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Abstract
In this extended abstract, we present initial work on intelligent object stacking by household robots
using a symbolic approach grounded in image schema research. Image schemas represent spatiotemporal
relationships that capture objects’ affordances and dispositions. Therefore, they offer the first step to
ground semantic information in symbolic descriptions. We hypothesise that for a robot to successfully
stack objects of different dispositions, these relationships can be used to more intelligently identify both
task constraints and relevant event segments.
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1. Introduction and problem space

Designing systems for automated spatial reasoning is one of the most challenging yet most
important components for intelligent system [1]. For cognitive robots, which can be defined as
intelligent agents acting in space and time, an ability for spatial reasoning is a requirement for
almost any activity. Yet, spatial reasoning in uncertain environments remains a complex area to
solve within cognitive robotics. To contribute to this research agenda, this extended abstract
introduces our research on identifying how the ‘physical rules’ of objects can be tied to their
successful stacking.

Stacking is an important skill for many everyday activities. For instance, rearranging a book
shelf, placing groceries into a pantry and carrying objects from one place to another on a tray.
These are all activities that require the knowledge of the involved objects’ features and the
understanding of the underlying rules of how objects with such features can be stacked.

From repeated experiences with stacking objects, humans have extracted a lot of implicit (and
explicit) knowledge of how certain objects can be treated. Such rules include the understanding
of object properties. For instance, that a flat, sturdy object like a tray will offer support to other
objects whereas a flat, flexible object like a sheet of paper will not offer the same support. Equally
important is the understanding that objects will likely slide off when placed on top of slippery,
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convex surfaces (unless, of course, executed by an expert in object balancing). Other learnt
rules stem from the distinction of the objects’ affordances. For instance, classic, upward-facing
containers (boxes, cups and bowls) behave differently from flat supporting objects in a stacking
scenario. In the latter, objects are placed on top of the flat object’s surface. In the former, the
stacked objects are placed inside their hull (given that they are of an appropriate size).

For any formal system dealing with stacking situations, every feature of each involved object
and every waypoint for executing certain trajectory needs to be represented in perfect detail
for the agent to successfully accomplish the task. Providing this to a system is not only time
consuming and cost inefficient for the engineer, it also reduces the autonomy and adaptability
of such artificial agents. Thus, to implement a more intelligent capacity for object stacking, new
directions need to be investigated.

One such direction that often is used in cognitive robotics is based on the theory of embodied
cognition (e.g. [2, 3]). Within this theoretical framework, intelligent behaviour is thought to
be based on conceptual patterns of meaning that are extracted from repeated experiences, by
some, called image schemas [4, 5].

Image schemas represent the underlying rules for how object properties allow certain kinds
of actions and are closely connected to object affordances1 [6]. These patterns take the form of
object dispositions such as offering Support2 and Containment. They also capture relational
properties like relative object size (Scale) and vertical orientation (Verticality), as well as
the object affordances related to movement (Source_Path_Goal). Conceptual components
like these become essential in understanding how certain objects can be used and how they
behave in different situations. For instance, a cup is defined as its ability to contain liquids
(Containment), a tray is defined by the ability to support objects for movement (Support +
Source_Path_Goal) but both need to be stacked with the right orientation and the correct order.
Thus, an event like stacking objects can be described as a combination of vertical pick-and-place
tasks (Verticality + Source_Path_Goal) with the Support and Containment constraints of
any involved objects.

The mission of this research endeavour (see [7, 8] for some previous work) is to use the seman-
tic information found in image-schematic patterns when designing robotic actions descriptions
to generate meaningful event segments that can be reasoned about [9].

2. Related Work on Robots Stacking Objects

Object stacking is a well-known problem in robotics that still engage researchers. The problem
involves understanding how geometric shape relates to vertical stability and Balance and how
material properties relate to sturdiness and Support. The problem has been approached with
methods ranging from task planning, reinforcement learning (RL), and to vision-based learning
techniques that aims to learn the naïve physics of stacking.

For instance, in [10] the stacking problem is approached by iterative incorporation of motion
constraints at the task level. [11] instead use a neural network to perform a stability classification.

1Affordances are actions that environments and objects allow. For instance, a box offers the affordance of
Containment.

2Following convention, image-schemas are written in capitalised upper letters.



Their system learns geometric affordances of introduced objects and arranges the objects based
on a ‘stackability score.’ Based on this score, they are also able to Balance an unstable stack by
placing an object to counterbalance the composition. Another noteworthy contribution, [12]
introduces a robot that can build a tower of irregular stones by employing a gradient descent
based pose search algorithm to find the best pose for each added stone.

In more domestic environments, [13] studies the problem of a robot organising shelves based
on user preferences. Arguably, rearranging objects possess similar characteristics to stacking
but instead of balancing on a vertical axis, complexity is to find appropriate compositions on
the horizontal axis. [13] approached the problem by predicting pairwise object preference of a
human user by using collaborative filtering model on crowd-sourced data.

In -more recent work [14], a robot is tasked to stack objects of different colours and complex
shapes such as trapezoids and parallelograms. Through an RL algorithm, the simulation is
tasked to stack two of the objects. The complexity of the task is to extract how the shape of
the objects affects the stack and overcome the distraction of the different colours of the objects.
Other RL methods for learning object stacking use probabilistic inference for learning control
(PILCO) to learn a task-dependent parameterised policy that generalises to tasks that differ only
by a reward function [15]. In [16], a hierarchical RL method, integrating planning with RL
is presented in which action planning is performed for high-level decision making and an RL
agent is used for low-level motor control. Object stacking is formalised as a multi-step task
planning problem and solved by a hierarchical RL framework in [17].
The capability to reason about object affordance property is important for a successful

stacking. Research exists (e.g. [11, 18, 19]) on modelling physical properties of scenes of objects
using neural network architectures to enable reasoning about the individual object behaviour
and how they behave in pairwise object interactions. While efficient in extracting features,
many machine learning models might not cater to providing an understanding of how these
features relate to functional properties, and a semantic representation is needed to translate
the information. Likewise, the results of the NetHack challenge organised as part of NeurIPS
2021 [20] showed that the robot systems based on symbolic methods outperformed machine
learning agents. Arguably, this means that for intelligent reasoning about object stacking to
take place, some level of semantic information needs to be introduced into the system.

In the light of this, we propose using symbolic representations of the semantic components
present in the image schemas to approach object stacking. In the next section, we describe the
preliminary methodology on how we intend to proceed with this problem.

3. Approaching Intelligent Stacking: Foundation and First Steps

Using a symbolic approach to robotic object stacking is a challenging task as the system needs to
have access to all the (relevant) objects’ properties. However, as it is based on image-schematic
patterns it also provides a base to do intelligent reasoning to effectively predict which spatial
arrangements will be possible and how it will affect the stability of the stack.

To demonstrate our proposed method, take a household task of clearing the table from a set
of objects; a spoon, a plate, and a cup, see Figure 1. If these are to be stacked appropriately
for transport, it is required information that (in most cases) the stack will be more stable if



Figure 1: Stacking a cup, a saucer and a spoon in two different constellations.

small-sized objects like spoons are placed into the cup rather than balanced on the plate, or
even worse, that the spoon is at the bottom. Finding the most optimal constellation is based on
understanding the object affordances and dispositions.

3.1. Foundational Framework

Our framework relies on KnowRob [21], a knowledge representation and reasoning system.
It has two parts. One part is an ontological knowledge base written in the Web Ontology
Language (OWL). The other is a logic-based programming language, Prolog, which is used as a
reasoner over the knowledge stored in the Mongo database. It provides an abstraction from
sub-symbolic, high-dimensional data obtained from robot sensors by using high-level symbolic
representations and thus enabling it to ground semantic information from its perceptions.
Together with their image-schematic dispositions and affordance properties, objects are to
be ontologically modelled in SOMA. This type of representation enables the robots to infer
the functional aspect the objects through their affordance property [22]. In our framework,
affordances are treated as bidirectional dispositions [23]. This means that for object having the
trigger disposition of being a container, there must exist another object (real or hypothetical)
that has the bearer disposition of can be contained.

3.2. Preliminary Rules for Stacking

For many stacking problems in households, placing smaller objects on the top is a sensible rule
as it provides more stability. Additionally, objects of different materials and ‘sturdiness’ greatly
impact the stackability.
In our working example of stacking tableware, we argued that the cup should ideally go on

top of the saucer and the spoon inside the cup. In our framework, this means that the saucer
possess the disposition property Deposition (SOMA’s name for Support) and acts as a bearer
for objects that can be deposited on top of it. In this case, the most suitable object is the cup, for
which it affords the action description task of Stacking. Correspondingly, the cup is the trigger
with the role of DepositedObject as it can be placed on top of the saucer. Similarly, the given
set of objects can be checked for the disposition property of Containment (Containment)
and can select a suitable trigger object which can be inserted into or contained within that
object. Here the cup with its concave surface would have this disposition and take on the role
of a container to relatively smaller objects such as the spoon. Establishing such relationships



among the objects reduces the search space for possible stack configurations and eliminates the
possibility of unstable combinations such as placing the cup on top of the spoon and the saucer
on top of the cup.
Based on such object properties and logical rules an algorithm for stacking order is to be

implemented as part of the rule engine in KnowRob. Below are a few preliminary considerations
that we estimate important for intelligent stacking.

• Objects with the Deposition disposition go below objects with the Depositability
disposition.

• Objects with the Deposition disposition go below objects with the Containment dispo-
sition.

• Finally, objects with the Containment disposition go below objects with the Contain-
ability disposition.

The above considerations are not intended as complete, neither in terms of how they relate to
object properties nor the relationships between them. For instance, there exist many categories
in which this reasoning does not apply, regardless of their object dispositions. One example is
objects classified as food, which, as a rule, should always go on top of tableware and never the
other way around.

4. Discussion and future work

Stacking is a deceptively simple task for humans, with several underlying complexities when
transferred to artificial and robotic agents. For robots to be able to function in household
environments, intelligent reasoning skills of how object properties and affordances relate to
their stackability need to be formally investigated. While still at an early stage, our system aims
to help with this by enabling the robot to infer the order of objects to be stacked and the motion
constraints that have to be maintained.
Future work includes integrating the formal representations of stackable objects and their

dispositions such as Containment and Deposition. We also intend to develop the algorithmic
rules for determining the order on how to stack particular objects based on their dispositions.
One important aspect to consider is that only a limited number of rules can be defined in
KnowRob as they need to be handcrafted. In an ideal case, the system should instead be able to
learn these rules by itself. tThere exist many methods for this that can be considered, but we
envision a combination of observation data (human demonstration data) to model the relation
between the physical attributes of the object and the stacking stability and allow the system to
extract rules from a curiosity-driven exploration in simulation [24] and [25].
Another step following this work is to establish a method to infer the motion constraints

for the task to be executed by the robot as it has to handle objects with varying physical
properties. These constraints are intended to be passed onto Giskard [26], a constraint-based
robot controller. This will enable Giskard to take the predicate goal as input and convert them
to robot control commands. This means that defining image-schematic goals such as Contact
(table, cup) as part of the task description is sufficient for the robot to infer that the cup should



be placed OnTopOf the table and correctly execute the sequence of actions necessary to reach
the goal.
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