instable and short-living distributed environments.

4 Distributed SHIQ-A-box Tableaux Algorithm

In this section we present a distributed tableaux algorithm for reasoning with instances
in DDL. Our design idea consists in constructing a network of standard DL tableaux,
one for each ontology, which communicate via mappings in a backward fashion.

Since we restricted the expressivity of ontologies participating in DDL to SHIQ
DL, we will consider in the following that ontologies K1 and K2 from a distributed
knowledge base K12 = 〈T12,A12〉 are attached with SHIQ-tableau reasoning proce-
dures Tab1 and Tab2 [10]. Due to the reduction of reasoning with concepts to reasoning
with instances [2], we suppose that each procedure Tabi(α) can check the satisfiability
of any statement α of form i:C � D, i:C(a).

As described in [10], the SHIQ-tableau works on a so called “completion for-
est”, a collection of trees whose root nodes correspond to instances in A-box. Given a
knowledge base, the algorithm initializes a completion forest F with a set of root nodes
x0 = {xk

0
} corresponding to a set of instances bk in A-box, labels each xk

0
with a set

L(xk

0
) of concepts C for each concept assertion C(bk) in A-box, and finally draws an

edge between xk

0
and xm

0
for each role assertion R(hk, hm) in A-box. After that, the

set of SHIQ completion rules expanding the forest F is applied. The fully expanded
forest then represents a model of the knowledge base. To test entailment of arbitrary
assertion X(a), ¬X(a) is added to A-box and further the tableau is expanded to see
whether a model of such knowledge base can be constructed or not.

To accommodate the knowledge propagation from K1 to K2 in K12, we intervene
in the completion process of Tab2 in order to capture new facts induced by bridge rules
and individual correspondences. Hence, we get a distributed tableaux procedure DTab2

which extends Tab2 with two additional expansion rules:

208

C12-rule:

if 1. x ∈ x0, such that x = bI2 and 1:a �−→ 2: b,
H ⊆ {Hk | 1:Bk

�

−→ 2:Hk ∈ B12},
B = {Bk | Hk ∈ H, 1:Bk

�

−→ 2:Hk ∈ B12},
2. Tab1((

⊔
B) (a)) = true for

⊔
H �∈ L(x),

then L(x) −→ L(x) ∪ {
⊔

H}

B12-rule:

if 1. G ∈ L(x), such that 1:A �

−→ 2:G ∈ B12,
H ⊆ {Hk | 1:Bk

�

−→ 2:Hk ∈ B12},
B = {Bk | Hk ∈ H, 1:Bk

�

−→ 2:Hk ∈ B12},
2. Tab1(A �

⊔
B) = true for

⊔
H �∈ L(x),

then L(x) −→ L(x) ∪ {
⊔

H}

The principle idea of these additional expansion rules consists in implementing
backward versions of bridge and individual correspondences operators introduced in
Section 3.2. According to rule C12, if DTab2 encounters a root node x connected by an
individual correspondence, then a disjunction of concepts

⊔
H should be added to the

label L(x) if
⊔

H(x) is entailed by interaction of individual correspondence with into-
rules. To determine this entailment, DTab2 remotely requests foreign Tab1 to check if
it is the case that

⊔
B(b) in K1.

The role of B12-rule is to analyse the nodes of completion forest and import con-
sequences of subsumption propagations. If DTab2 encounters a node x which contains
a label G connected by an onto-bridge rule, then if G �

⊔
H is entailed by the bridge

rules, the label
⊔

H is added to x. While in order to determine the entailment, DTab2

invokes the procedure Tab1 with a question whether a subsumption A �
⊔

B holds in
K1.

The distributed execution of DTab2 can be intuitively depicted as follows:
Tab1(Θ)

y1

0
y2

0

. . .
yn

0

Tab1(Ω)

w1

0
w2

0

. . .
wn

0

. . .

DTab2(α)

x1

0
x2

0

. . .
xm

0

x

C12

B12

Theorem 2 (Termination, Soundness, Completeness). Given SHIQ DL knowledge
bases K1 and K2, let K12 = 〈〈{T1, T2},B12〉 , 〈{A1,A2},C12〉〉 be a distributed knowl-
edge base. Then, given a SHIQ statement α

1. a distributed procedure DTab2(α) terminates, and

209

2. α is satisfiable in K2 with respect to K12 if and only if DTab2(α) yields a complete
and clash-free completion forest.

It can be shown that the proposed algorithm enjoys generalization to arbitrary num-
ber of SHIQ knowledge bases participating in DDL, and moreover can be extended
to distributed knowledge bases containing cyclical pathes of bridge rules and individual
correspondences. For the sake of clarity, we omit the discussion of these generalizations
and refer the reader to the technical report [13] for details.

Note that due to the remark to Theorem 1 on independence of terminological and
assertional propagation, the implementation of the tableaux introduced in this section
can be constructed on top of existing implementation of DRAGO DDL Reasoner by
reusing the implementation of bridge completion rule and adding additionally the indi-
vidual completion rule as described in the present algorithm.

5 Related Work

The importance of resolving heterogeneity problem on the web pushes the big research
efforts to devising frameworks capable of representing and reasoning with multiple
ontologies interrelated by semantic mappings. While DL is already the standard for
working with web ontologies, the question of formal representations and reasoning with
mappings is still a subject to the standardization.

In SomeWhere [6], the authors target a question of decentralized approach to query-
ing heterogeneous ontologies. Mappings in SomeWhere has a form of a subsumption
statements and the reasoning is based on rewriting techniques for combining reasoning
over heterogeneous ontologies. The big advantage of the presented approach is its scala-
bility, while the disadvantage is its limitation to a “propositional” ontologies, containing
only disjunction, conjunction and negation.

Another recent example of decentralized infrastructure for querying distributed on-
tologies is KAONp2p [8, 9]. The authors adopt the approach of [4] to express mappings
as correspondences between conjunctive queries over ontologies. The querying further
requires the terminologies and mapping to be merged into a single global ontology,
while instance data is then retrieved from distributed instance storages.

The recent study of query answering in distributed description logics has been pro-
posed in [1]. The main idea consist in constructing a closure ontology by forward prop-
agating, via DDL mappings, relevant axioms contained in other mapped ontologies (in
a vein of vanilla implementation of DDL reasoner discussed in the current study). Do-
ing so, further enables reformulation of distributed query answering problem into local
query answering. Although the approach of [1] is sound, the authors point out the in-
completeness of their study.

Another important framework is E-connections [11]. Original purpose of E-connections
is to aggregate ontologies that model different (non-overlapping) aspects of the world,
rather then integrate those overlapping as in DDL. Nonetheless, it has been shown in
[11] that mathematically DDL constructs can be simulated in E-connections, however
sacrificing the directionality of knowledge propagation. Another difference concerns
with reasoning approach. In contrast to distributed coordinating tableaux in DDL, in E-
connections a global tableau, both theoretically and practically, needs to be constructed.

210

6 Conclusion

In the present study, we investigated a task of correct and complete reasoning with in-
stances over heterogeneous ontologies. We formally grounded our approach on DDL
framework. Theoretically, we formalized inferences with instances and defined the dis-
tributed tableaux algorithm for reasoning with multiple SHIQ DL ontologies. Prac-
tically, we extended terminological reasoning services available in the DRAGO DDL
Reasoner with the support of assertional reasoning tasks.

References

1. F. Alkhateeb and A. Zimmermann. Query Answering in Distributed Description Logics. In
Proc. of the 1st Conference on New Technologies, Mobility and Security (NTMS), 2007.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. 2003.

3. A. Borgida and L. Serafini. Distributed Description Logics: Assimilating Information from
Peer Sources. Journal of Data Semantics, 1:153–184, 2003.

4. D. Calvanese, G. De Giacomo, and M. Lenzerini. A Framework for Ontology Integration.
In Proc. of the Semantic Web Working Symposium (SWWS-2001), pages 303–316, 2001.

5. J. Euzenat and P. Shvaiko, editors. Ontology Matching. Springer Verlag, 2007.
6. F. Goasdoué and M-C. Rousset. Querying Distributed Data through Distributed Ontologies:

a Simple but Scalable Approach. IEEE Intelligent Systems, 18(5):60–65, 2003.
7. V. Haarslev and R. Moller. RACER System Description. In Proceedings of the International

Joint Conference on Automated Reasoning (IJCAR-2001), pages 701–706, 2001.
8. P. Haase and B. Motik. A Mapping System for the Integration of OWL-DL Ontologies.

In Proceedings of the First International Workshop on Interoperability of Heterogeneous
Information Systems (IHIS 05), pages 9–16. ACM Press, 2005.

9. P. Haase and Y. Wang. A Decentralized Infrastructure for Query Answering over Distributed
Ontologies. In Proceedings of the 22nd Annual ACM Symposium on Applied Computing
(SAC-2007), 2007.

10. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Description
Logic SHIQ. In Proceedings of the 17th International Conference on Automated Deduc-
tion (CADE-2000), pages 482–496, 2000.

11. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-Connections of Abstract Description
Systems. Artificial Intelligence, 156(1):1–73, 2004.

12. L. Serafini, A. Borgida, and A. Tamilin. Aspects of Distributed and Modular Ontology
Reasoning. In Proc. of the 19th Joint Conference on Artificial Intelligence (IJCAI), 2005.

13. L. Serafini and A. Tamilin. Reasoning with Instances in Distributed De-
scription Logics. Technical report, Fondazione Bruno Kessler - IRST, 2007.
http://sra.itc.it/people/tamilin/publications/2007/swap/tr.pdf.

14. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A Practical OWL-DL
Reasoner. Journal of Web Semantics, 2006.

15. D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System Description. In
Proc. of the International Joint Conference on Automated Reasoning (IJCAR), volume 4130,
pages 292–297, 2006.

211

Some experiments on the usage of a deductive
database for RDFS querying and reasoning

Giovambattista Ianni1,2, Alessandra Martello1,
Claudio Panetta1, and Giorgio Terracina1

1 Dipartimento di Matematica, Università della Calabria,
I-87036 Rende (CS), Italy,

2 Institut für Informationssysteme 184/3, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{ianni,a.martello,panetta,terracina}@mat.unical.it

Abstract. Ontologies are pervading many areas of knowledge represen-
tation and management. To date, most research efforts have been spent
on the development of sufficiently expressive languages for the represen-
tation and querying of ontologies; however, querying efficiency has re-
ceived attention only recently, especially for ontologies referring to large
amounts of data. In fact, it is still uncertain how reasoning tasks will scale
when applied on massive amounts of data. This work is a first step toward
this setting: based on a previous result showing that the SPARQL query
language can be mapped to a Datalog, we show how efficient querying
of big ontologies can be accomplished with a database oriented exten-
sion of the well known system DLV, recently developed. We report our
initial results and we discuss about benefits of possible alternative data
structures for representing RDF graphs in our architecture.

1 Introduction
The Semantic Web [4, 11] is an extension of the current Web by standards and
technologies that help machines to understand the information on the Web so
that they can support richer discovery, data integration, navigation, and au-
tomation of tasks. Roughly, the main ideas behind the Semantic Web aim to (i)
add a machine-readable meaning to Web pages, (ii) use ontologies for a precise
definition of shared terms in Web resources, (iii) make use of KR technology
for automated reasoning on Web resources, and (iv) apply cooperative agent
technology for processing the information of the Web. The development of the
Semantic Web proceeds in layers of Web technologies and standards, where every
layer stays on top of lower layers.

There is currently much research work on the three consecutive RDF(S),
Ontology and Rule (listed from bottom to top) layers. The RDF(S) layer was
initially conceived as a basic framework for defining resources available on the
Web and their connections. In this vision, RDF(S) should have little or no se-
mantics, and focuses only on the logical format of information, which is based
on an encoding of data as a labeled graph (or equivalently, a ternary relation,
commonly called RDF triplestore or RDF graph).

212

The Ontology layer should be built on top of RDF(S) and should provide the
necessary infrastructure for describing knowledge about resources. An ontology
can be written using one of the three official flavors of the OWL language [18],
currently accepted as a W3C Standard Recommendation. An OWL knowledge
base is written in RDF(S), where some of the keywords of the language are now
given additional semantics.

OWL is based on decidable flavors of description logics and features rich ex-
pressiveness which, unfortunately, introduces high computational costs for many
of the reasoning tasks commonly performed over an ontology. Nonetheless, a va-
riety of Web applications require highly scalable processing of data. This puts
the focus back to the lower RDF(S) data layer. In this context, RDF(S) should
play the role of lightweight ontology language. Indeed, RDF(S) has few and sim-
ple descriptive capabilities (mainly, the possibility to describe and reason over
monotonic taxonomies of objects). One can thus expect from RDF(S) query sys-
tems the ability of querying very large datasets with excellent performance, yet
allowing limited reasoning capabilities on the same data.

As a candidate W3C recommendation [8], the SPARQL language is reaching
consensus as query language of election for RDF(S) data. In this scenario, an
RDF(S) triplestore plays the role of a database, but, as an important difference,
a triplestore might contain information not explicitly stored, obtainable by log-
ical inference. Allowed logical inference rules are given by the official RDF(S)
semantics specification, whereas SPARQL plays the role of query language.

Although SPARQL-enabled triplestores are many [3, 20, 2, 21] their scalabil-
ity or querying capabilities are still far from maturity, having one or more of the
following drawbacks:

– RDF(S) semantics is implemented by materializing all the inferred data a
priori. This latter option can not be adopted in practice if massive amount of
data are involved in the inferencing process, since inferred information is usually
much bigger in size than explicit information.

– The basic reasoning machinery of RDF(S) prescribes heavy usage of transi-
tive closure (recursive) constructs. Roughly speaking, given a class taxonomy,
an individual belonging to a leaf class must be inferred to be member of all the
ancestor classes, up to the root class. This prevents a straightforward implemen-
tation of RDF(S) over RDBMSs, since RDBMSs usually feature very primitive,
inefficient implementations of recursion in their native query languages.

But, interestingly, in Datalog, recursion is a first class citizen. Also, most of
the SPARQL features can be mapped to a rule based language with stable model
semantics [19]. Intuitively, a large fragment of the RDF(S) semantics can thus
be implemented by means of a translation to an equivalent Datalog program.

Thus, one may think to adopt a Datalog based language language for imple-
menting RDF(S). Value invention constructs, as those introduced in [6] (where it
is defined a form of Answer Set Programming with external predicates and value
invention), allow, in practice, the manipulation of infinite universes of individuals
(as in the RDF(S) scenario) in a finite model setting.

Many important efforts in the Semantic Web community aim to integrate
Ontologies with Rules under stable model semantics (e.g. [9, 16]), considering

213

both OWL and RDF(S). In this context, the possibility to exploit a Datalog-
like language to express both the ontology and the query/rule language would
provide important benefits.

However, it is well known in the research community that current (extended)
Datalog based systems present important limitations when the amount of data
to reason about is large; in fact: (i) reasoning is generally carried out in main-
memory and, hence, the quantity of data that can be handled simultaneously is
limited; (ii) the interaction with external (and independent) DBMSs is not trivial
and, in several cases, not allowed at all, but in order to effectively share and
elaborate large ontologies these must be handled with some database technology;
(iii) the efficiency of present datalog evaluators is still not sufficient for their
utilization in complex reasoning tasks involving large amounts of data.

In the following we refer to a recently proposed database-oriented extension
of the well known Answer Set Programming system DLV, named DLVDB [22],
which presents the features of a Deductive Database System (DDS) and can
do all the reasoning tasks directly in mass-memory; DLVDB does not have, in
principle, any practical limitation in the dimension of input data, is capable of
exploiting optimization techniques both from the DBMS field (e.g., join ordering
techniques [12]) and from the DDS theory (e.g., magic sets [17]), and can easily
interact (via ODBC) with external DBMSs.

DLVDB turned out to be particularly effective for reasoning about massive
data sets (see benchmark results presented in [22]) and supports a rich query
and reasoning language including stratified recursion, true negation, negation as
failure, and all built-in and aggregate functions already introduced in DLV [10].
As a consequence, DLVDB seems to be a good candidate also as an ontology
querying engine.

To accomplish this goal, several building bricks are missing: (i) a mapping
from RDF(S) semantics to Datalog; (ii) the translation of SPARQL queries in
Datalog; (iii) the connection of massive RDF(S) data to a suitable system such
as DLVDB ; (iv) the evaluation of queries directly on a given triplestore using
DLVDB .

The present paper concentrates on points (iii) and (iv). About point (i),
(ii) and (iii) the reader may refer to [13],[5] and [19]. In particular, it aims to
represent a first step toward the reconciliation of expressiveness with scalability
for ontology querying, by means of deductive database technology.

The paper is organized as follows. In the next Section we briefly introduce
the main peculiarities of the DLVDB system. The Section 3 is devoted to present
our experimental results, whereas in the section 4 we discuss about alternative
data structure better suited to handling RDF data. Finally, in Section 5 we draw
some conclusions.

2 DLVDB

DLVDB [22] is an extension of the well known ASP system DLV [14] designed
both to handle input and output data distributed on several databases, and
to allow the evaluation of logic programs directly on databases. It combines the
expressive power of DLV with the efficient data management features of DBMSs
[12].

214

The detailed description of DLVDB is out of the scope of the present paper;
here we briefly outline the main peculiarities which make it a suitable Datalog-
based ontology querying engine. The interested reader can find a complete de-
scription of DLVDB and its functionalities in [22].
The system, along with documentation and some examples, are available for
download at http://www.mat.unical.it/terracina/dlvdb.

Generally speaking, DLVDB allows for two typologies of execution: (i) direct
database execution, which evaluates logic programs directly on database, with
a very limited usage of main-memory but with some limitations on the expres-
siveness of the queries, and (ii) main-memory execution, which loads input data
from different (possibly distributed) databases and executes the logic program
directly in main-memory. In both cases, interoperation with databases is pro-
vided by ODBC connections; these allow handling, in a quite simple way, data
residing on various databases over the network.

For the purposes of this paper, it is particularly relevant the application
of DLVDB in the direct database execution modality for the querying of large
ontologies. In fact, usually, the user has his data stored in (possibly distributed)
triplestores and wants to carry out some reasoning on them; however the amount
of such data can be such that the evaluation of the query can not be carried out
in main-memory. Then, it must be evaluated directly in mass-memory.

Moreover, DLVDB turned out to be particularly effective for reasoning about
massive data sets (see benchmark results presented in [22]) and supports a suf-
ficiently rich reasoning language for querying ontologies (see also Section 3).

Three main features characterize the DLVDB system in the direct database
execution modality: (i) its ability to evaluate logic programs directly and com-
pletely on databases with a very limited usage of main-memory resources, (ii)
its capability to map program predicates to (possibly complex and distributed)
database views, and (iii) the possibility to easily specify which data is to be
considered as input or as output for the program. In the application context
considered in this paper, these characteristics allow the user to have a wide
flexibility in querying available ontologies.

In order to properly carry out the evaluation, the system needs to know the
mappings between input/output data and program predicates, as well as whether
the temporary relations possibly needed for the mass-memory evaluation should
be maintained or deleted at the end of the execution. The user can specify this
information by some auxiliary directives which must be fed to the system beside
the logic program.

3 Experiments

In this section we present the results of our experiments aiming at comparing
the performance of DLVDB with several state-of-the-art triplestore. The main
goal of our experiments was to evaluate both the scalability and the the query
language expressiveness of the tested systems. All tests have been carried out on
a Pentium 4 machine with a 3.00 GHz CPU and 1.5 Gbytes of RAM.

215

3.1 Compared Systems

In our tests we compared DLVDB with three state-of-the-art triplestores, namely:
Sesame, ARQ, and Mulgara. The first two systems allow both in-memory and
RDBMS storage and, consequently, we tested them on both execution modalities.
In the following we shall refer the in-memory version of Sesame (resp., ARQ) as
Sesame-Mem (resp. ARQ-Mem) and the RDBMS version as Sesame-DB (resp.
ARQ-DB). For each system we used the latest official available release. We next
briefly describe them.
Sesame [20] is an open source Java framework with support for storage and
querying of RDF(S) data. It offers to developers a flexible access API and several
query languages; however, its native language (which is the one adopted in our
tests) is SeRQL – Sesame RDF Query Language. In fact, the current stable
release of Sesame does not support the SPARQL language yet. Some of the query
language’s most important features are: (i) expressive path expression syntax
that match specific paths through an RDF graph, (ii) RDF Schema support, (iii)
string matching. Furthermore, it allows simplified forms of reasoning on RDF
and RDFS. In particular, inferences are performed by pre-computing the closure
R(G) of the input triplestore G. The latest official release currently available is
the version 1.2.7.
ARQ [3] is a query engine implementing SPARQL under the Jena framework3.
ARQ includes a rule-based inference engine and performs non materialized in-
ference. As for Sesame, ARQ can be executed with data loaded both in-memory
and on a RDBMS. We executed SPARQL queries from Java code using the
Jena’s API (version 2.5) in both execution modalities.
Mulgara [2] is a database system specifically conceived for the storage and re-
trieval of RDF(S). Mulgara is an Open Source active fork of the Kowari project4.
The adopted query language is iTQL (Interactive Tucana Query Language), a
simple SQL-like query language for querying and updating Mulgara databases.
A compatibility support with SPARQL is declared, yet not implemented. The
Mulgara Store offers native RDF(S) support, multiple databases (models) per
server, and full text search functionality. The system has been tested using its
internal storage data structures (XA Triplestore). The latest release available for
Mulgara is mulgara-1.0.0.

3.2 Benchmark Data Set

We adopted as reference benchmark data the DBLP database [15]. DBLP con-
tains a large number of bibliographic descriptions on major computer science
journals and proceedings; the server indexes more than half a million articles and
several thousand links to home pages of computer scientists. Recently, an OWL
ontology has been developed for DBLP data and the corresponding RDF can
be downloaded at the web address http://sw.deri.org/∼aharth/2004/07/dblp/.
The main classes represented in this ontology are Author, Citation, Document,
and Publisher, where a Document can be one of: Article, Book, Collection, In-
proceedings, Mastersthesis, Phdthesis, Proceedings, Series, WWW.

3 http://jena.sourceforge.net
4 http://www.kowari.org/

216

In order to test the scalability of the various systems we considered several
subsets of the entire database, each containing an increasing number of state-
ments and constructed in such a way that the greater sets strictly contain the
smaller ones. Generated data sets contain from 50000 to 2000000 RDF state-
ments5.

3.3 Tested Queries

As previously pointed out, the expressiveness of the query language varies for
each tested system. In order to compare both scalability and expressiveness,
we designed for kind of queries of increasing complexity, ranging from simple
selections to queries requiring different forms of inferences over the data.

In more detail, we selected the following for queries which will be referred to
as Q1, Q2, Q3 and Q4, respectively.

– Q1: Select the names of the Authors and the URI of the corresponding Articles
they are author of;

– Q2: Select the names of the Authors which published at least one Article in
year 2000;

– Q3: Select the names of the Authors which are creators of at least one document
(i.e. either an Article, or a Book, or a Collection, etc.);

– Q4: For each Author in the database, select the corresponding name and count
the number of Articles he published.

Here, queries Q1 and Q2 are simple selections; Q3 requires a simple form of
inference; in fact articles, books, etc. must be abstracted into documents. Query
Q4 requires the capability to aggregate data, which is not provided by all query
languages.

It is worth observing that queries Q1, Q2, and Q3 can be executed by all
the evaluated systems. As for Q3, we exploited the Krule engine for Mulgara,
the inferencing repository in Sesame and the inferencing Reasoner in ARQ. Note
that Sesame-DB materializes the possible inferenced data just during the loading
of the RDF dataset in the database; however, in our tests, we measured only the
query answering time for it. Query Q4 can not be evaluated neither by ARQ nor
by Sesame because both SPARQL and SeRQL query languages do not support
aggregate operators.

Due to space constraints, we can not show here the details of all the queries.
Just to show an example, we next present the encodings used for Q1 in the var-
ious systems. Syntax is self-intuitive.

DLVDB encoding for Q1

q1(NAME, RES) :– triple(RES, “rdf:type”, “Article”),
triple(RES, “dc:creator”, PERS),
triple(PERS, “foaf:name”, NAME).

5 An RDF statement is a small cluster of RDF triples usually not larger than 10 within
our datasets.

217

Q1 Q2

Q3 Q4

Fig. 1. Results for queries Q1, Q2, Q3, Q4

Sesame encoding for Q1

select name, res
from {res} <rdf:type> {type},

{res} <dc:creator> {pers}, {pers} <foaf:name> {name},
where type =<Article>

ARQ encoding for Q1 (SPARQL syntax)

select ?name ?res
where {?res <rdf:type><Article>.

?res <dc:creator> ?pers. ?pers <foaf:name> ?name}
Mulgara encoding for Q1

select $name, $res
from <rmi://localhost/server1#triple>
where $res <rdf:type><Article> and

$res <dc:creator> $pers and $pers <foaf:name> $name;

3.4 Results and Discussion

Figure 1 shows the results we have obtained for the five queries described above.
In the figure, the chart of a system is absent whenever it has not been able to
solve the query due to some system’s fault or if its response time was greater
than 3600 seconds (1 hour). Moreover, if a system’s query language was not
sufficiently expressive to answer a certain query, it has not been included in the
graph. From the analysis of the figure we can draw the following observations.

Mulgara has, after DLVDB , the more expressive query language and, for
the simple queries Q1 and Q2 the best performance along DLVDB and, in some

218

cases, Sesame-Mem. However, when the queries involve the more advanced parts
of the language, the efficiency of Mulgara quickly drops; in fact, both in query
Q3 and in query Q4 its response time exceeded the limit set in our tests already
after 15000 RDF statements.

Sesame-Mem turned out to be competitive in all considered data sets only
for queries Q1 and Q3; in fact, it has not been able to solve query Q4 due to lack
of expressiveness in the query language; moreover, in query Q2, its performance
degraded when the input data sets increased. Sesame-DB always had significantly
worse performance than Sesame-Mem.

ARQ always presented the worst performances (except in one case); more-
over, as occurred for Sesame, also the database version of ARQ revealed worse
performance than its in-memory version. The expressiveness of ARQ’s query
language prevented to encode queries Q4.

Finally, DLVDB revealed both the best performance (in almost all the data
sets and queries) and the highest expressiveness of the query language, thus
demonstrating its good potential to be exploited as ontology querying engine.

It is worth pointing out that both Sesame and ARQ performance are nega-
tively influenced by the usage of a DB (see, in particular, results of queries Q1

and Q2); this can be probably motivated by the fact that they carry out (at
least parts of) their computations in main memory anyway and, consequently,
transferring data from disk to memory produces just overhead. On the contrary,
DLVDB and Mulgara exploit the database technology directly for their reasoning
tasks and, consequently, are more effective.

4 Experiments with alternative data structures

In the context of real-world applications it becomes crucial the choice of a data
schema for the relational database handling RDF data model, since this has a
direct impact on the performance and scalability issues. The discussed solution
assumes to store the RDF(s) graph at hand, using a straightforward represen-
tation, where a single 3-columns table contains one row for each statement of
the form 〈subject, predicate, object〉. This representation, though flexible, is not
efficient when several self-joins are required to sweep over this single large table.
A first step in order to improve the performance of the database, maintaining
this simple schema, is to reduce the execution time required by the join’s oper-
ations. A solution largely adopted in similar applications and discussed in [1],
is to avoid to store explicitly string values referring to URIs and literals in the
main table, replacing them with an hash value. Indeed, integer matching is in-
tuitively much faster than string matching. Each URIs/literal string is mapped
to and integer: the main tables stores triples in form of integer values, while ad-
ditional tables store the association from URI/Literals to integer, which is used
for a post-normalization. Several experiments that we reproduced on this new
configuration show the validity of this approach with respect to the first one.
Finally, we have considered other suggestions for alternative data structures
better suited for handling RDF data, called property tables technique ([1],[23]).
These aim at denormalizing RDF tables by storing them in a flattened represen-
tation, trying to encode triples according to the hidden ”schema” of RDF data,

219

similarly to a traditional relational schemas. The idea is to define a set of prop-
erty tables containing (cluster of) properties that tend to be defined together
(and then storing the triples from the RDF dataset whose properties belong to
the selected attributes), or to cluster similar sets of subjects together, group-
ing them in a property-class table. There is a variety of storage schemes and
several variations of these which have also been implemented in existing RDF
stores, using hybrid representation that combine features of both. The most im-
portant advantage of these choices is the possibility of accessing directly all the
triples having the same property value. However, these configurations can be ex-
tremely sparse (by the presence of NULL values in the table) and not well suited
for supporting multi-valued attributes. Thus, while such techniques usually im-
prove performance of queries involving a single property table, it is required to
properly cluster the property values occurring in the dataset.
Inspired by these considerations we extended our representation schema imple-
menting a fully decomposed storage model in which the triples table is rewritten
into n two column tables where n is the number of unique properties in the
dataset. This approach (discussed in [1], [23]) support succinct representation
of multi-valued attributes and heterogeneous records (subjects not defining a
particular property). Moreover, this data scheme allows to access directly as-
sertions related to the same property value. Unfortunately, for a query which
quantifies over property values, several tables have to be merged. This overhead
seems reasonable (as we verified testing performance on query ranging on vari-
able predicates). Furthermore, insert and update operations can be slower, since
for operation on statements related to the same subject, more tables need to be
accessed.
We carried out several experiments on these new data structures to compare the
execution time of the queries for the same dataset used in previous test. Clearly,
this implies the translation of queries to queries over the new representations.
The results obtained shows that the solution using triples table storing identifiers
instead of strings performs better than the simple one, but the best choice (actu-
ally) is to use a fully decomposed storage schema. Especially, this seems to give
more benefit as the number of triples grows. For example, the query Q1 (run on
the biggest dataset) takes 74 seconds running on the single table representation,
46 seconds running using hash representation of URIs/literals and 28 seconds
running on the fully decomposed schema configuration with hash representation.

5 Conclusions
In this paper we presented a first step toward efficient and reliable ASP-based
querying of ontologies. We experimentally proven that our solution, based on
a database oriented implementation of ASP, improves both scalability and ex-
pressivity of several state-of-the-art systems. Although, currently, RDF data
are stored in the standard triple format, the first experiments with alternative
data structures are very promising. The representation of data in some more
structured form (as already some of the tested systems do) could significantly
improve performance. Another promising research line consists in using database
integration techniques in the ontology context such as in [7].

220

References

1. D. J. Abadi, A.Marcus, S. Madden, and K. J. Hollenbach. Scalable semantic web
data management using vertical partitioning. In VLDB, pages 411–422, 2007.

2. T. Adams, G. Noble, P. Gearon, and D. Wood. MULGARA homepage.
http://www.mulgara.org/ , since 2006.

3. ARQ homepage. http://jena.sourceforge.net/ARQ/, since 2004.
4. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-

can, 284(5):34–43, 2001.
5. J. de Bruijn and S. Heymans. RDF and logic: Reasoning and extension. In Proceed-

ings of the 6th WebS, in conjunction with the 18th DEXA, Regensburg, Germany,
September 3–7 2007.

6. F. Calimeri, S. Cozza, and G. Ianni. External sources of knowledge and value
invention in logic programming. Ann. Math. Artif. Intell., 50(3-4):333–361, 2007.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati.
Efficient integration of relational data through dl ontologies. CEUR Electronic
Workshop Proceedings, 2007.

8. A. Seaborne E. Prud’hommeaux. Sparql query language for rdf. w3c candidate
recommendation, 14 june 2007. http://www.w3.org/tr/rdf-sparql-query/.

9. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of
Higher-Order Reasoning and External Evaluations in Answer Set Programming.
In (IJCAI) 2005, pages 90–96, Edinburgh, UK, August 2005.

10. W. Faber and G. Pfeifer. DLV homepage, since 1996. http://www.dlvsystem.com/.
11. D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors. Spinning the

Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press,
2002.

12. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database System Implementation.
Prentice Hall, 2000.

13. G. Ianni, A. Martello, C. Panetta, and G. Terracina. Faithful and effective querying
of RDF ontologies using DLVDB.

14. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic, 7(3):499–562, July 2006.

15. Michael Ley. Digital bibliography and library project http://dblp.uni-trier.de/.
16. B. Motik and R. Rosati. A faithful integration of description logics with logic

programming. In IJCAI, pages 477–482, 2007.
17. I.S. Mumick, S.J. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic condi-

tions. ACM Trans. Database Systems, 21(1):107–155, 1996.
18. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. Owl web ontology language

semantics and abstract syntax. w3c recommendation, 10 february 2004.
19. A. Polleres. From sparql to rules (and back). In In Proceed-

ings of the 16th World Wide Web Conference (WWW2007), Banff,
Canada, 2007. Extended technical report version available at
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf.

20. SESAME homepage. http://www.openrdf.org/, since 2002.
21. Sparql implementations. http://esw.w3.org/topic/sparqlimplementations.
22. G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive

queries in database and logic programming systems. Theory and Practice of Logic
Programming (TPLP). Available on-line at http://arxiv.org/abs/0704.3157, 2007.
Forthcoming.

23. Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking database
representations of rdf/s stores. In International Semantic Web Conference, pages
685–701, 2005.

221

Who the FOAF knows Alice?

RDF Revocation in DBin 2.0�

Christian Morbidoni2, Axel Polleres1, and Giovanni Tummarello1

1 DERI Galway, National University of Ireland, Galway

{firstname.lastname}@deri.org
2 SeMedia Group, Universita’ Politecnica delle Marche, Ancona, Italy

christian@deit.univpm.it

Abstract. In this paper we take a view from the bottom to RDF(S) reasoning. We

discuss some issues and requirements on reasoning towards effectively building

Semantic Web Pipes, aggregating and patching RDF data from various distributed

sources. Even if we leave out complex description logics reasoning and restrict

ourselves to the RDF world, it turns out that some problems, in particular how

to deal with contradicting RDF statements and patching RDF graphs, do not yet

find their proper solutions within the current Semantic Web Stack. Besides theo-

retical solutions which involve full DL reasoning, we believe that more practical

and probably more scalable solutions are conceivable one of which we discuss

in this paper. Namely, we provide means to express revocations in RDF and re-

solve such revocations by means of a specialized RDF merge procedure. We have

implemented this conflict-resolving merge procedure in the DBin 2.0 system.

1 Introduction

Publishing RDF files on the Web is bound to become more and more a way to state

facts that are asserted or believed to be true by the producer of the source itself. DB-

pedia [1], for example, publishes a large collection of such facts by extracting them

from the collective works of the Wikipedia communities. FOAF [5] files are personal

RDF models which are created by individuals to state facts about, typically, themselves.

Nothing, however, prevents them in general to state facts about other entities and this

is in fact a fundamental feature of the “Semantic Web”, everyone is allowed to “state”

about, virtually, anything. In some cases one might even be inclined to trust third-party

information more than self-descriptions, for instance comments about an enterprise or

a product one considers to buy. The sum of RDF statements, currently known to be

HTTP retrievable, is now in the order of billions with millions of individual HTTP lo-

cations (sources) hosted on tens of thousands of web sites, rapidly increasing. Along

with this increased take-up of RDF on the Web, upcoming query language standards

� A preliminary version of this paper has been presented at the ISWC 2007 Workshop on

New forms of Reasoning for the Semantic Web. This work has been partially supported

by the European FP6 project inContext (IST-034718), by Science Foundation Ireland under

the Lion project (SFI/02/CE1/I131), and by the European project DISCOVERY(ECP-2005-

CULT-038206).

222

like SPARQL [14], or RDF search engines like SWSE [7] or Sindice [15] shall finally

enable structured querying over Web data. Unfortunately however, there is no clear and

established model on how to use such amounts of information coming from many di-

verse sources. Using any available source directly, e.g. crawling/downloading and using

it might not be advisable or sufficient. More information might be needed such as, for

example, patches to the original data. Other cases include when a source is in general

considered useful but is known to contain statements which need to be removed, e.g.

outdated facts (a “negative” information patch is needed), or subjective assertions which

can be accepted or not depending on who is reading the data. In general, getting infor-

mation from the Web into one’s own semantic client or system is very likely to require,

or at least benefit, from a series of custom steps to be performed involving a number of

external or internal sources before having a version which can be used directly. Also,

facing the sheer amount of data to be expected, more complex tasks such as ontological

inferences or complex query answering will profit from such preprocessing which only

preserves relevant and useful information. In this paper, we focus on one facet of such

preprocessing, namely allowing to retract unwanted RDF data, and present a practical

solution for this problem.

Along these lines, the remainder of this paper discusses the following issues: In

Section 2 we introduce the idea of “Semantic Web Pipes”, i.e. how a new breed of ap-

plications composed of small building blocks to aggregate, filter and preprocess junks

of RDF data could contribute to make the Semantic Web real. In such aggregations

from arbitrary sources on the Web we will naturally have to deal with contradicting

statements. We will have a look on how current Semantic Web languages could sup-

port the expression of such contradicting/negative statements and how the resolution of

conflicts is being addressed in Section 3. Actually, we will come to the conclusion that

current languages do not properly address this problem so far. Based on this observa-

tion and in an attempt to address the problem with a technique we already successfully

applied in a related domain (for synchronising RDF resources), we propose to express

revocations of RDF statements by means of so called RDF MSG hashes. We discuss

this approach and its implications in Section 4. A prototype implemented on top of the

DBin 2.0 system is briefly described in Section 5, before we conclude with an outlook

to future work.

2 Towards Semantic Web Pipes

Yahoo Web Pipes1 are a recent development which has certainly had already a big

impact to the latest wave of web development by showing how customized services and

information streams can be implemented by sequentially processing and interleaving

existing feeds and services. With Pipes, resources, e.g. RSS feeds, can be merged with

one another, filtered according to specific pipe rules, used as an input for an on-line

restful API to get yet more results, etc. Most interestingly, this all happens without the

original providers of informations and services had to change anything on their side or

reach any form of agreement if not to use HTTP and possibly RSS. Current mashup

1 http://pipes.yahoo.com/

223

models like Yahoo Pipes are however limited to “streams” of information (e.g. news

feeds) or single, simple API invocations on a remote site (e.g. a search for a specific

word, or, more general, one-shot Web service invocations).

In the same way as a Web Pipe enables an existing Web information stream to be

customized, extended and reused for a specific purpose as decided by the pipe creator,

we see a very clear interest in trying to use this model to address the issue we highlighted

before: how to make use of web published RDF sources? We might for example want

to use DBpedia knowledge about a topic, but yet sum it with the knowledge coming

from certain specific sites and correcting it by eliminating some statements we believe

to be false. The Web Pipe model teaches us that we do not really want to download

the DBpedia RDF dump, and operate directly on a local version of it, e.g. by adding

and subtracting triples in a complex SPARQL query (see also the following Section).

By doing so once and in a static manner, we would create a customized knowledge

base at the beginning but would miss any new information that any of the composing

sources might later add. A much more dynamic and useful model would therefore be

a “Semantic Web Pipes” model where an RDF piping engine can on the fly and on

demand work out the customized composition and processing of a set of Web sources

according to our specific needs. In case where information needs to be simply added, the

RDF semantics [8] specifies how to merge two models: the piping engine has therefore

to do not much more than downloading the files and putting them together in the same

store, standardizing apart blank nodes. But what to do when information needs to be

patched in a traditional sense, i.e. in part both removed and added?

As a use case, let us take the case where Bob is stating that Charles knows Alice

in his FOAF [5] file. Alice has a questionable reputation, and Charles, clearly, has no

control on Bob’s FOAF file. Clearly, a minimal requirement on distributed metadata

is the ability to counter such false statements, thus giving Charles a way to state in

his FOAF file a simple and unambiguous statement: “I don’t know Alice”. We aim to

provide a simple and minimalistic solution to this problem, thus avoiding unnecessarily

complex reasoning.

3 Related Works: Expressing Negative RDF Statements

First, we note that neither RDF nor RDF Schema provide means to make negative state-

ments such as “Charles doesn’t foaf:know Alice”, see last statement in Figure 1(b).

@prefix : <http://examp.org/ bob#>

@prefix foaf: <http://xmlns.com/foaf/0.1/>

:me foaf:name ‘‘Bob’’.

:me foaf:knows <http://alice.exa.org/i> .

:me foaf:knows <http://ex.org/c̃harles#me>.

<http://ex.org/ charles#me> foaf:knows

<http://alice.exa.org/i>.

...

@prefix : <http://ex.org/ charles#>

@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix rdf: <http://www...rdf-syntax-ns#>

:me rdf:type foaf:Person;

foaf:name "Charles".

:me foaf:knows <http://examp.org/b̃ob#me>.

:me foaf:knows <http://alice.exa.org/i>.

...

(a) Bob’s FOAF file (b) Charles’ FOAF file

Fig. 1. Personal information in FOAF

224

The semantics of RDF(S) is purely monotonic and described in terms of positive
inference rules, so even if Charles added instead a new statement

:me myfoaf:doesntknow <http://alice.exa.org/i> .

he would not be able to state that statements with the property myfoaf:doesntknow

should single out2 foaf:knows statements.

N3

Tim Berners-Lee’s Notation 3 (N3) [2] provides to some extent means to express what
we are looking for by the ability to declare falsehood over reified statements which
would be written as:

{ :me foaf:knows <http://alice.exa.org/i> } a n3:falsehood .

Nonetheless, this solution is somewhat unsatisfactory, due to the lack of formal seman-

tics for N3; N3’s operational semantics is mainly defined in terms of its implementation

cwm3 only.

OWL

The falsehood of Charles knowing Alice can be expressed in OWL, however in a pretty
contrived way, as follows (for the sake of brevity we use DL notation here, the reader
might translate this to OWL syntax straightforwardly):

{charles} ∈ ∀foaf:knows.¬{alice}

Reasoning with such statements firstly involves OWL reasoning with nominals, which

most DL reasoners are not particularly good at, and secondly does not buy us too much,

as the simple merge of this DL statement with the information in Bob’s FOAF file would

just generate a contradiction, invalidating all, even the useful answers. Para-consistent

reasoning on top of OWL, such as for instance proposed in [9] and related approaches,

solve this problem of classical inference, but still requiring full OWL DL reasoning.

SPARQL

Finally, more along the Pipes idea, one could as a naive solution, deploy an off-the-shelf
SPARQL engine and filter Bob’s FOAF file by a query, leaving just the clean statements.
Imagine that Charles stores his unwanted statements in the RDF Web source <http:
//ex.org/˜charles/badstatements.rdf>, then such a query filtering the
information from merging Bob’s and Charles’ FOAF files could look as follows:

CONSTRUCT { ?S ?P ?O }

FROM <http://ex.org/˜charles/foaf.rdf>

FROM <http://ex.org/˜bob/foaf.rdf>

FROM NAMED <http://ex.org/˜charles/badstatements.rdf>

2 In fact, we mean here overriding instead of simply contradicting in the pure logical sense.
3 http://www.w3.org/2000/10/swap/doc/cwm

225

WHERE { ?S ?P ?O .

OPTIONAL { GRAPH <http://ex.org/˜charles/badstatements.rdf>

{ ?S1 ?P1 ?O1 . }

FILTER (?S1 = ?S && ?P1 = ?P && ?O1 = ?O &&) }

FILTER (!Bound(?S1)) }

However, simply putting the bad information in a separate file is not a proper solution

for the scenario we outlined, as it is not clear how a Crawler stumbling over <http://

ex.org/˜charles/badstatements.rdf> should disambiguate this data from

valid RDF information. Rather, we would need to reify the negative statements using

for instance the N3 version outlined before, or the “native” RDF reification vocabulary4

which would – besides blowing up metadata by unhandy reified statements – further

complicate SPARQL querying of that Data5 to filter out the “good” data.

In the following, we will sketch a more practical solution to the problem, exploiting

previous work on Minimum Self Contained Graphs.

4 Implementing RDF revocations based on MSG hashes

Any RDF graph may be viewed as set of triples. Triple level processing of distributed

RDF files, particularly identifying the same RDF graphs, is made very complex by

the existence of blank nodes. For this reason, the RDFSync algorithm, which we pre-

sented in previous work, introduced the notion of Minimum Self Contained Graph

(MSGs) [16].

Simply said, an MSG is constructed starting from a triple and collecting, for each

blank node in it, all the other triples attached to these until no more blank nodes are

involved. Such “closure” makes sure that a graph can be recomposed at a different

location simply by merging all the MSGs by which it is composed, even if these are

transferred one at a time.

As MSGs are stand-alone RDF graphs, they can be processed with algorithms such

as canonical serialization.We use an implementation of the algorithm described in [4],

which is part of the RDFContextTools Java library6 to obtain a canonical string repre-

senting the MSG and then we hash it to an appropriate number of bits to reasonably

avoid collisions. This hash acts as a unique identifier for the MSG with the fundamental

property of being content based, which implies that two remote peers would derive the

same hash-ID for the same MSGs in their Databases.

Each graph can be therefore treated as a set of digital hashes each one representing

an MSGs. In the context of the problem addressed in the present work, we use such

digital hashes to refer to the MSG itself, ie. the finest granularity at which we allow to

revoke RDF statements is at the level of MSGs. The hash function we use for MSGs

takes the form of a literal encoding the 16 bytes of the MD5 hash of the canonical graph

serialization mentioned above.

4 Using rdf:Statement,rdf:subject, rdf:predicate,rdf:object
5 Note that, in the FILTER query, we exploit the admittedly awkward way to model set difference

in SPARQL which as such might already not be considered intuitive unanimously.
6 http://www.dbin.org/RDFContextTools.php

226

Stating that an MSG is false/revoked is therefore as easy as stating one triple where
the subject is a blank node, the predicate is a designated one7 and the object is a 16
bytes literal containing the MSG hash. So the negative statement could be made directly
within Charles’ FOAF file or in a separate file as follows:

@prefix pipes: <http://pipes.deri.org/2007/10/ns#> .

_:a pipes:revokesMSGHash

"HASH_OF_:ME_FOAF:KNOWS_ALICE"ˆˆxsd:string .

Storing MSG hashes instead of reifying statements has (except saving storage space)

some other interesting implications: This solution allows revoking sets of statements

which involve blank nodes. This would not be possible using reification due to the

arising ambiguity. Digital hashes over MSGs, which are agnostic about blank node IDs,

avoid this problem. Some particular cases, however, require further discussion (see next

Session);

A drawback of the solution to quasi “encode” the negative statements in MSG

hashes which in fact possibly turns out to be a feature in certain use cases, is that the

negated statements are not clearly “readable”, e.g. by direct inspection of the RDF file.

This can be considered a feature rather than a bug for instance when one cares that

denied statements are not to be known by third-parties upfront.8

If, on the contrary, the denied statements should be made legible, one could think

of adding auxiliary statements for this purposes (such as the above-mentioned reified

N3 statements, or using agreed complementary predicate URIs modified, e.g. to adding

“not:” in front as part of the URI or as a designated URI Scheme).

4.1 MSGs involving blank nodes: issues and considerations

Our approach do not allows to revoke single statements composing an MSGs, but only
the whole MSG itself. In the case the MSG in question contains blank nodes this means
that if we imagine Charles would be revoking the MSG hash for

MSG 1:

<http://ex.org/˜charles/foaf.rdf#me> foaf:knows _:a .

_:a foaf:name ‘‘Alice’’. .

that would not have any effect if Bob had stated for instance:

MSG 2:

<http://ex.org/˜charles/foaf.rdf#me> foaf:knows _:a .

_:a foaf:name ‘‘Alice’’; foaf:homepage <http://alice.exa.org/> .

in his graph, as the two sets of statements are actually two distinct MSGs.

Let us consider again the MSG 1 of the previous example. As, with respect to RDF

Semantics, blank nodes should be given the meaning of existential quantified variables,

denying MSG 1 would mean to deny any instance of such MSG (that is isomorphic

7 The prefix http://pipes.deri.org/2007/10/ns\# defines various other properties

and classes to annotate and describe revocations, see [10] for details.
8 Although, by some additional machinery particular negated statements could be revealed quite

easily in our current approach.

227

MSGs with a URI in place of the blank node). If, for instance, a graph contains the

following statements:

<http://ex.org/˜charles/foaf.rdf#me> foaf:knows

<http://alice.exa.org/i> ; foaf:name ‘‘Alice’’ .

one might expect the revocation to affect them. The MSG based implementation,

however, would left them untouched. In real cases, where blank nodes are seldom used

as existential quantified variables (but rather as individual without name, as it usually

happens for FOAF persons), we claim that our approach still gives correct (with respect

to user expectations) results.

4.2 Computational load

Decomposing a graph into MSGs and calculating MSG hashes might be computation-
ally expensive if the graph is big, contains a large number of bnodes, and/or highly
connected bnodes. As there is no way to retrieve an MSG starting from its hash, if not
decomposing the graph into MSGs and computing the hashes to find a match, the op-
eration of applying revocations might be time consuming. To deal whit this issue, we
could add additional information to revocations, namely one extra statement pointing to
one, randomly chosen URI involved in the original MSG. Such an extended revocation
could look as follows:

_:a pipes:revokesMSGHash

"HASH_OF_:ME_FOAF:KNOWS_ALICE"ˆˆxsd:string .

_:a pipes:involvedResource

<http://alice.exa.org/i> .

When applying such a revocation, we only need to calculate the hashes of those MSGs

which – as a sufficient condition – contain at least one statement involving the chosen

URIs for revoked MSGs (in this case <http://alice.exa.org/i>), thus avoid-

ing a complete graph decomposition.

Another way to go might be to do a complete MSG decomposition once, when the

graph is originally loaded, and to keep an index of MSG hashes to original triples. Such

initial computational effort would however result in faster operations for repeated pipe

calculation. Furthermore we notice that MSG decomposition might be needed anyway

for other purposes, for example to perform remote RDF synchronization [16].

5 A Simple Semantic Web Pipe Execution Engine: Description

and Implementation

Having explained the idea to encapsulate negative statements in MSG hashes and its

possible benefits, we have implemented a first prototypical Semantic Web Pipe engine

at the heart of the DBin 2.0 Semantic Web client and authoring tool, which we conceive

to be the basis of an effective Semantic Web application middle-ware. While DBin

0.x [11] based on a P2P infrastructure where information “flows” across peers, DBin

2.0 simply provides the user with a more controlled way to define the order and the

228

location of the sources to import and then “executes” the pipe to generate a final RDF

base which is then browsed and queried.

For our simple prototype, we exploit this order in evaluating RDF statements to

be overridden: In the DBin piping engine, RDF sources can be either local or remote.

These are ordered in a stack according to the priority selected by the user. At execution

stage, a new empty triplestore is created which will contain the graph resulting from the

pipe, let us call it ’T ’. The sources are then processed one by one, from the one with

the lowest priority to the one with the highest priority.9 Naming the currently processed

graph ’G’, the “ordered merge” procedure is the following:

1. G is cleaned by any negative MSG that overwrites a positive MSG in G (this means

that if G expresses “X” and “not X” we delete both the assertions);

2. The content of G is added to T ;

3. Negative statements are “applied”, i.e., if positive statements exist in T correspond-

ing to statements revoked in G, the lower priority positive statements are removed

(this step is the same of the first one except that it is applied to the resulting graph

T);

4. Any remaining revocations are dropped, as they must not have effects on the higher

priority graphs considered in next cycles.

Once this ordered, conflict-resolving “merge” procedure has been performed for all

the RDF sources, T contains the final RDF model and DBin applies RDFS reasoning

on it. We remark that the result in absence of negated statements tantamounts to exactly

the common RDF merge.

Clearly, by handling conflict resolution at the RDF merge level, and applying RDFS

reasoning only at the last step many issues are solved in a simple, intuitive and, at the

same time, efficient manner. By removing at each step any remaining negative statement

we opt for a “non symmetric” approach where positive statements are somehow con-

sidered more important and persistent than “negative” ones. Moreover, the remaining

RDF set is clearly consistent (being simple RDF).
We note however, that there could also be possibly problematic corner cases. For

instance, imagine that Bob sneaks in the unwanted statement about Alice as follows:

<http://ex.org/˜charles#me>

myfoaf:likes <http://alice.exa.org/i>.

myfoaf:likes rdfs:subPropertyOf foaf:knows.

In this disguise, even if Bob’s FOAF data is given lower priority than Charles’ FOAF

file, the unwanted statement would survive the conflict resolution during our ordered

merge, since we do not do RDFS inference in this process.

We are currently, investigating repairs to our approach which remedy this situation,

e.g. by labeling inferred triples with the priority of the lowest statement contributing

to their inference and, in a recursive process removing conflicting inferred triples in a

post processing step. Unfortunately, we conjecture that finding this lowest statement is,

9 In the current implementation, the priorities are implicitly given through a simple sequence of

sources which is processed one by one and priority is thus totally ordered.

229

in the general intractable10, but we hope that an approximative solution, which at least

guarantees that only overall sound triples are inferred might be achievable.

Another drawback of the current approach is that the priority order among consid-

ered RDF sources has to be given upfront as user input to DBin, which might not be a

problem for smaller scale pipe examples, but be undesirable as the number of known

sources grow to large scale. Trust negotiation policies, see e.g. [3], encoded directly as

RDFstatements within the sources could help to assess priorities among RDF sources

as we require them directly from RDF data in those resources.

Finally we notice that, in some cases, the end user might want to have more options

than simply putting the considered sources in a total order, i.e. the pipe being a strict

sequence of sources. To allow more flexible handling of overriding statements, allowing

to consider multiple sources at the same priority, we are working to add support for a

partial rather than a total order of sources. There might be different ways to handle

revocations within a set of sources that have equal priority. A “cautious” solution might

be to allow each source to revoke both MSGs from any of the equally prioritized sources

and MSGs which are stated by sources with lower priority. An other approach, that we

call “brave ”, might be to ignore revocations coming from equally prioritized sources

and to apply only those that come from a higher prioritized source.

6 Conclusions and future works

We outlined in the present work a practical solution to add negative statements to RDF

without generating overall logical inconsistency. Even leaving aside full OWL infer-

ence, we believe that being able to override RDF statements based on user priorities on

which Web resources are more or less trustworthy, is a crucial feature in Semantic Web

applications. In this paper we first analyzed how negative statements can at all be ex-

pressed in current Semantic Web languages and came to the conclusion these languages

do not properly address this problem, not providing means to override statements in a

user defined priority order among RDF sources on the Web. Based on this observation,

we presented a practical solution to the problem which is implemented on top of the

DBin 2.0 system.

Our general ideas are based on the assumption that we believe only partially in Web

scale DL reasoning, i.e. handling complete OWL inferencing, to be feasible in the near

future. Our approach is a more practical one dealing with the increasing number of RDF

data out there in an effective and arguably feasible manner. Negative statements treated

in this work, which is still in a preliminary stage, are a first example of practical ne-

cessities we plan to address when effectively and efficiently processing Semantic Web

data for useful Semantic Web applications in the spirit of “Semantic Web Pipes”. In this

sense, this work is conceived to spark discussions for more practical solutions towards

making the Semantic Web real, which might also raise controversy among “purists” in

terms of what the term “Semantic Web Reasoning” comprises and what not. More ex-

amples of issues we want handle in practical implementations include linking RDF data

by adding views (see also [6, Section 2.10]), possibly involving scoped negation [13,

12] and evaluate scalability of such extensions in practical scenarios.

10 A concrete algorithm and complexity studies for such an algorithm are still on our agenda

230

References

1. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A nucleus

for a web of open data. In 6th Int’l Semantic Web Conference, Busan, Korea, Nov. 2007.

2. T. Berners-Lee. Notation 3, since 1998. Available at http://www.w3.org/

DesignIssues/Notation3.html.

3. P. A. Bonatti and D. Olmedilla. Rule-based policy representation and reasoning for the

semantic web. In Reasoning Web - Third International Summer School, pages 240–268,

Dresden, Germany, Sept. 2007.

4. J. J. Carroll. Signing rdf graphs. In The Semantic Web - ISWC 2003, Second International

Semantic Web Conference, pages 369–384, Sanibel Island, FL, USA, Oct. 2003.

5. D. Brickley and L. Miller. Friend of a Friend (FOAF) Vocabulary Specification 0.9.

Namespace Document, May 2007, available at http://xmlns.com/foaf/spec/

20070524.html, .

6. A. Ginsberg, D. Hirtle, F. McCabe, and P. Patranjan (eds.). RIF Core Design.

W3C Working Draft 10 July 2006, available at http://www.w3.org/TR/2006/

WD-rif-ucr-20060710/.

7. A. Harth, J. Umbrich, and S. Decker. Multicrawler: A pipelined architecture for crawling

and indexing semantic web data. In 5th International Semantic Web Conference, Athens,

GA, USA, Nov. 2006.

8. P. Hayes. RDF semantics. W3C Recommendation, February 2004, available at http:

//www.w3.org/TR/rdf-mt/.

9. Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontologies. In

Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJ-

CAI’05), Edinburgh, Scotland, Aug. 2005.

10. C. Morbidoni, A. Polleres, G. Tummarello, and D. Le Phuoc Semantic Web Pipes. Tech-

nical Report DERI-TR-2007-11-07, available at http://www.deri.ie/fileadmin/

documents/DERI-TR-2007-11-07.pdf, Nov. 2007.

11. M. Nucci, C. Morbidoni, and G. Tummarello. Enabling semantic web communities with

dbin: an overview. In ISWC2006 Semantic Web challenge, Athens, GA, USA, 2006. Finalist.

12. A. Polleres, C. Feier, and A. Harth. Rules with contextually scoped negation. In 3rd Euro-

pean Semantic Web Conference (ESWC2006), volume 4011 of Lecture Notes in Computer

Science, Budva, Montenegro, June 2006. Springer.

13. A. Polleres, F. Scharffe, and R. Schindlauer. SPARQL++ for mapping between RDF vo-

cabularies. In 6th International Conference on Ontologies, DataBases, and Applications of

Semantics (ODBASE 2007), Vilamoura, Algarve, Portugal, Nov. 2007. To appear.

14. E. Prud’hommeaux and A. Seaborne (eds.). SPARQL Query Language for RDF. W3C

Candidate Recommendation, June 2007, available at http://www.w3.org/TR/2007/

CR-rdf-sparql-query-20070614/.

15. G. Tummarello, R. Delbru, and E. Oren. Sindice.com: Weaving the open linked data. In

Proceedings of the International Semantic Web Conference (ISWC), Nov. 2007. To appear.

16. G. Tummarello, C. Morbidoni, P. Puliti, and F. Piazza. Signing individual fragments of an

RDF graph. In Special interest tracks and posters of the 14th international conference on

World Wide Web, Chiba, Japan, 2005.

231

Semantic-enhanced EPCglobal Radio-Frequency
IDentification

Michele Ruta1, Tommaso Di Noia1, Floriano Scioscia1, Eugenio Di Sciascio1

SisInfLab, Politecnico di Bari, Bari, Italy
{m.ruta,t.dinoia,f.scioscia,disciascio}@poliba.it

Abstract. We propose to enhance EPCglobal RFIDs enriching them
with semantic capabilities. Memory organization of tags and the data
exchange protocol are exploited and extended to the purpose. By design,
the proposed enhancements do not alter the basic behavior of protocol
and tag memory organization and are thus fully backward compatible. In
order to store annotated descriptions, a compression algorithm for DIG
syntax has also been devised. We report here results in comparison with
other XML-based compression tools and simulations for enhanced tags
reading and decompression.

1 Introduction

Radio-Frequency IDentification (RFID) is a promising infrastructure-less tech-
nology interconnecting via radio two main components: (1) a transponder carry-
ing data (tag) located on the object to be identified; (2) an interrogator (reader)
able to receive the transmitted data. Traditional RFID applications have been
focused on supply chain management and asset tracking [12]. Nevertheless, at
the state of the art, tags with higher memory capacity and on-board sensors dis-
close new scenarios and enable further applications. Currently, RFID technology
is merely used as a link between physical objects and a “virtual counterpart” [9]
in the digital world. Tags only store an identification code, which is used as a key
to retrieve relevant properties of the object from an information server, through
a networked infrastructure. Two main issues restrain an overall exploitation of
the standard capabilities. First of all, the original identification mechanism only
enables a rudimentary string matching, providing exclusively “yes/no” replies.
Furthermore, RFID-based technology usually relies on stable support infrastruc-
ture and fixed database servers.

We propose an extension of EPCglobal RFID standard [11] supporting logic-
based formalisms for knowledge representation and enabling advanced services.
Semantic-based annotations are stored on RFID tags, exploiting machine un-
derstandable ontological languages originally conceived for the Semantic Web
effort. Noteworthily, protocols to read/write tags are preserved in the proposed
extension, maintaining the original code-based access, thus keeping a backward
compatibility with basic applications practically without any modification.

According to W3C recommendations for mobile applications [7], our ap-
proach copes with limited storage and computational capabilities of mobile and

232

embedded devices, and with reduced bandwidth provided by wireless links. Issues
related to the verbosity of semantic annotation languages cannot be neglected.
Compression techniques become essential to enable storage and transmission of
semantically annotated information in mobile contexts. Hence, in order to make
our approach sustainable in reality, we devised and exploited a novel efficient
XML compression algorithm, specifically targeted for DIG 1.1 [1] document in-
stances.

2 Motivation

The main idea of our approach is that a semantic-based extension of current
RFID technology supporting formalisms for knowledge representation, allows
semantically rich and unambiguous information to follow an object in each step
of its life cycle. Products then auto-expose their description to whatever RFID-
enabled computing environment they are dipped in. This favors decentralized
approaches for context-aware applications in pervasive computing environments,
based on less expensive and more manageable mobile ad-hoc networks. Product
and process information can be queried, updated and integrated during manufac-
turing, quality control, packaging and supply chain management, thus allowing
full traceability up to sales, and intelligent and de-localized querying of prod-
uct data. Semantic-enhanced RFID object discovery can be leveraged also for
sales and post-sale services, by assisting customers in using the products they
purchased more effectively.

Beyond manufacturing and commerce, other application areas can benefit
from adding accurate semantic-based object description to traditional RFID
identification and tracking capabilities. For example, in tourism settings such
as museums or archaeological sites, visitors could perform interactive knowledge
discovery by approaching tagged items with an RFID-enabled mobile device and
querying the system for further resources of interest. In the healthcare sector,
relevant information can be embedded within RFID tags attached to patient
accessory (e.g., wristband) and to drug packages. Since no further infrastructure
is needed, support can be provided for patient diagnosis and therapy at the
hospital as well as for follow-up at home.

3 Proposed Enhancements

3.1 EPCglobal RFID standards

In our framework we refer to RFID transponders conforming to the EPC (Elec-
tronic Product Code) standard for class I - second generation UHF tags [11]. We
assume the reader be familiar with basics of this technology.

The practical feasibility of a proposal for advanced usage of RFID technolo-
gies must take into account some important constraints. First of all the severe
bandwidth and memory limitations of current RFID systems, in order to meet
cost requirements for large-scale adoption. Due to technological advances and

233

Table 1. SELECT command able to detect only semantic enabled tags

PARAMETER Target Action MemBank Pointer Length Mask

VALUE 1002 0002 012 000101012 000000102 112

DESCRIPTION SL flag set (if match) EPC bank initial address bit to be compared bit mask

growing demand, passive RFID tags with greater memory amounts are expected
to be available [2]. Nevertheless, XML-based ontological languages like OWL
(http://www.w3.org/TR/owl-features/) and DIG (http://dl.kr.org/dig/) are far
too verbose for a direct storage on RFID tags. A further goal is to preserve the
original EPCglobal RFID technology standards as much as possible, in order
to ensure compatibility and smooth coexistence of new semantic-based object
discovery applications and legacy identification and tracking ones.

In order to enable the outlined enhancements, RFID tags and the air interface
protocol must provide read/write capabilities for semantically annotated prod-
uct descriptions w.r.t. a reference ontology, along with additional data-oriented
attributes. Neither new commands nor modification to existing ones have been
introduced. Moreover, a mechanism is clearly required to distinguish semantic
enabled tags from standard ones, so that semantic based applications can exploit
the new features without interfering with legacy applications. In order to accom-
plish that, we extend the memory organization of tags compliant with the above
referenced standard. We exploit two bits in the EPC tag memory area currently
reserved for future purposes. The first one –at 15hex address– is used to indicate
whether the tag has a user memory (bit set) or not (bit reset). The second one
–at 16hex address– is set to mark semantic enabled tags. In this way, a reader can
easily distinguish semantic based tags by means of a SELECT command with pa-
rameter values as in Table 1. Values for the triple 〈MemBank, Pointer, Length〉
identify the two-bit memory area starting at 15hex address in the EPC memory
bank. The reader commands each tag in range to compare those two bits with
bit mask 112. The match outcome will be positive for semantic enabled tags only.
The Target and Action parameter values mean that in case of positive match the
tag must set its SL flag and clear it otherwise. The following inventory step will
skip tags having SL flag cleared, thus allowing a reader to identify only semantic
enabled tags. Protocol commands belonging to the inventory step have not been
described, because they are used in the standard fashion.

The EPC standard requires the content of TID memory up to 1Fhex bit
is fixed. TID bank can be extended to store optional information, generally
consisting of tag serial number or manufacturer data. Hence we use the TID
memory area starting from 1000002 address to store a 128-bit Ontology Uni-

versally Unique Identifier (OUUID) marking the ontology w.r.t. the description
contained within the tag is expressed [10]. In order to retrieve the OUUID stored
within a tag, a reader will exploit a READ command by adopting parameter val-
ues as in Table 2. MemBank parameter identifies the TID memory bank and the
WordPtr value specifies that the reading must start from the third 16-bit mem-
ory word, i.e., from 20hex address. Finally, the WordCount parameter indicates
that 128 bits (eight 16-bit words) have to be read.

234

Table 2. READ command able to extract the OUUID from the TID memory bank

PARAMETER MemBank WordPtr WordCount

VALUE 102 0000000102 000010002

DESCRIPTION TID memory bank starting address read up to 8 words (128 bit)

Table 3. READ command able to extract the semantically annotated description from
the User memory bank

PARAMETER MemBank WordPtr WordCount

VALUE 112 0000000002 000000002

DESCRIPTION User memory bank starting address read up to the end

Contextual parameters (whose meaning may depend on the specific applica-
tion) are stored within the User memory bank of the tag. There, we also store
the semantically annotated description of the product the tag is clung to (com-
pressed with the algorithm described later on). An RFID reader can perform
extraction and storing of a description from/on a tag by means of one or more
READ or WRITE commands, respectively. Both commands are obviously com-
pliant with the RFID air interface protocol. Table 3 reports parameter values
of the READ command for extracting the full contents of the User memory,
comprising both contextual parameters and the compressed annotation.

The EPCglobal standard also provides a support infrastructure for RFID
applications by means of the so called Object Naming Service (ONS) [3]. In our
approach the ONS mechanism is considered as a supplementary system able to
grant the ontology support. If a reader does not manage the ontology the de-
scription within the tag refers to, we may retrieve it exploiting the ONS service.
The EPCglobal Network Protocol Parameter Registry maintains all the registered
service suffixes (ws for a Web service, epcis for a EPCglobal Information Ser-
vice (providing authoritative information about objects associated with an EPC
code), html for a Web Page of the manufacturer). We hypothesize to register the
new dig suffix to indicate a service able to retrieve ontologies with a specified
OUUID value.

In case of EPC derived from the GS1 standard1, we assume that the pair
of fields used for ONS requests –and referred to the manufacturer and to the
merchandise class of the good– will correspond to a specific ontology. In fact that
pair identifies exactly the product category. Two goods with the same values for
that field parameters will be surely homogeneous or even equal. Nevertheless the
vice versa is not verified.

3.2 Compression algorithm

A compression algorithm specifically targeted to the packing of standard DIG
1.1 format has been devised in our framework. The general approach, however, is
easily adaptable to any other ontological language based on XML, such as OWL.
Each DIG document instance conforms to DIG XML Schema, which comprises
1 GS1 (originally EAN.UCC) is the international organization that introduced the bar

code identification of products and services.

235

Fig. 1. Structure of the proposed DIG compression tool

at most 40 different tags. In a DIG document, no value is set inside any tag;
only tag attributes can be specified, within a well defined finite set of types.

We propose a simple DIG compression solution particularly suitable for per-
vasive applications, whose structure is shown in Figure 1. Three fundamental
phases can be identified: (1) data structures packing ; (2) attribute values pack-

ing ; (3) zlib packing. We exploit the peculiarity of the DIG format having few,
well defined and limited tag elements.

(1) Data-structures packing. The proposed compression algorithm is based
on two fundamental principles. First of all, pure data have to be divided from
data structures; furthermore data and data structures have to be separately
encoded in order to obtain a higher compression rate. Data structures are ba-
sically XML elements with possible related attributes, whereas data simply are
attribute values. As noted above, data-structures in DIG syntax are fixed and
well defined by DIG XML Schema, whereas data are different from document to
document. XML elements are coded by associating an unambiguous 8-bit code
to each structure in a static fashion. Consider that DIG files adopt either ISO

8859-1 or UTF-8 character encodings, which use 1 byte for each character (spe-
cial characters requiring more than 1 byte in UTF-8 do not belong to the DIG
symbol set): so an early size saving is achieved. The association between XML
structures and the corresponding code is fixed and invariable. This is a further
advantage because, unlike general purpose XML compressors, it is unnecessary
to include a header containing the decoding table within the compressed file.

(2) Attribute-values packing. Most recurrent words are identified in the pre-
viously distinguished data section. They will be coded with a 16-bit sequence. A
header for the compressed file is thus built, containing correspondences between
each text string and the related 16-bit code. It is dynamically created and ex-
clusively belongs to a specific DIG document instance. The provided header will
be exploited in the decompression phase.

Assigned codes differ by their second byte, because the first octet is adopted
as padding in order to distinguish the attribute value coding from regular ASCII
characters. This second compression stage allows to obtain a further size saving,
particularly in ontologies with very frequent concepts and roles. On the other
hand, the use of the header could compromise compression performances for
short files, as the space consumption for the header itself reduces savings ob-
tained with compression. Hence the encoding of all the string values of a DIG
file without any a-priori distinction has to be definitely avoided.

236

A correct compression procedure should properly take into account both the
length of an attribute string and its number of occurrences within the file. The
minimum length of strings to encode can be trivially calculated by comparing
the size consumption needed to store string–code correspondences and the saving
obtained with the encoding: in the proposed approach only text attributes with
a length of at least three characters will be encoded.

Furthermore we must evaluate the number of occurrences of each attribute
i (from now on nr occurencesi). We set an optimal minimum value we call
nr occurences min and we will encode only i attribute values where results
nr occurencesi > nr occurences min. We have performed statistical evaluations
trying the compression of 72 sample DIG documents and evaluating obtained
compression rates varying nr occurences min. Results show that the best com-
pression rates are produced by nr occurences min values within the range [2–8]
with an average of 4.03 and a standard deviation in the range [0–0.3]. Thus we set
nr occurences min = 4, so only attribute strings with at least three characters
and recurring at least four times will be encoded.

(3) zlib packing. Finally zlib library based on the Ziv-Lempel compression
algorithm [13] is exploited to apply an eventual third compression level, opti-
mizing the overall result. Ziv-Lempel algorithm does not perform particularly
well when compressing a partially coded input (it is difficult to find more occur-
rences of the same character sequence). The use of zlib, however, resulted useful
in our approach specially for large files, where it produces the compression of
words excluded by previous compression steps and of the file header.

4 Evaluation

A generic evaluation of the proposed approach has been carried out taking
into account two different aspects. First of all, performances of the compres-
sion/decompression algorithms have been investigated and furthermore reading
and decompression times of software simulated semantic-enhanced RFID tags
were evaluated, in order to provide an initial assessment of the impact that our
approach may have on RFID systems performances.

Regarding the compression and decompression performances three funda-
mental parameters have been estimated: (1) compression rate, (2) turnaround

time, (3) memory exploitation. Two tools were developed in C language im-
plementing our compression and decompression algorithms. They were named
DIG Compressor and DIG Decompressor, respectively. Currently, Windows and
Linux platforms are supported, leveraging the freely available zlib compression
library. Tests for compression rate and running time were performed using: (1)
a PC equipped with an Intel Pentium 4 CPU (3.06 GHz clock frequency), 512
MB RAM at 266 MHz and Windows XP operating system; (2) a PC equipped
with a Pentium M CPU (2.00 GHz clock frequency) and 1 GB RAM at 533
MHz, running Gentoo GNU/Linux with 2.6.19 kernel version and Valgrind [6]
profiling toolkit.

237

80,00%

85,00%

90,00%

95,00%

100,00%

s: DIG file size (KB)

A
v
e
ra

g
e
 c

o
m

p
re

s
s
io

n

Avg. Rate 87,05% 91,39% 92,65% 94,53% 96,32%

Std. Dev. 2,80% 1,13% 1,99% 1,21% 1,14%

s < 2 (13

samples)

2 < s < 4 (12

samples)

4 < s < 8 (15

samples)

8 < s < 32 (15

samples)

s > 32 (15

samples)

Fig. 2. Obtained compression rates

70,0%

75,0%

80,0%

85,0%

90,0%

95,0%

100,0%

Original DIG file size (byte)

C
o
m

p
re

s
s
io

n
 r
a
te

gzip 76,9% 81,2% 82,6% 87,6% 92,9% 94,3% 91,7%

XMill 75,2% 80,7% 82,0% 88,9% 95,0% 96,4% 94,9%

DIG Compressor 87,5% 89,2% 89,2% 92,5% 95,5% 96,5% 94,9%

instance1 instance2 instance3 ontology1 ontology2 ontology3 ontology4

2035 3445 4079 12801 66247 111384 190685

Fig. 3. Performance comparison on a representative sample of DIG documents – Com-

pression rate

Firstly, compression rates achieved by the proposed algorithm were consid-
ered. We carried out tests with 70 DIG documents of various size. Our aim was
to evaluate compression rates for both smaller instance descriptions and larger
ontologies. Figure 2 shows average compression rates and standard deviations
for different size ranges of DIG input data. Overall average compression rate is
92.58 ± 3.58%. As expected, higher compression rates were achieved for larger
documents. Even for very short DIG files (less than 2 kB), however, average
compression rate is 87.05± 2.80%, which is surely satisfactory for our purposes.

A comparative evaluation was carried out using as benchmarks the general
purpose XML compressor XMill [5] and gzip (http://www.gzip.org/) generic
compressor. Testing the compression rate, the proposed system allowed to obtain
smallest resulting files, as shown in Figure 3. For each DIG file, the original size
in bytes is reported. It should be noticed our algorithm performed significantly
better for small DIG documents. This result is very encouraging, since in our
mobile scenarios we usually deal with small XML documents representing the
annotations of available resources.

In order to evaluate the turnaround time, each test was run 10 times con-
secutively, and the average of the last 8 runs was taken. Results are presented
in Figure 4. It can be noted that DIG Compressor has higher turnaround times

238

0

50

100

150

200

250

300

350

Original DIG file size (byte)

A
v

e
ra

g
e

 t
u

rn
a

ro
u

n
d

 t
im

e
 (

m
s

)

gzip 20 20 20 21 23 30 50

XMill 20 20 29 36 60 70 50

DIG Compressor 29 31 40 50 89 149 290

instance1 instance2 instance3 ontology1 ontology2 ontology3 ontology4

2035 3445 4079 12801 66247 111384 190685

Fig. 4. Performance comparison on a representative sample of DIG documents – Turn-

around time

than other tools, though absolute values are still quite acceptable. Such a result
suggests we need further optimizations for execution speed.

Finally, memory usage analysis was performed using Massif tool of Valgrind

debugging and profiling toolkit. Massif measures stack and heap memory profile
throughout the life of a process. For our comparison, only the memory occupancy
peak was considered. DIG Compressor memory usage is only slightly higher than
the one of gzip, with high correlation (r = 0.96) between the two value sets. This
result could be expected, since our algorithm relies on Ziv-Lempel compression in
its last phase. On the contrary, XMill showed a more erratic behavior. Outcomes
can be reputed as encouraging because memory-efficient implementations of zlib

library are currently available for all major mobile platforms.
A thorough experimental evaluation of all aspects of framework performance

requires its complete implementation into a testbed with real semantic-enabled
RFID devices. That would only be possible through partnership agreements with
device manufacturers/integrators, that we are currently pursuing. At this stage,
a prototypical semantic-enhanced RFID infrastructure has been simulated by
extending IBM WebSphere RFID Tracking Kit middleware solution for RFID
applications. RFID simulations and tests have been performed on that testbed,
which is deployed on a laptop PC equipped with Pentium M processor (2.00 GHz
clock frequency), 1 GB RAM at 533 MHz and Microsoft Windows XP operating
system. Compressed semantic annotations of 40 different products were used.
Their average size is 266± 104 B (range 91-440 B). Simulated RFID data access
from each tagged item was repeated 100 times, recording the sum of reading and
decompression time. For each item the mean value was then considered.

Results are reported in Figure 5. Average access time is 2.02 ± 0.36 ms,
corresponding to a theoretical tag read rate of approximately 500 tags/s. Since
tests were run on a software-simulated RFID platform, exact numerical values are
not significant as their order of magnitude. The latter can be sensibly compared
to performance of RFID systems compliant with EPCglobal standards for Class
1 Generation 2 UHF RFID systems.

239

Fig. 5. Simulated RFID tag reading and decompression time for 40 resource descrip-
tions. Regression line is plotted.

It is known that RFID system performance in the field highly depends on the
particular application, environmental conditions (electromagnetic noise, RFID
reader density) and local regulations affecting the available bandwidth. Early
simulations and tests carried out by independent research laboratories estimated
reading rates in a range of 7-100 tags/s in typical conditions [8, 4]. Our simulation
results are quite above these with such data. Hence, a very preliminary evidence
that adoption of compressed semantic annotations on RFID tags does not im-
pair performances in the field w.r.t. traditional ones is so provided. The latter,
in turn, will not suffer any direct performance degradation from the newly intro-
duced features, as they will read the EPC only. Finally, the access time showed
a moderate positive correlation (r = 0.60) with annotation size. This may sug-
gest that structure of a DIG annotation (i.e., exploited logic constructors and
frequency of attribute names) has also an impact over the decompression.

5 Conclusions

Our approach can support a range of use cases, involving different stakeholders
in each step of a product life cycle. During product manufacturing and distrib-
ution, a wide-area support network interconnecting commercial partners is not
strictly needed. This is a significant innovation w.r.t. common RFID supply chain
management solutions. By means of their semantic-enabled RFID tags, prod-
ucts are always accompanied by structured and rich description of their char-
acteristics, endowed with unambiguous and machine-understandable semantics.
Beyond improved traceability, a semantic-based approach may provide unique
value-added capabilities. In particular, query flexibility and expressiveness are
much greater than both keyword-based information retrieval and standard ser-
vice/resource discovery protocols, which support code-based exact matches only.
Non-exact match types are prevalent in real scenarios, involving a large number
of resources by many different sources. Semantic-based techniques can support
non-exact matches and ranking, further providing means for results explanation.
This enables an effective query refinement process and can strengthen user trust
in the discovery facility.

240

Bibliography

[1] S. Bechhofer, R. Möller, and P. Crowther. The DIG Description Logic
Interface. In Proceedings of the 16th International Workshop on Descrip-

tion Logics (DL’03), volume 81 of CEUR Workshop Proceedings, September
2003.

[2] R. Bridgelall. Enabling Mobile Commerce Through Pervasive Communi-
cations with Ubiquitous RF Tags. IEEE Wireless Communications and

Networking, (WCNC), 3:2041–2046, March 2003.
[3] EPCglobal Ratified Specification. Object Naming Service (ONS - ver. 1.0).

http://www.epcglobalinc.org, October, 4, 2005.
[4] Y. Kawakita and J. Mistugi. Anti-collision performance of Gen2 air protocol

in random error communication link. In Proceedings of the International

Symposium on Applications and the Internet Workshops - SAINT 2006,
pages 68–71, 2006.

[5] H. Liefke and D. Suciu. Xmill: an efficient compressor for xml data. SIG-

MOD Rec., 29(2):153–164, 2000.
[6] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight

Dynamic Binary Instrumentation. In Conference on Programming Language

Design and Implementation - PLDI 07. ACM SIGPLAN, June 2007.
[7] J. Rabin and C. McCathieNevile. Mobile Web Best Practices 1.0. W3C

Proposed Recommendation, 2006.
[8] K. Ramakrishnan and D. Deavours. Performance benchmarks for passive

UHF RFID tags. In Proceedings of the 13th GI/ITG Conference on Mea-

surement, Modeling, and Evaluation of Computer and Communication Sys-

tems, 2006.
[9] K. Römer, T. Schoch, F. Mattern, and T. Dübendorfer. Smart Identification

Frameworks for Ubiquitous Computing Applications. Wireless Networks,
10(6):689–700, November 2004.

[10] M. Ruta, T. Di Noia, E. Di Sciascio, and F. Donini. Semantic-Enhanced
Bluetooth Discovery Protocol for M-Commerce Applications. International

Journal of Web and Grid Services, 2(4):424–452, 2006.
[11] K. Traub, G. Allgair, H. Barthel, L. Bustein, J. Garrett, B. Hogan, B. Ro-

drigues, S. Sarma, J. Schmidt, C. Schramek, R. Stewart, and K. Suen. EPC-
global Architecture Framework. Technical report, EPCglobal, July 2005.

[12] R. Weinstein. Rfid: A technical overview and its application to the enter-
prise. IT Professional, 07(3):27–33, 2005.

[13] J. Ziv and A. Lempel. A universal algorithm for sequential data compres-
sion. IEEE Transactions on Information Theory, 23(3):337–343, 1977.

241

Author Index

Abascal-Mena, Rocío 140
Bergamaschi, Sonia 150
Barbera, Michele 91
Basile, Pierpaolo 61
Bortoli, Stefano 130
Bouquet, Paolo 110, 130
Buccella, Agustina 31
Calefato, Fabio 101
Castano, Silvana 71
Cechich, Alejandra 31
Colagrossi, Attilio 31
Colantonio, Sara 160
Colombetti, Marco 192
Conforti, Domenico 160
d'Amato, Claudia 81
David, Stefano 91
de Gemmis, Marco 61
Di Noia, Tommaso 232
Di Sciascio, Eugenio 232
Domingue, John 170
Dongilli, Paolo 180
Esposito, Floriana 81, 120
Eynard, Davide 192
Fanizzi, Nicola 81
Ferrara, Alfio 71
Galizia, Stefania 170
Gendarmi, Domenico 31, 101
Gentile, Anna Lisa 61
Guerra, Francesco 150
Gugliotta, Alessio 170
Hahn, Daniel 91
Hirokawa, Sachio 21
Ianni, Giovambattista 212
Iannone, Luigi 51
Iaquinta, Leo 61
Laniado, David 192
La nubile, Filippo 31, 101
Lisi, Francesca A. 120

Longo, Cristiano 11
Lops, Pasquale 61
Lorusso, Davide 71
Martello, Alessandra 212
Martinelli, Massimo 160
Montanelil, Stefano 71
Morbidoni, Christian 222
Mori, Masao 21
Moroni, Davide 160
Nakatoh, Tetsuya 21
Nucci, Michele 91
Ombredanne, Philippe 41
Orsini, Mirko 150
Panetta, Claudio 212
Payne, Terry 51
Pazienza, Maria Teresa 41
Pedrinaci, Carlos 170
Pirrò, Giuseppe 1
Pollares, Axel 222
Redavid, Domenico 51
Rumpler, Béatrice 140
Ruta, Michele 232
Sartori, Claudio 150
Scioscia, Floriano 232
Sciuto, Lorenzo 11
Serafini, Luciano 202
Sguera, Savino 41
Stoermer, Heiko 110, 130
Talia, Domenico 1
Tamilin, Andrei 202
Terracina, Giorgio 212
Tessaris, Sergio 180
Tummarello, Giovanni 222
Vincini, Maurizio 150
Wache, Holger 130
Xin, Liu 110
Zorzi, Ivan 180

