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Abstract
Qualitative descriptions of object arrangements and behaviors (e.g. terms such as “near” or “fast”) can
be interpreted as placing constraints on the values of the parameters they refer to, but they do so in
a context-dependent way. As such, it is problematic to define such qualitative terms by value regions.
Instead, in this paper we propose “functional” definitions: a qualitative term’s meaning is defined by the
effect on behavior of having that quality. The resulting functional definitions are context-dependent. To
obtain a more general semantics for a qualitative term, we use concept blending to combine its functional
definitions coming from several contexts. We then describe how a general, functional definition can be
specialized to a new context, how this can be useful in transferring existing knowledge, and illustrate
this with an example, raising the possibility that appropriate specializations may be supported with
image schemas.
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1. Introduction

Interest in commonsense reasoning has grown in the past few years, especially with autonomous
artificial agents moving into the physical world at scales which may pose dangers to human
beings. We want our artificial agents to predict the outcome of their actions, to understand the
world around them, and to do so in a way that we can check and understand ourselves.

Such computational models remain elusive, largely because it is difficult to elicit commonsense
knowledge from humans – it is too obvious and too ingrained. However, we suspect there is
also another problem coming from a fundamental tension between requirements placed on
commonsense reasoning, whatever it turns out to be. On the one hand, it should “generalize”:
commonsense principles should allow an agent mastering them to cope with situations it has
not encountered before. This is, after all, the main point of investing in cognition. On the other
hand, commonsense inference is extremely situated and dependent on context.
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Language provides many examples: a spoon may be near a cup, which contains coffee from
a nearby store, which reflects the light coming from a near star called the Sun. Many orders
of magnitude separate the distances mentioned, yet each was described as “near”. The same
applies to every word we use to refer to some set of parameter values. “Hot” means one thing
when applied to the weather, and another when applied to the cores of stars.

It has been argued that attempts to interpret spatial prepositions as describing, even qualita-
tively, an arrangement of objects in a context-free manner will quickly encounter problems [1].
But surrendering to context entirely and treating words such as “near” or “hot” as meaning
entirely different things in different situations wastes commonalities between the various uses
of a word and appears to miss cognitively relevant generalizations. We do not say “the spoon is
near the cup” and “the Earth is near the Sun” merely by linguistic accident. More likely is that
a familiarity with a kind of situation, such as arrangements of tableware, is leveraged to help
understand another situation, such as the relative placements of celestial bodies. This transfer
of knowledge from one situation to another suggests that qualitative labels for a parameter
are paired with mechanisms to pick situation-appropriate regions of the parameter’s possible
values. In this paper, we describe one method such a mechanism might use.

To begin, we will assume an agent has obtained, from (potentially simulated) experience,
symbolic rules to predict behaviors of some situations. Such predictive symbolic rules map
qualitative descriptions of initial arrangements to qualitative descriptions of observed behaviors,
and provide an interpretable mechanism to predict the environment and adjust action. However,
the rules offer a second benefit: a “functional” definition for a qualitative label, in the situations
to which the rules apply. The qualitative label represents the parameter values that will
make an arrangement, obeying these other qualitative constraints, behave in this qualitative
way. Different situations, different arrangements and behaviors, will result in different, and
potentially incompatible, functional definitions of the same qualitative label. To resolve these
incompatibilities, we use concept-blending techniques and axiom weakening, to produce more
general definitions that remain “functional” in the above sense: they define a qualitative label
in terms of the more general behavior of a more general class of arrangements.

The more general functional definition of a qualitative label can then be rendered more
specific once the particularities of a new situation are known. We conjecture that this will
result in quicker learning for situations that are novel but in some sense similar to previously
encountered ones, because the more general, functional definitions for qualitative labels and
their effects on behavior will make knowledge transfer easier.

We illustrate our proposal with a running example, interpreting the qualitative label “heavy”.
We assume a set of symbolic rules describing the behavior of heavy objects are already known
to the agent, and describe how, via an algorithm similar to dialog-based concept blending [2],
these rules can be combined into one more general definition “heavy”. We then produce a new,
more specialized definition, intended to apply to a new kind of situation, i.e. one for which the
agent does not yet possess a definition of heavy, nor a predictive rule.

Our example uses the Description Logic ALC, on which the current implementation concept
blending operates, and so, due to expressivity limitations, does not then quite capture human
intuitions. However, our approach is not limited to ALC, because the concept-blending algorithm
is not limited to ALC [3]. To address the expressivity limitation, we intend to eventually employ
Image Schema Logic (ISL) [4] for the writing of the predictive symbolic rules.



2. Related Work

2.1. AxiomWeakening and Concept Blending

Axiom weakening is a recently introduced technique for repairing inconsistent ontologies
by weakening, instead of removing, their axioms. The main advantage of this technique is it
preserves as much information as possible while maintaining the ontologies’ consistency [5, 6, 7].
Often, axiomweakening relies on refinement operators, such as specialisation and generalisation.
In [8] a concept refinement operator is introduced to generalise 𝐸𝐿++ concepts in the context of
concept invention. In [5] a similar line of work was extended to 𝐴𝐿𝐶 axioms, proposed different
algorithms to repair inconsistent ontologies, and analyzed their computational complexity.
In [9], similar refinement operators are exploited for ontology aggregation. The previous
definitions have also been extended to deal with 𝑆𝑅𝑂𝐼𝑄 constructs [3].

In what follows, we refer to the refinement operators formally introduced in [5]. Informally,
a generalisation (resp. specialisation) operator is a function that takes a concept 𝐶 and returns
the set of the super-concepts (resp. sub-concepts) of 𝐶, given a reference ontology.

In our context, axiom weakening is taken into account to resolve incompatibilities that
may arise when merging, or blending, functional symbolic rules learned in different, poten-
tially conflicting, contexts. Since the functional rules are expressed in 𝐷𝐿 axioms, when an
incompatibility arises, we exploit axiom weakening techniques to restore consistency.

As an example, our system may individuate different functional rules concerning the concept
heavy in different situations – for instance, keeping paper on a table so that the air won’t blow it
away (stabilizing, preventing motion) vs. using something heavy to drive a nail through a piece
of wood (causing/enabling motion against some resistance). When trying to merge functional
definitions, inconsistencies may then arise in the definition of the concept heavy.

Related issues are analysed in the context of computational conceptual blending (CCB). As a
theory of cognition, conceptual blending was proposed to model conceptual integration and
creativity, which is seen as arising from the conceptual blend of different input spaces through
analogical mapping [10]. Computational conceptual blending studies formal strategies to allow
the integration of possibly conflicting input spaces. This process may be easy for human beings,
thanks to the flexibility of human concepts, but is not trivial in AI (for an extreme case, see [11]).
CCB often relies on the identification of shared structures between different input spaces, and
on the identification of a generic space to steer the blending process (see e.g. [12]).

As observed above, refinement operators have been applied to conceptual blending and
concept invention in [8]. [13] further carries out this line of research, by proposing a general
workflow and a formal reconstruction of the conceptual blending process, including axiom
weakening in the picture. Relatedly, but focusing on the literature of noun-noun combination
in the context of cognitive linguistics, [2] proposes a computational treatment of impossible
combinations in the context of formal ontologies through the procedure of axiom weakening.
In line with this work, we sketch an extension of the algorithm proposed there, to manage,
through generalisations allowed by the axiom weakening procedure, definitions of concepts
emerging from different learning contexts (see section 5).



2.2. Natural Language Understanding and Commonsense Reasoning

There is an active search for computational implementations of commonsense reasoning, to
enable artificial agents to cope with the physical and social world of humans in a human-like
way. This goal however remains elusive. Even when considering simple uses of spatial language,
one discovers an apparent need for extremely expressive logical techniques [14]. Further, if it is
to be useful for the activities of a physical agent, symbolic inference must connect somehow to
numeric descriptions of the agent’s environment and actions. In the case of spatial language,
such links can be provided via potential fields or probability distributions which are meant
to capture the appropriateness of pairing a qualitative label (e.g. “left of”) with a numerical
values [15, 16, 17]. However, such probability distributions need to be tuned or learned [18]
and they are highly context dependent. Despite several proposals in the literature, it remains
unclear how they should best be adjusted when context changes.

There is also good evidence that human spatial descriptions are sensitive to functional aspects
of arrangements of objects [19, 20], or at least, that functional aspects are a more reliable guide
to predicting human language use than references to context-independent spatial arrangements,
even when these are allowed to be probabilistic. This has led to efforts to formally model spatial
relations at a fairly abstract, functional level [1, 21], and it has been argued that, by separating
an abstract, semantic level of formal modelling from contextualization, one can avoid some of
the apparent difficulties in formalizing commonsense inference [22].

Although the works cited here refer to spatial language, it appears to us that similar conclu-
sions apply to qualitative labels in general: functional characterizations, rather than references
to context-independent regions of possible values, are a better fit to how humans use language.
Further, such functional characterizations open avenues for generalizing, and transferring,
situation-dependent knowledge to new situations, which we investigate here.

3. From Simulated Experience to Qualitative Behavior
Prediction Rules

Here we will briefly summarize our previous work [23] on how an agent can acquire symbolic
prediction rules. One prerequisite is ability to act on or simulate an environment. The agent must
have some vocabulary with which to describe object properties, arrangements, and behaviors,
and concepts in this vocabulary are linked to “generative models” understood as joint probability
distributions over qualitative labels and values for the parameter associated to the labels.

Generative models allow a bridge between symbolic, qualitative descriptions of an arrange-
ment or behavior, and numeric descriptions of same. This is necessary because to run a
simulation an agent needs to provide exact values for all parameters, and likewise the behavior
observed in the (more or less continuous) world of the agent will be reported as numeric data.
By using generative models, it is possible to go from qualitative to numeric descriptions via
sampling, and vice-versa by asking what qualitative hypothesis best fits the observed numeric
evidence. Our method in [23] samples parameter values and runs simulations for an “antecedent”
– a qualitative description of an arrangement and action – and obtains “consequents” – qual-
itative descriptions of behavior. Antecedents are mapped to consequents resulting from the



simulations sampled from those antecedents, yielding a set of predictive symbolic rules. A
heuristic selects which antecedents to sample next, based on expectations of new behavior.

The generative models themselves are not updated at any point of the method, and so they
are the kind of context-independent interpretations of qualitative labels that we wish to go
beyond. A problem with context-independent interpretations of qualitative labels is they make
predictive symbolic rules fragile: a rule may not apply for the entire region of values that are
deemed likely by the generative models attached to the qualitative terms in the rule’s antecedent.
Therefore, the rules and the generative models must be learned together, which is what inspired
us to treat the learned predictive rules also as a way to functionally define the qualitative labels.

Another apparent limitation of the method from [23] is the use of simulation. Critics of
simulation as a tool for cognition exist [24, 25], and while we do not entirely agree with them,
we acknowledge that, among other problems, there are limits to what an agent can simulate.
However, our method in this paper does not depend on simulation; the experience from which
predictive rules have been obtained can be real experience in the physical world.

3.1. Running Example: Predictive Symbolic Rules involving ‘Heavy’

Suppose we have a robotic agent attempting to understand how the physics of a household
environment operates. It may be interested in cooking popcorn, or making sure papers don’t
get blown by the wind, or driving nails into wooden boards. Through its own experimentation,
or perhaps from being told by someone else, the agent arrives at the following predictive rules,
which we first express here informally for the various situations:

• (Lid) A heavy lid placed on the opening of a pot will stop popcorn from getting out;
• (Paperweight) A heavy item placed on a sheet of paper will prevent it from being blown
by the wind;

• (Hammer) A hit from a heavy tool, like a hammer, will drive a nail into a wooden board.

To capture the above by expressions in a formal language is not trivial, and may require some
fairly expressive logics such as ISL [4]. For our examples here we will present approximations
as prediction rules formalised in ALCI (ALC with inverse roles). The inverse properties in the
prediction rules are inverted again, i.e. be used as themselves, in the functional definitions in
the next section, which we then feed into the concept blending algorithm.

Let us then consider the following predictive rules for the situations described above (and we
assume the agent was either capable of discovering them from learning from experience and
combining those results with some prior knowledge, or by being instructed):
“Lid: if something is a place where a heavy object is put, then it permits only motions that keep
still relative to some container”:
∃𝑝𝑙𝑎𝑐𝑒𝑑𝐴𝑡 − .(∃𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 − .𝐻𝑒𝑎𝑣𝑦) ⊑ ∀𝑝𝑒𝑟𝑚𝑖𝑡𝑠𝑈 𝑛𝑖𝑚𝑝𝑒𝑑𝑒𝑑.
(∃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑆𝑡𝑖𝑙 𝑙𝑛𝑒𝑠𝑠𝑇 𝑜.(∃𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑𝐵𝑦.𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟))

“(Paperweight): an object upon which a heavy object is placed will not be immersed and
moved by a physical medium”:



∃𝑝𝑙𝑎𝑐𝑒𝑑𝐴𝑡−.(∃𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 −.𝐻𝑒𝑎𝑣𝑦) ⊑ (¬(∃𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑑𝐼 𝑛𝐴𝑛𝑑𝑀𝑜𝑣𝑒𝑑𝐵𝑦.(∃𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑𝐵𝑦𝑀𝑒𝑑𝑖𝑢𝑚)))

“Hammer: something hit by a heavy object is not kept still by some physical medium”:
∃𝑝𝑙𝑎𝑐𝑒𝑑𝐴𝑡−.(∃𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 −.𝐻𝑒𝑎𝑣𝑦) ⊑ ¬(∃𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑑𝐼 𝑛𝐴𝑛𝑑𝐾𝑒𝑝𝑡𝑆𝑡𝑖𝑙 𝑙𝐵𝑦 .(∃𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑𝐵𝑦.𝑀𝑒𝑑𝑖𝑢𝑚))

We assume the agent has prior knowledge, e.g. that objects exist and may play different
roles in a situation, qualities belong to objects, heavy is a quality and in particular a quality
relating to mass and so on. The OWL files for our running example are available online.1

4. Numeric vs. Functional Definitions of Qualitative Labels

As briefly discussed in section 3, one can define the meaning of a qualitative label for a parameter
(such as “heavy” for mass) in terms of a probability distribution over a space of possible values.
Clearly however, such an understanding of a qualitative label would not match human intuition.
We take spatial language to be best understood in functional terms, and intuitively the same
applies also to qualitative attributes describing other physical parameters. For a human being,
and one supposes, for other agents acting in the world, the important information communicated
by a qualitative label is not a range of values but a disposition for a particular behavior. The
qualitative label answers a “what does it do?”, rather than “how much is it?” question.

Therefore, it appears useful to define qualitative labels for parameters in functional terms, i.e.
of resulting behaviors of arrangements in which some object is described by that qualitative
label. A generic form for the predictive rules of section would be 3:

∀𝑂, 𝑄, ∶ (𝐴𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡(𝑂, ...) ∧ 𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 (𝑄, 𝑂) ∧ 𝑥(𝑄)) → 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟(𝑂, ...)

where 𝐴𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡 and 𝐵𝑒ℎ𝑎𝑣 𝑖𝑜𝑟 are logical formulas describing constraints on the initial state
of some objects and their ensuing behavior; these formulas can have several variables but here
we focus on one of them, 𝑂, which stands for one of the objects which has a quality 𝑄 of type 𝑥.

To obtain a functional definition for a qualitative label, we first rearrange the predictive rule:

∀𝑂, 𝑄 ∶ 𝑥(𝑄) → ((𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 (𝑄, 𝑂) ∧ 𝐴𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡(𝑂, ...)) → 𝐵𝑒ℎ𝑎𝑣 𝑖𝑜𝑟(𝑂, ...))

and then stipulate that this is a definition for the label 𝑥:

∀𝑂, 𝑄 ∶ 𝑥(𝑄) ↔ ((𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 (𝑄, 𝑂) ∧ 𝐴𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡(𝑂, ...)) → 𝐵𝑒ℎ𝑎𝑣 𝑖𝑜𝑟(𝑂, ...))

Such a functional definition should be interpreted as situation specific, and then for that situation
it serves as a guide to select, or learn, what parameter values correspond to the qualitative label.

4.1. Running Example: Situation-Dependent Functional Definitions

The predictive symbolic rules of section 3.1 constrain what behavior should be observed given
some arrangement and object properties. By rewriting the OWL axioms such that they are now
about the quality of an object, and stipulating that if an object placed in an arrangement results

1https://github.com/mpomarlan/ISD6_HeavyBlends
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in the associated behavior, then the object is heavy, we obtain the following definitions:

“Lid: heavy is the quality of objects such that wherever they are placed, that place allows only
motions that keep still relative to some container”:
𝐻𝑒𝑎𝑣𝑦 ≡ 𝑀𝑎𝑠𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ⊓ ∀𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 .(∀𝑝𝑙𝑎𝑐𝑒𝑑𝐴𝑡.
(∀𝑝𝑒𝑟𝑚𝑖𝑡𝑠𝑈 𝑛𝑖𝑚𝑝𝑒𝑑𝑒𝑑.(∃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑆𝑡𝑖𝑙 𝑙𝑛𝑒𝑠𝑠𝑇 𝑜.(∃𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑𝐵𝑦.𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟))))

“Paperweight: heavy is the quality of objects such that whatever they are placed on, that object
is not immersed and moved by a physical medium”:
𝐻𝑒𝑎𝑣𝑦 ≡ 𝑀𝑎𝑠𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ⊓ (∀𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 .(∀𝑝𝑙𝑎𝑐𝑒𝑑𝐴𝑡.
(¬(∃𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑑𝐼 𝑛𝐴𝑛𝑑𝑀𝑜𝑣𝑒𝑑𝐵𝑦.(∃𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑𝐵𝑦𝑀𝑒𝑑𝑖𝑢𝑚)))))

“Hammer: heavy is the quality of objects such that whatever they collide with, that collided
object is not kept still by a physical medium”:
𝐻𝑒𝑎𝑣𝑦 ≡ 𝑀𝑎𝑠𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ⊓ ∀𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 .(∀𝑝𝑙𝑎𝑐𝑒𝑑𝐴𝑡.
¬(∃𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑑𝐼 𝑛𝐴𝑛𝑑𝐾𝑒𝑝𝑡𝑆𝑡𝑖𝑙 𝑙𝐵𝑦 .(∃𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑𝐵𝑦.𝑀𝑒𝑑𝑖𝑢𝑚)))

The above functional definitions for ‘heavy’ are intended as situation specific, not as axioms
that can coexist in a single, situation-independent, ontology.

5. General Functional Definitions from Concept Blending

Supposing an agent has experienced various situations, and obtained from each a definition of
some qualitative label, it might ask itself whether some more general, situation-independent
definition exists. It is interesting to look at combinations of the concept definitions, but not
all combinations are interesting. A mere enumeration of known definitions is not interesting,
because it says nothing about a situation not yet on the list. A simple conjunction of definitions
may either result in an unsatisfiable concept, or at least in an unduly restricted one.

We have looked at concept blending for this, in the dialog-based approach of Righetti et
al. [2]. In brief, by starting from two “incompatible” ontologies, the algorithm finds a blend (or a
combined ontology) through a turn-based procedure which allows combining the axioms of the
different ontologies according to a given preference order, and to weaken them until the result
is satisfiable. In our case, the axioms to combine are the various situation-dependent definitions
of a qualitative label known to an agent; they will all be of the form 𝑋 ≡ 𝐶, where 𝑋 is a concept
name for the qualitative label we wish to define, and 𝐶 is a concept expression. The set of these
axioms is denoted by 𝑄. By following [2], the agent’s background knowledge is denoted by 𝑂𝑖𝑛𝑖𝑡.

Because we are looking to combine only axioms of a given structure, as opposed to several
ontologies that may contain any number of axioms, some simplifications to the concept blending
algorithm are needed. In particular, we do not need preference orders on the axioms in 𝑄. Also,
while several ways of weakening an axiom are possible, we are only interested in weakenings
obtained by a generalization operator 𝛾𝑂 applied to the concept expressions that define 𝑋.

However, inconsistency is too strong a test in our application. Consistent situation-dependent
definitions are unlikely to be equivalent, and a conjunction of them will remove possibilities



from the agent’s consideration that were nonetheless feasible in particular situations. We
therefore weaken to obtain more permissive axioms. That is:

• if we must combine axioms 𝑋 ⊑ 𝐶 and 𝑋 ⊑ 𝐷,
• and 𝐶 ⊓ ¬𝐷 or 𝐷 ⊓ ¬𝐶 are satisfiable under the conditions imposed by 𝑂𝑖𝑛𝑖𝑡,
• then we replace the two axioms by 𝑋 ⊑ 𝐸, where 𝐸 is a generalization of 𝐶 ⊔ 𝐷 with
respect to the background knowledge encoded in ontology 𝑂𝑖𝑛𝑖𝑡

With the above modifications, the algorithm becomes the one shown in Algorithm 1.

Algorithm 1 Combination(𝑂𝑖𝑛𝑖𝑡, 𝑄, 𝑋)
while 1 < |Q| do ▷ Assumption: Q contains only axioms of the form 𝑋 ≡ 𝐶

{𝑋 ⊑ 𝐶; 𝑋 ⊑ 𝐷} ← RandomPickAxiomPair(𝑄)
if SatisfiableOinit(𝐶 ⊓ ¬𝐷) or SatisfiableOinit(𝐷 ⊓ ¬𝐶) then

E ← 𝛾𝑂𝑖𝑛𝑖𝑡(𝐶 ⊔ 𝐷) ▷ 𝐸 = 𝛾𝑂(𝐶) is s.t. 𝑂 ⊧ 𝐶 ⊑ 𝐸
else

𝐸 ← 𝐶 ▷ If we get here, 𝐶 ≡ 𝐷
end if
𝑄 ← (𝑄 − {𝑋 ⊑ 𝐶; 𝑋 ⊑ 𝐷}) ∪ {𝑋 ⊑ 𝐸}

end while
return 𝑂𝑖𝑛𝑖𝑡 ∪ 𝑄

5.1. Running Example: a General Definition of ‘Heavy’

The different definitions of “heavy” given in section 4.1 give us the set of axioms to combine
using the modified concept blending algorithm, and the ontology relative to which axiom
weakening is performed will be the agent’s other knowledge. We note that there is still a
random component in the blending algorithm in terms of what weakening to select through
the generalization operator 𝛾, because there are many possible generalizations.

For our running example – which includes the axioms from previous sections as well as a
few axioms about how certain behaviors arise from the interaction of forces, axioms which are
listed in in the example’s github repository – a generic definition of “heavy” comes out as

𝐻𝑒𝑎𝑣𝑦 ≡ 𝑀𝑎𝑠𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ⊓ (∀𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 .(∀𝑝𝑙𝑎𝑐𝑒𝑑𝐴𝑡.(∃𝑖𝑠𝐹𝑜𝑟𝑐𝑒𝑑𝐵𝑦.𝑆𝑖𝑔𝑛𝑖𝑓 𝑖𝑐𝑎𝑛𝑡𝐹𝑜𝑟𝑐𝑒)))

or, informally, “heavy is the quality of objects that exert significant force wherever they are
placed”. This definition subsumes the situation dependent ones, and can be obtained from the
background knowledge in our example OWL files about when a force is significant.

6. Obtaining New Situation-Specific Functional Definitions from
General Ones

A benefit of having a general definition for a qualitative label is the possibility to specialize it
once a new situation is encountered. The specialized functional definition can then be employed
to inform selection of parameter values for one’s own actions or understand what other agents
describing this situation mean. It also can be used to generate new prediction rules for the



new situation, by reversing the rewrite procedure described in section 4 and thus, one hopes,
accelerate an agent’s learning of how to deal with a situation.

In our case we start from some axiom 𝑋 ≡ 𝐶 and replace it by 𝑋 ≡ 𝐷 where 𝐷 ⊑ 𝐶 as given
by some ontology 𝑂 describing the agent’s background knowledge and whatever knowledge of
the new situation it has obtained so far.

6.1. Running Example: Specializing Heavy to New Situations

So far, our example agent has encountered situations where heavy objects were used as lids to
keep contents in, as weights to keep objects put, or as colliders to drive objects through media,
and arrived at the conclusion that heavy is a quality of objects such that wherever they are
placed, some significant force is exerted.

Suppose it then is told about two new situations, one in which the significant force to be
considered is one that impedes the motion of a trajector, and one in which the significant force
is one that prevents an object from containing parts in a stable way. Loosely speaking, these
are the situations of a traveller who may be encumbered by their luggage, or of an object that
may be destroyed by impact with or pressure from another. Via specialization, the following
situation-specific definitions are obtained:
𝐻𝑒𝑎𝑣𝑦 ≡ 𝑀𝑎𝑠𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ⊓ ∀𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 .(∀𝑝𝑙𝑎𝑐𝑒𝑑𝐴𝑡.
(∃ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑜𝑛.(∃𝑖𝑚𝑝𝑒𝑑𝑒𝑑𝑀𝑜𝑣𝑖𝑛𝑔𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑇 𝑜.(∃𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑𝐵𝑦.𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑))))

and respectively
𝐻𝑒𝑎𝑣𝑦 ≡ 𝑀𝑎𝑠𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ⊓ (∀𝑖𝑠𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝑓 .(∀𝑝𝑙𝑎𝑐𝑒𝑑𝐴𝑡.
(¬(∃𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑠𝐴𝑛𝑑𝐾𝑒𝑒𝑝𝑠𝑆𝑡𝑖𝑙 𝑙 .(∃𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑𝐵𝑦.𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒)))))

The details are available in our example files.

6.2. The potential role of Image Schemas

Image schemas are recurring structures establishing fundamental patterns of cognition, formed
since childhood from our bodily experience. In Cognitive Science, image schemas are identified
as conceptual building blocks which allow reasoning about the world and move therein [26].

The role of image schema in the context of Computational Conceptual Blending has been
analyzed in [4, 27]. According to [10], a blend is constructed by mapping the shared features
of different (mental) input spaces into a common, generic space in a selective way. The blend
will then develop its emergent structure, which derives from the combination of the projected
features. While the selection of the relevant features is done by humans in a seemingly effortless
way, it is a non-trivial problem when applied in the context of automated Computational
Conceptual Blending. The selection of different features can indeed lead to quite different
outcomes, and different projections can thus generate better or worst blends. Image Schemas
have been thus applied in this context to steer the search for generic spaces, by helping in
identifying the relevant features in the input spaces [4, 27].

The approach proposed in this paper differs from the standard approach to computational
conceptual blending, because it does not rely on the identification of a shared structure between



the input spaces - i.e. it does not require the identification of a generic space to steer the
combination process. However, as already mentioned, the axiomweakening procedure exploited
here relies on the random selection of different possible generalizations choices, and can thus
lead to different outcomes. Of course, among different possibilities, certain weakenings are more
interesting than others, but at the moment the algorithm is subject to a random selection. Similar
to what is done in the context of standard conceptual blending for the selection of meaningful
generic spaces, image schemas could play a role here to guide the weakening procedure in the
selection of interesting generalisations. This is however matter for future work.

7. Conclusions and Future Work

We have argued in this paper for the benefit of what we call functional definitions of qualitative
labels for physical parameters. Rather than committing to a context- and situation-independent
numerical region, functional definitions describe, in a situation-dependent way, what parameter
values are appropriate. This comes from the relationship between functional definitions for a
qualitative label, and behavior prediction rules where that qualitative label appears.

Further, we have illustrated how situation-dependent functional definitions for a qualitative
label can be combined into a more general one via concept blending, and in turn this general
definition be specialized for new situations. This allows us to formally model how an agent
might, through experience, acquire something resembling human commonsense knowledge
– that is, knowledge about how its environment behaves, knowledge that is situated and
context-dependent, but which nevertheless allows itself to be adapted to new situations.

This process of generalization is not entirely deterministic – the concept combination algo-
rithm often has several, equally feasible choices available during its operation. Perhaps this is to
be expected, and it would be an interesting line of research to look into whether human beings
can agree on general-purpose meanings for qualitative labels. We suspect that they cannot, and
that some variation will exist precisely because generalization is underconstrained.

Nevertheless, generalized, functional understandings of labels such as “heavy”, “near”, “fast”
etc. can be useful even if several agents do not agree on these definitions’ exact content. This is
because the important feature of functional definitions as pursued in this paper is that they ask
questions – e.g., if “heavy” is that which exerts a significant force, what is a significant force?
These questions are the means by which the general definition can attach to aspects of a new
situation and give an agent a tentative understanding of qualities that would be appropriate for
it. In future work, we will look into ways to quantify this knowledge transfer, in particular with
regards to how well can an agent predict behaviors in a new situation, and select parameter
values for its own actions to cope with it. This can be done by comparing an agent’s performance
when starting to learn to cope with a situation from scratch versus when making a tentative
guess based on specializing a functional definition.

A limiting factor in the examples we have shown here is the ALC formalism, and we plan
to address this by investigating how Image Schema Logic [28, 4] could be used to write the
prediction rules and functional definitions for qualitative labels. Further, we expect that con-
necting our approach to existing ontologies of commonsense knowledge, spatial language [21],
and image schemas will provide a wealth of good material for our method, as opposed to the



admittedly somewhat artificial running example shown here.
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