
A Human-in-the-Loop Approach for Personal
Knowledge Graph Construction from File Names
Markus Schröder1,2, Christian Jilek1,2 and Andreas Dengel1,2

1Smart Data & Knowledge Services Dept., DFKI GmbH, Kaiserslautern, Germany
2Computer Science Dept., TU Kaiserslautern, Germany

Abstract
Users’ personal and work related concepts (e.g. persons, projects, topics) are usually not sufficiently
covered by knowledge graphs. Yet, already handmade classification schemes, prominently folder struc-
tures, naturally mention several of their concepts in file names. Thus, such data could be a promising
source for constructing personal knowledge graphs. However, this idea poses several challenges: file
names are usually noisy non-grammatical text snippets, while folder structures do not clearly define
how concepts relate to each other. To cope with this semantic gap, we include knowledge workers as
humans-in-the-loop to guide the building process with their feedback. Our semi-automatic personal
knowledge graph construction approach consists of four major stages: domain term extraction, ontol-
ogy population, taxonomic and non-taxonomic relation learning. We conduct a case study with four
expert interviews from different domains in an industrial scenario. Results indicate that file systems are
promising sources and, combined with our approach, already yield useful personal knowledge graphs
with moderate effort spent.

Keywords
Knowledge Graph Construction, Personal Knowledge Graph, Human-in-the-Loop, File System

1. Introduction

Knowledge graphs (KGs) have become a popular technology to support users, especially knowl-
edge workers, in various applications (for a survey see [1]). Since such KGs are constructed from
domain-specific document corpora, personal concepts of users in these domains are usually
not sufficiently covered. To fill this gap, there is the emerging concept of Personal Knowledge
Graphs (PKGs) which focus on resources users are personally related to (also in their profes-
sional life). The population and maintenance of such graphs is still an open research question
[2], especially, when knowledge is not modeled yet (cold start problem). Various sources in a
user’s personal information sphere may be worth considering to kick-start a population [3].

When users self-organize diverse documents in daily business, they often manage them in a
form of classification schema, prominently in file systems [4]. Here, documents are hierarchically
arranged and freely named according to aspects such as projects, organizations, persons, topics

Third International Workshop on Knowledge Graph Construction at 19th Extended Semantic Web Conference (ESWC),
May 29 - June 2, Hersonissos, Greece, 2022
$ markus.schroeder@dfki.de (M. Schröder); christian.jilek@dfki.de (C. Jilek); andreas.dengel@dfki.de (A. Dengel)
� https://www.dfki.uni-kl.de/~mschroeder/ (M. Schröder); https://www.dfki.uni-kl.de/~jilek/ (C. Jilek);
https://www.dfki.uni-kl.de/~dengel/ (A. Dengel)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:markus.schroeder@dfki.de
mailto:christian.jilek@dfki.de
mailto:andreas.dengel@dfki.de
https://www.dfki.uni-kl.de/~mschroeder/
https://www.dfki.uni-kl.de/~jilek/
https://www.dfki.uni-kl.de/~dengel/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Personal Knowledge Graph
foaf:topic

File System skos:Concept

Thumbs.db

Zenphase

images

WIP-treeDiagram.jpg

docs

Parker-proposal_final.docx

mercurtainmentDrawing.txt

:Zenphase

:Parker

:Mercurtainment

:WIP :Final:TreeDiagram:Proposal

:DocumentState:DocumentType

:Project

:Person

:Organization

:hasProject :worksFor

a

a

a

skos:broader

skos:prefLabel

skos:hiddenLabel

“WIP”

“Work in Progress”

“Drawing”

skos:hiddenLabel

:Document

skos:broader

a“docs”
skos:hiddenLabel

Figure 1: A file system (left) with file names containing relevant words (green) and irrelevant words
(red). They form a personal knowledge graph (right) with non-taxonomic and taxonomic relations. Due
to readability, some edges are omitted.

and task-related concepts. In file and folder names such concepts are typically mentioned in
order to let users guess their contents. Because file systems allow to name them mostly free1,
users tend to label them with their own vocabulary which can contain technical terms, made-up
words or even puns [5]. Thus, we hypothesize that file names could be a promising source for
constructing PKG.

This idea poses several challenges due to the nature of the data source. Literature already
showed that users have a large variety of file naming strategies [6, 7]. File names are usually
short ungrammatical (sometimes noisy) text snippets and contain differently ordered and
concatenated keywords. These circumstances make it difficult to discover and extract relevant
named entities from them. Besides labeling, users can also assemble files in hierarchically
structured folders [8]. Yet, this “folder contains file” structure typically does not explicitly define
how named entities relate to each other.

To give a visual example, Figure 1 depicts a small file system (left) and a possible personal
knowledge graph (right). Because some keywords in the file names are too general (images)
or have a technical meaning (Thumbs), they may be irrelevant for the user (underlined in red).
Relevant keywords (green) become resources in the PKG, while a foaf:topic property keeps
track in which file resource it is mentioned (only one is shown due to readability). Named
individuals (Zenphase, Parker, Mercurtainment) are assigned to their classes (Project, Person,
Organization) and are connected meaningfully (:hasProject, :worksFor). The remaining
ones are rather abstract ideas and thus become skos:Concepts according to the Simple
Knowledge Organization System (SKOS) [9]. A taxonomy tree is formed (top-right side) by
adding broader concepts (:DocumentType, :DocumentState). Since WIP is an abbreviation,
its skos:prefLabel contains the long form. Synonyms and other spellings are captured in
skos:hiddenLabels: for the user the term Drawing is synonym to treeDiagram and docs in
file names indicate the concept Document. Due to the lack of space, labels and some other
properties are not visualized.

In this paper, we present a semi-automatic personal knowledge graph construction approach

1Restricted only by illegal characters and maximum file name length.

which is able to build such a graph from a classification schema, in this case, a file system
and expert feedback. A graphical user interface (GUI) assists a knowledge engineer (KE) in
performing several tasks during construction: the discovery of concepts in file names, ontology
population of concepts and learning of taxonomic as well as non-taxonomic relations. In
an interview setting an expert can describe his or her personal view on their files to the KE
who translates the explanations in suitable knowledge graph statements using the GUI. To
reduce the manual effort for the KE, we make use of machine learning models which learn
from feedback and predict new statements during usage. This proposed method yields several
research questions (RQs), for which first answers are reported in this work.

• RQ1: Are file systems promising sources for knowledge graph construction?
• RQ2: Can our system suggest helpful statements during usage?
• RQ3: How efficient is the construction in our approach?

The rest of this paper is structured as follows: related approaches are covered in the next section
(Sec. 2). This is followed by the presentation of our approach in Section 3 and a prototypical
implementation in Section 3.6. The above research questions are then addressed in a case study
with expert interviews in Section 4. Section 5 closes the paper with a conclusion and future
work.

2. Related Work

To personally assist users in their tasks, knowledge services benefit from personal information
models about them [3]. For building such a model, personal concepts can be acquired from
various texts in a user’s personal information sphere [10]. Thus, folder structures could be
useful for this purpose which is also investigated by other related works.

Magnini et al. [11] as well consider hierarchical classifications and analyze the implicit
knowledge hidden in the labeled nodes. They use logic formulas expressed in description logic
and word senses discovered and disambiguated in labels to make knowledge explicit. Contextual
interpretations such as implicit disjunctions and negations are performed by exploiting the
hierarchy. In contrast to our work, their goal is the definition of an ontology with classes and
properties (TBox) by relying on external language repositories containing word senses. For us
the usage of such resources is limited, since word senses of personal concepts (like projects) are
usually not contained. Moreover, they present a fully automatic approach without integrating
domain experts in cases where labels do not match with any entry in dictionaries.

More closely related is the work about knowledge extraction from classification schemes by
Lamparter et al. [12]. Following the same motivation, the authors would like to acquire explicit
semantic descriptions from legacy information such as local folder structures. To archive
this, their processing pipeline include the identification of concept candidates, word sense
disambiguation, taxonomy construction and identification of non-taxonomic relations. They
distinguish ontology and instance layer by checking with dictionaries if terms are rather general
(concepts) or specific (instances). In our approach, we only consider instances, but classify
general ideas as skos:Concepts (e.g. Diagram). They also build a taxonomy by utilizing
hyponym and hyperonym information. In case of non-taxonomic relations, the work reuses

domain-specific ontologies, while the classification hierarchy as well as its labels are consulted
to guess appropriate relations. Our procedure is similar, but additionally considers user feedback
to train machine learning models in order to predict such relations.

In conclusion, to the best of our knowledge, there is no approach like ours that constructs
personal knowledge graphs from folder structures and at the same time includes experts with
their feedback.

3. Approach

Domain Terminology
Extraction

Unification Ontology Population Taxonomy Creation Non-Taxonomic
Relation Learning

Rules Rules

Management of Named Individuals

Random Forest Language Resource Link Prediction

Manually edit
 skos:prefLabel
 skos:hiddenLabel(s)

Figure 2: Components of our approach from left to right.

Our approach enables knowledge engineers (KEs) to construct personal knowledge graphs
from a classification schema, for example, a folder structure as shown in Figure 1. In this process,
we support them in four tasks which are depicted in Figure 2 and explained in individual sections:
Domain Terminology Extraction (Section 3.2), Management of Named Individuals (Section 3.3),
Taxonomy Creation (Section 3.4) and Non-Taxonomic Relation Learning (Section 3.5). During
modeling using a dedicated GUI (Section 3.6) the KE is assisted by an artificial intelligence
(AI) system which proactively makes statements on its own. For ontology population and
non-taxonomic relations, machine learning models predict statements. To correctly store and
distinguish these assertions, we first designed an appropriate data model.

3.1. Knowledge Graph Model

Our knowledge graph model is an RDF graph consisting of statements in the form of subject-
predicate-object triples. However, in our scenario, we have to store additional feedback infor-
mation for each statement. We consider exactly two agents in our system who are able to give
feedback about statements: a knowledge engineer (KE) and an artificial intelligence (AI). Both
contribute to the same personal knowledge graph with assertions which can be true, but also
false (negative statement). To keep track about the provenance, we store the following meta
data for each statement: (a) which agent stated it, (b) the date and time it was stated, (c) how is
the statement rated (true, false or undecided) and (d) how confident is the agent (a real value
between 0 and 1). Additionally, we use foaf:topic-statements to state that a classification
schema node (subject) mentions a certain knowledge graph resource (object) (see an example
in Figure 1). Regarding the rating, since natural intelligence is usually more reliable than an
artificial one, the KE always outvotes suggestions from the AI. Yet, assertions of the AI are
assumed to be true as long as the KE does not disagree.

3.2. Domain Terminology Extraction

Our extraction method uses heuristics to make a first guess for relevant terms in the user’s
domain. Since word boundaries are often not evident in rather messy file names, we tokenize
their basenames (without considering file extensions) by character type and camel case. In
addition, the acquired tokens are rated based on some simple rules: stop words and tokens
containing a single letter or only symbols are negatively rated. This also applies for tokens
which only contain digits, except they look like years (e.g. 𝑛 ∈ [1980, 2030]). Applying these
rules, the following example is tokenized (indicated by a pipe symbol ‘|’) and rated (indicated
by color) in the following way: WIP|__|for|2007|-|tree|Diagram|!|(|28|)|A|.jpg. Thus,
the rules let us assume that the tokens WIP, 2007, tree and Diagram are relevant. In case of
multi-word terms, the KE is able to merge separated tokens to a single term again, like for the
latter two (i.e. Tree Diagram).

After adjusting the rating according to feedback from a domain expert, other occurrences of
accepted terms are automatically searched using a regular expression, since they may occur in a
classification scheme more than once. If the term contains multiple words, we also search for all
possible word concatenations using the separators “-” (minus), “_” (underscore), “ ” (space) and
also no separator at all. To give an example, for the term treeDiagram our system also checks the
variations tree-Diagram, tree_Diagram and tree Diagram. Finally, the collected term variations
are associated with a named individual (i.e. owl:NamedIndividual according to OWL).

3.3. Management of Named Individuals

After retrieving all found term variations 𝑇 , we have to decide if they (a) resemble an already
existing named individual or (b) define a new one. Regarding the first case, each newly discovered
term may be a variation that refers to an already created named individual. Thus, we calculate
the Jaccard similarity coefficient [13] between the terms 𝑇 and the candidates’ labels 𝐿 in the
following way:

𝐽(𝑇, 𝐿) =
|𝑇 ∩ 𝐿|
|𝑇 ∪ 𝐿|

A named individual is picked which has the highest overlap between its labels and the given
terms. If we cannot find such a resource above a sufficient similarity threshold, a new one is
created. The longest term is used to give the resource a preferred label (skos:prefLabel)
after some conversions are performed: German umlaut spellings are corrected (e.g. “ae” → “ä”),
underscores are replaced with spaces, if available a lemma version is used (diagrams → diagram)
and proper case is applied (Tree Diagram). The remaining terms form the named individual’s
synonym and differently spelled labels (skos:hiddenLabel). In both cases, we keep track in
which file resource the named individuals are mentioned by using a foaf:topic-relation.

Unification. If two or more named individuals have the same meaning, we can unify them
to one resource. This is done by correctly substituting URIs and at the same time removing
the source triples. The AI automatically detects potential individuals with the same meaning
by looking at their labels and applying some rules: it checks for hidden labels if they overlap
or if there is a prefix or postfix dependency, while preferred labels are compared with the
Levenshtein distance [14] and token-based equality. Of course several other string metrics

could be applied here to discover candidates, for instance the Jaro-Winkler distance [15]. As an
example, the following label pairs would be indicators that their individuals are equal: (“Peter
Parker”, “Parker Peter”); (“Tree Diagram”, “Diagram”) and (“diagram”, “diagramm”).

Ontology Population. The KE manually create ontology classes and type named individuals
with them. To support the KE in this assignment, a random forest model2 [16] is trained with
positive examples from feedback to be able to predict classes for individuals without a type. In
order to acquire training features, we follow a gazetteer-based embedding technique by looking
up words from several gazetteer lists in preferred labels of named individuals. Remaining
characters are counted per character class such as spaces, quotes and digits. The coverage
proportions of words and characters in the label serve as the final feature vector. To give
some examples, “Tree Diagram 27” receives the vector 𝑣1 = (English Noun = 0.73, Space =
0.13,Digit = 0.13), while “WIP” has 𝑣2 = (Uppercase Letter = 1.0). Having such feature
vectors, the random forest model is able to learn decision trees which predict the same type
for named individuals having preferred labels very similar in content. For instance, since the
individual Tree Diagram 27 is assigned to skos:Concept and another individual Diagram 3
has a similar feature vector, our model predicts the same class for it.

3.4. Taxonomy Creation

Our intended taxonomy uses broader and narrower relations to structure concepts (skos:Concept)
found in file names according to the Simple Knowledge Organization System (SKOS) [9]. Since
we see these concepts as leafs in a taxonomy tree, our motivation is to find broader concepts
for them. For this, our approach utilizes a language resource of synsets and hypernym relations.
The concepts in the PKG are mapped via their labels to synsets of the lexical-semantic net. By
traversing hypernym relations for all found synsets, two or more of them may share the same
ancestor along their hypernym paths. If the average distance from synsets to ancestor is below
a configurable threshold, it is suggested as a broader concept for them. This constraint avoids
the recommendation of too general concepts (e.g. near the root node). To give an example,
given the hypernym paths diagram → depiction and timetable → overview → depiction, our
procedure would suggest the broader concept depiction for both leafs. Of course the KE may at
any time create concepts manually and link them accordingly. Besides such taxonomic relations,
our system also considers non-taxonomic ones between instances.

3.5. Non-Taxonomic Relation Learning

To predict non-taxonomic relations, we perform link prediction by training a model on positive
examples from feedback and by exploiting the structure of the classification schema (CS). Our
idea is that the same non-taxonomic predicate could be suggested between other resources
(subjects and objects) which have a similar neighborhood in the CS. For this, we only consider
class instances which are named individuals that have been assigned to an ontology class. Since
instances are annotated on files via a foaf:topic-relation, we know in which places of the
CS they are mentioned. This annotated CS needs to be transformed into an undirected graph

2The implementation in Weka is used: https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/
RandomForest.html

https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html

Figure 3: Our graphical user interface in a three-column layout with many feedback possibilities and
components (top). Dedicated components are provided to preform certain tasks (bottom).

of connected instances to perform link prediction on it. We make an edge from an instance
𝑖 mentioned in a given node to another instance 𝑗, whenever 𝑗 is mentioned in the (a) node
itself, (b) the node’s parent, (c) one of the node’s children or (d) one of the node’s siblings (i.e.
children of parent). In other words, instances are connected in the graph if they are closely
mentioned in the CS. With the given graph, we are able to calculate local similarity measures
for links (for a survey see [17, Table 1]). Values of the calculated measures form feature vectors
in a training set. The test set is acquired by iterating over all possible combinations of instances
and properties by using their domain and range information as a filter. A promising triple in
the test set is expected when we calculate a small euclidean distance (below a given threshold)
between its test vector and a training vector.

3.6. Prototypical Implementation

To test our approach in a case study, we implemented a prototype. A demo video3 and its
source code4 are publicly available. To assist the KE in entering feedback and constructing the
PKG, a graphical user interface (GUI) in form of a Web application is provided (see Figure 3).

3https://www.dfki.uni-kl.de/~mschroeder/demo/kecs
4https://github.com/mschroeder-github/kecs

https://www.dfki.uni-kl.de/~mschroeder/demo/kecs
https://github.com/mschroeder-github/kecs

Throughout the interface, we make heavily use of thumbs-up and thumbs-down buttons as
well as green and red colored elements to visualize positive and negative feedback (true and
false assertions). The three-column layout presents tabs for individual components which give
dedicated views for the tasks we have discussed.

A typical Explorer view (top left) lists containing files of a currently browsed folder (i.e.
/User/Downloads). The view presents for each file (from top to bottom) its file name, rated
terms from the file name and annotated named individuals. To distinguish individuals from
terms the well-known hashtag symbol is added to their preferred labels. In a separate Named
Individuals view in the top middle, we itemize them together with their type. Two side-by-
side views enable a Drag&Drop mechanism on individuals to let the KE define triples with a
selected predicate (drop-down list in the middle). On the top right, classes and properties can
be manually created, renamed and rated in an Ontology view. For each property, domain and
range classes can be defined too. In separate tabs (bottom left) our GUI also presents suggestions
for Unification, Typing, Taxonomic and Non-Taxonomic Relations (the screenshot shows
an opened Typing tab). A list of proposals from the AI can be reviewed by the KE, who can
accept or reject them individually or in bulk. Decisions are shown below and can always be
undone in either way. In a detail view (bottom middle), the KE is able to change a selected
individual’s preferred label, type, hidden labels and file attachment. A Status view (bottom
right) visualizes the current PKG construction state in four sections: the progress in tagging,
typing, taxonomy tree and non-taxonomic graph as well as an overall assessment score which
is computed as an average value of the former four measures. These estimations give hints to
the KE where more feedback from the expert is necessary.

4. Case Study: Expert Interviews

A case study was conducted with expert interviews in which personal knowledge graphs (PKGs)
were built with their feedback. Here, experts are users who understand certain file systems
(or similar datasets) due to experience in their profession. A knowledge engineer takes on the
role of the interviewer and at the same time operates the GUI. The setup for the interviews is
covered in Section 4.1. This is followed by a detailed description of all collected results (Section
4.2) which are then discussed with regard to our stated research questions (Section 4.3).

4.1. Expert Interview Setup

Since our institute has industry projects with several departments of a large power supply
company, we had the great opportunity to get in contact with four individual experts from
four departments (guideline management, property management, license management and
accounting). Three of them work separately on individual shared drive file systems (FS), while
one primarily manages spreadsheet (SS) data. Before the interviews, we received dumps of their
data which are listed in Table 1. For each dataset an expert (E) is assigned and meta data about
the asset is presented.

Since spreadsheets may also contain work related concepts, but are not a form of classification
schema, we had to convert the SS1 dataset to a tree structure in the following way. Table names
become root folders, while column names are added as their subfolders. In the subfolders, we

Table 1
Four datasets with their meta data which are used in interviews with four experts.

Dataset Expert Branches Leafs Max. Depth Avg. Depth Avg. Name Length

SS1 E1 103 198 3 2.98± 0.16 8.84± 9.86
FS1 E2 25, 988 95, 760 17 9.49± 1.93 23.30± 16.88
FS2 E3 8, 939 64, 571 17 9.18± 1.68 32.43± 16.77
FS3 E4 54, 933 325, 476 22 10.08± 2.22 24.24± 14.57

add files with distinct names from the column’s rather short cell values. This way, potential
work related concepts could be contained in this generated classification schema.

Our system automatically captures several data points during usage. To reproduce the
construction process, we keep a history of all stated assertions with their meta data as described
in Section 3.1. By observing GUI inputs including mouse clicks, Drag&Drop operations and
certain keystrokes, we quantify the KE’s effort with the system. In a fixed interval (every
10 inputs) snapshots of the construction metrics (Status view) are saved to record the PKGs
evolution over time. Additionally, memory consumption and time performance of certain
system modules are monitored.

Each one-hour long interview between the knowledge engineer (KE) and an expert had the
same setting. One fixed author of this paper took over the role of KE and met the expert in a
virtual telephone conference. The KE shared the screen and presented the GUI of our system
(see Section 3.6) where the expert’s data was already loaded. After a brief introduction, the
KE started to ask questions about files and folders by traversing through the file system. The
explanations of the participant enabled the KE to model the expert’s personal knowledge as
discussed in our approach (Section 3). Whenever the AI made predictions, the expert was asked
if they are correct or not and feedback was entered accordingly. Every 10 minutes the KE
reviewed the current construction state by opening the Status view and changed the focus on
parts which needed more attention. After about 50 minutes the session ended and the remaining
time was used to let the expert complete a questionnaire about the data source and the modeled
knowledge graph. In the next section, we present the questionnaire and the results in detail as
well as the data which was logged by our prototype during the interviews.

4.2. Interview Results

The questionnaire at the interview’s end consists of seven questions (Q) which are presented in
Table 2 together with the experts’ answers (E), their average value and standard deviation (Avg.
& SD). We stated the first question (Q1) to check how familiar the participants are with the
data. The second question (Q2) was asked to figure out if the experts think that the given data
actually contains work related words. While Q3 tries to give a rough estimation on the PKG’s
recall in percentage, Q4 gives an approximate measurement about its precision with regard to
created named individuals5 in the PKG. From the third question on, we are interested in the
experts’ opinions about the final result that was modeled during the interview. A seven-point

5The questions refer to “established tags”, since we presented tags in the GUI for the named individuals in the
personal knowledge graph (PKG).

Table 2
The seven questions from the questionnaire with the answers of the four experts and their average
values.

Question E1 E2 E3 E4 Avg. & SD

Q1: Howmany years have you been working with the data? 13 7 4 0 6± 5.48
Q2: How much do words in the file names reflect your
language use (vocabulary) at work (scale: 1− 10)?

9 8 9 9 8.75± 0.50

Q3: Estimate how much your language use (vocabulary) at
work is represented by the established tags (percentage).

50 15 10 10 21.25± 19.3

Q4: The established tags meaningfully reflect the language
use (vocabulary) at your work (scale: 1− 7).

7 6 4 6 5.75± 1.26

Q5: The established tags are assigned to meaningful classes
(scale: 1− 7).

6 7 6 7 6.50± 0.58

Q6: The established tags are meaningfully structured in a
taxonomy (scale: 1− 7).

7 6 5 4 5.50± 1.29

Q7: The established tags meaningfully relate to each other
(scale: 1− 7).

5 7 6 7 6.25± 0.96

Likert scale is used for our opinion-based questions ranging from 1 (“fully disagree”) to 7 (“fully
agree”). The remaining questions aim at the estimation of meaningfulness in the populated
ontology (Q5) and taxonomic (Q6) as well as non-taxonomic relations (Q7).

Besides qualitative data, we also captured quantitative data points during the interview
which are presented in Table 3. Measurements are listed per row, while dataset-expert pairs
are ordered in columns. After the number of resources in the PKG (#Resources) and the counts
regarding the knowledge engineer’s (KE) effort in the GUI, we list the number of true and false
assertions6 made by KE and AI in individual construction phases. Furthermore, we calculate the
AI’s accuracy by counting how often the expert agrees (true positive and true negative) with
reviewed predictions. Regarding Ontology Population and Non-Taxonomic Relation Learning,
the models were re-trained with KE True and KE False assertions each time feedback was entered.
Final AI accuracy scores are calculated by dividing the number of statements the KE agreed
with by the number of statements the KE reviewed. The section about Management of Named
Individuals is further split into Unification and Ontology Population. While the management
includes assertions about types, preferred/hidden labels and foaf:topic-relations, the latter
two only consider owl:sameAs and ontology related assertions. Due to a software error in the
taxonomy-module during the first two interviews, unfortunately, no broader concepts could be
predicted. On the table’s bottom all assertions by the KE (whether true or false) and all inputs
(clicks, enter keys, drag&drop operations) are aggregated to calculate a assertions per inputs
ratio. The Management of Named Individuals does not have an accuracy value (N/A), since
each term automatically turns into a named individual and no suggestions for preferred and
hidden label are made.

Since we continuously recorded measurements, we are able to examine the evolution of the
PKG with respect to the inputs performed in the GUI. The development of the taxonomic and
non-taxonomic part of the PKG is presented through several plots in Figure 4. We consider named

6False assertions by AI mean that it later rejected initially true ones because of human feedback.

Table 3
Quantity of true and false assertions stated by the knowledge engineer (KE) and the AI for individual
construction tasks. Additionally, the KE’s GUI effort and the AI’s accuracy is given.

Measurement SS1 (E1) FS1 (E2) FS2 (E3) FS3 (E4)

#Resources 88 50 39 32
KE Clicks 599 602 359 356
KE Enter-Key 60 56 30 47
KE Drag&Drop 26 34 21 18

Domain Terminology Extraction (Section 3.2)
KE True 82 50 33 26
KE False 48 44 14 72
AI True 400 270168 242149 948405
AI False 286 220285 106573 617366
AI Accuracy 0.67 = 45/67 0.72 = 59/82 0.83 = 35/42 0.31 = 25/80

Management of Named Individuals (Section 3.3)
KE True 102 68 39 58
KE False 30 24 15 25
AI True 462 32161 8223 37159
AI False 4 1 23 155
AI Accuracy N/A N/A N/A N/A

Unification (Section 3.3)
KE True 10 2 2 0
KE False 6 18 12 4
AI True 8 10 7 2
AI False 0 0 0 2
AI Accuracy 0.57 = 4/7 0.10 = 1/10 0.14 = 1/7 0.00 = 0/2

Ontology Population (Section 3.3)
KE True 105 78 61 55
KE False 73 29 22 19
AI True 134 102 92 85
AI False 1 8 6 2
AI Accuracy 0.23 = 18/78 0.65 = 30/46 0.66 = 23/35 0.48 = 12/25

Taxonomy Creation (Section 3.4)
KE True 21 19 14 12
KE False 0 0 4 8
AI True N/A N/A 9 10
AI False N/A N/A 0 0
AI Accuracy N/A N/A 0.56 = 5/9 0.20 = 2/10

Non-Taxonomic Relation Learning (Section 3.5)
KE True 5 23 33 7
KE False 0 42 20 0
AI True 0 52 42 0
AI False 4 11 5 0
AI Accuracy 0/0 0.19 = 10/52 0.52 = 22/42 0/0

Aggregated
All KE Assertions 482 397 269 286
All KE Inputs 685 692 410 421
KE Assertions/Inputs 0.70 0.57 0.66 0.68

individuals of type skos:Concept as taxonomy concepts (Figure 4a) and the remaining typed
ones as non-taxonomic instances (Figure 4b). By looking at the number of graph components
(Fig. 4c and 4d), one gets an idea of the connectedness over time. In addition, Figure 4e
plots the number of concepts which are connected to at least one broader concept. Similarly,
Figure 4f shows the average diameter (the greatest distance between any pair of instances) of
non-taxonomic components to visualize the closeness among them.

The next section will discuss the results with regard to our research questions.

4.3. Discussion

Since file names are rather unusual sources to build PKGs from, we ask at the beginning of
the paper the following question (RQ1): Are file systems promising sources for knowledge graph
construction? Our experts agree that words they saw in the file names reflect their language
use at work with an average value of 8.75 out of 10 (Q2 in Table 2). Having a higher-level
management background, expert E4 came in daily work not in touch with file system F3 (see Q1
in Table 2), but was still able to recognize and explain the terms. Answers to questions Q4 to
Q7 in our questionnaire (Table 2) indicate that we modeled all individual PKGs in a meaningful
way for the experts. For these reasons, we conclude that file systems are promising sources for
building PKGs.

Because a completely manual construction can be time-consuming and thus AI could help
in this process, we asked the next question (RQ2): Can our system suggest helpful statements
during usage? In our approach, we consider the application of AI in several tasks ranging from
(a) initial selection of domain relevant terms, (b) unification suggestions, (c) recommendation
of class memberships, (d) suggestion of broader concepts and (e) prediction of non-taxonomic
relations. How they performed can be obtained from Table 3 in form of accuracy values which
calculate how often an expert agreed to suggestions stated by AI. (a) Since we do not consider
multi-word terms in the extraction of domain relevant words, such terms had to be corrected
frequently, which leads to a drop in performance. (b) Our unification rules tend to suggest more
false positives leading to low accuracy scores, since they are designed with a high recall in mind.
(c) The prediction of class assignments show mediocre results, since only preferred labels in
combination with gazetteer lists are used to extract features. (d) For the taxonomy creation, our
language resource GermaNet tended to suggest too general concepts which is why they were
often considered unsuitable by our experts. (e) Regarding non-taxonomic relation learning, far
to little examples were provided in case of SS1 and FS3 to be able to predict similar relations. All
in all, there is a tendency that in certain cases helpful statements can be automatically suggested,
but more research has to be done to further improve AI.

Concerned about the approach’s practicability, we stated the third question (RQ3): How
efficient is the construction in our approach? Effort measurements in Table 3 indicate that one
input operation results in 0.6 to 0.7 assertions, thus already two inputs lead to a true or false
statement. We assume that a value below 1.0 comes from not negligible GUI navigation and
search efforts. Still, many clickable (bulk) feedback buttons combined with suggestions from
the AI seem to yield to this positive outcome. Especially the Drag&Drop feature turns out to be
a simple and fast way to relate resources to each other. Figure 4 visualizes how taxonomies and

0 200 400 600

0

5

10

15

20

25

Number of Inputs

N
um

be
r

of
Ta

xo
no

m
y

C
on

ce
pt

s

(a) Taxonomy Concepts

0 200 400 600

0

20

40

60

Number of Inputs

N
um

be
r

of
N

on
-T

ax
on

om
ic

In
st

an
ce

s

(b) Non-Taxonomic Instances

0 200 400 600

0

20

40

Number of Inputs

N
um

be
r

of
Ta

xo
no

m
y

C
om

po
ne

nt
s

(c) Taxonomic Graph Components

0 200 400 600

0

20

40

60

Number of Inputs

N
um

be
r

of
N

on
-T

ax
on

om
ic

C
om

po
ne

nt
s

(d) Non-Taxonomic Graph Components

0 200 400 600

0

5

10

15

Number of Inputs

N
um

be
r

of
G

en
er

al
iz

ed
C

on
ce

pt
s

(e) Generalized Taxonomy Concepts

0 200 400 600

0

1

2

3

4

Number of Inputs

Av
g.

D
ia

m
et

er
of

N
on

-T
ax

.C
om

po
ne

nt
s

(f) Average Component Diameter

Figure 4: Plots about the taxonomic and non-taxonomic parts of the PKG with respect to the number
of inputs made in the GUI. For each dataset a symbol is assigned to recognize them: SS1 (□), FS1 (∘),
FS2 (×) and FS3 (△).

graphs evolve over entered inputs7. In comparison, the maintenance of taxonomies seem to
require less effort than the non-taxonomic graphs, probably because only skos:Concepts and
the skos:broader-relation need to be considered. The high diameter values of non-taxonomic
graphs further indicate that resources in subgraphs are rather loosely connected. In summary,
with moderately spent effort our KE was able to create, accept and also reject many assertions
that eventually formed a meaningful personal knowledge graph. Still, efficiency could be further
improved by better supporting the construction of the graph’s non-taxonomic part.

5. Conclusion and Outlook

In this paper, we investigated the construction of personal knowledge graphs from file names
with a human-in-the-loop approach. A case study with four independent expert interviews
showed that the file system is a promising source, while suggestions by AI help to build such
graphs with moderate effort.

Since we could not examine all of the aspects in detail, future work may further investigate
in the challenges. For instance, there is potential for improvements in machine learning models,
especially for the prediction of non-taxonomic relations. More sophisticated solutions could be
applied in the extraction of domain terminology, including disambiguation and the discovery of
multi-word terms. Named entity recognition models specifically trained for the file system’s
domain could identify first promising entities.

Acknowledgments

This work was funded by the BMBF project SensAI (grant no. 01IW20007).

References

[1] S. Ji, S. Pan, E. Cambria, P. Marttinen, P. S. Yu, A survey on knowledge graphs: Represen-
tation, acquisition and applications, CoRR abs/2002.00388 (2020). arXiv:2002.00388.

[2] K. Balog, T. Kenter, Personal knowledge graphs: A research agenda, in: Y. Fang, Y. Zhang,
J. Allan, K. Balog, B. Carterette, J. Guo (Eds.), Proceedings of the 2019 ACM SIGIR Interna-
tional Conference on Theory of Information Retrieval, ICTIR 2019, Santa Clara, CA, USA,
October 2-5, 2019, ACM, 2019, pp. 217–220. doi:10.1145/3341981.3344241.

[3] L. Sauermann, A. Dengel, L. Van Elst, A. Lauer, H. Maus, S. Schwarz, Personalization in
the EPOS project, in: Proceedings of the Semantic Web Personalization Workshop at the
ESWC Conference, 2006, pp. 42–52.

[4] J. D. Dinneen, C. Julien, The ubiquitous digital file: A review of file management research,
Journal of the Association for Information Science and Technology 71 (2020) E1–E32.
doi:10.1002/asi.24222.

7It has to be noted that the clearly visible outlier SS1 (e.g. Figure 4b) comes from a bulk-import of several
resources (categories) found in a spreadsheet column.

http://arxiv.org/abs/2002.00388
http://dx.doi.org/10.1145/3341981.3344241
http://dx.doi.org/10.1002/asi.24222

[5] J. M. Carroll, Creative names for personal files in an interactive computing environment,
International Journal of Man-Machine Studies 16 (1982) 405–438.

[6] B. J. Hicks, A. Dong, R. Palmer, H. C. McAlpine, Organizing and managing personal
electronic files: A mechanical engineer’s perspective, ACM Transactions on Information
Systems 26 (2008) 23:1–23:40. doi:10.1145/1402256.1402262.

[7] J. W. Crowder, J. S. Marion, M. Reilly, File naming in digital media research: Examples from
the humanities and social sciences, Journal of Librarianship and Scholarly Communication
3 (2015).

[8] R. Whitham, L. Cruickshank, The function and future of the folder, Interacting with
Computers 29 (2017) 629–647. doi:10.1093/iwc/iww042.

[9] World Wide Web Consortium, SKOS Simple Knowledge Organization System Primer, 2009.
URL: https://www.w3.org/TR/skos-primer/, accessed: 2022-04-01.

[10] M. Schröder, C. Jilek, A. Dengel, Interactive concept mining on personal data - bootstrap-
ping semantic services, CoRR abs/1903.05872 (2019). arXiv:1903.05872.

[11] B. Magnini, L. Serafini, M. Speranza, Making explicit the hidden semantics of hierarchical
classifications, in: A. Cappelli, F. Turini (Eds.), AI*IA 2003: Advances in AI, 8th Congress of
the Italian Association for Artificial Intelligence, Pisa, Italy, September 23-26, 2003, volume
2829 of Lecture Notes in Computer Science, Springer, 2003, pp. 436–448. doi:10.1007/978-
3-540-39853-0_36.

[12] S. Lamparter, M. Ehrig, C. Tempich, Knowledge extraction from classification schemas, in:
R. Meersman, Z. Tari (Eds.), On the Move to Meaningful Internet Systems 2004: CoopIS,
DOA, and ODBASE, OTM Conf. Int’l. Conf., Agia Napa, Cyprus, October 25-29, 2004,
Proceedings, Part I, volume 3290 of LNCS, Springer, 2004, pp. 618–636. doi:10.1007/978-
3-540-30468-5_40.

[13] P. Jaccard, Lois de distribution florale dans la zone alpine, Bulletin de la Société vaudoise
des sciences naturelles 38 (1902) 69–130.

[14] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals,
in: Soviet physics doklady, volume 10, 1966, pp. 707–710.

[15] W. Winkler, String comparator metrics and enhanced decision rules in the fellegi-sunter
model of record linkage, Proceedings of the Section on Survey Research Methods (1990).

[16] L. Breiman, Random forests, Machine Learning 45 (2001) 5–32. doi:10.1023/A:
1010933404324.

[17] A. Samad, M. Qadir, I. Nawaz, M. A. Islam, M. Aleem, A comprehensive survey of
link prediction techniques for social network, EAI Endorsed Transactions on Industrial
Networks and Intelligent Systems 7 (2020) e3. doi:10.4108/eai.13-7-2018.163988.

http://dx.doi.org/10.1145/1402256.1402262
http://dx.doi.org/10.1093/iwc/iww042
https://www.w3.org/TR/skos-primer/
http://arxiv.org/abs/1903.05872
http://dx.doi.org/10.1007/978-3-540-39853-0_36
http://dx.doi.org/10.1007/978-3-540-39853-0_36
http://dx.doi.org/10.1007/978-3-540-30468-5_40
http://dx.doi.org/10.1007/978-3-540-30468-5_40
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.4108/eai.13-7-2018.163988

	1 Introduction
	2 Related Work
	3 Approach
	3.1 Knowledge Graph Model
	3.2 Domain Terminology Extraction
	3.3 Management of Named Individuals
	3.4 Taxonomy Creation
	3.5 Non-Taxonomic Relation Learning
	3.6 Prototypical Implementation

	4 Case Study: Expert Interviews
	4.1 Expert Interview Setup
	4.2 Interview Results
	4.3 Discussion

	5 Conclusion and Outlook

