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Abstract
Knowledge Graph construction is typically a task within larger workflows, with a tight coupling between
the abstract workflow and its execution. Mapping languages increase interoperability and reproducibility
of the mapping process, however, this should be extended over the entire Knowledge Graph construction
workflow. In this paper, we introduce an interoperable and reproducible solution for defining Knowledge
Graph construction workflows leveraging Semantic Web technologies. We describe how a data flow
workflow can be described interoperable (i.e., independent from the underlying technology stack) and
reproducible (i.e., with detailed provenance) by composing semantic abstract function descriptions; and
how such a semantic workflow can be automatically executed across technology stacks. We demonstrate
that composing functions using the Function Ontology allows for functional descriptions of entire
workflows, automatically executable using a Function Ontology Handler implementation. The semantic
descriptions allow for interoperable workflows, the alignment with P-PLAN and PROV-O allows for
reproducibility, and the mapping to concrete implementations allows for automatic execution.
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1. Introduction

Knowledge Graph (KG) construction – i.e., RDF graph construction – is typically a task within
larger workflows. The construction of a KG itself can also be considered an overarching and
more complex task that is composed of smaller tasks, e.g., extracting data from a database,
mapping it to RDF, and publishing it using a web API. Such a process – i.e., a set of tasks that
can be automated – can be facilitated using a workflow system.

Mapping languages increase interoperability (i.e., being independent from the processor that
executes them) and reproducibility (i.e., the described transformations can be reproduced using
detailed provenance data) of the mapping process. However, this is not extended to the entire
KG construction workflow. Existing KG construction workflows typically integrate the mapping
process in a hard-coded workflow where there is a tight coupling between abstract workflow
and execution, and where the lack of detailed descriptions of tasks, and their executions, inhibits
the workflow from being reproduced.
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Interoperability diminishes when there is a tight coupling between the abstract workflow and
its execution [1]. The lack of interoperability inhibits using different tools for a task, making it
harder to adapt to changing requirements and constraints. For example, Tool A might initially
suffice for the KG construction task given the source data size. Later on, the data size might
become unmanageable for Tool A. Tool B can handle larger data sets, however, the lack of
interoperability prevents the flexibility in switching from one tool to the other.

Reproducibility diminishes when details about the workflow execution are unavailable. The
results produced by a workflow rely on the applied tasks and their parameters, however, if these
details are not captured, it prevents other users from exactly reproducing the workflow.

In this paper, we represent tasks within a workflow using implementation-independent
semantic function descriptions, and workflows as compositions of such functions. By decoupling
the abstract workflow from its concrete implementation, we provide interoperability between
tasks and the tools that execute them. Users can focus on the overarching task for which the
workflow was created, e.g. managing the KG construction life cycle using different mapping
processors that generate RDF, and different endpoints on which the RDF is published. By being
aligned with the W3C standard PROV, the semantic function descriptions allow for capturing
workflow execution details in a standardized way and subsequently facilitate its reproducibility.

Section 2 presents related work. In Section 3, we first show how interoperability between
tasks and tools within a workflow can be achieved through the composition of declarative
function descriptions and how this allows detailed provenance capture, and then provide an
implementation by leveraging the Function Ontology (FnO) [2] as a model to describe and
compose tasks within a data flow workflow, decoupled from the tools that are used. We introduce
a motivating use case in Section 4, and demonstrate the resulting workflow in Section 5. We
conclude in Section 6 and give additional pointers for future work.

2. Related work

In this section, we discuss existing KG construction workflows, and the characteristics that
increase workflow systems’ interoperability and reproducibility.

Mapping languages can provide features to cover many steps within the KG construction
process, i.e., not only specify how to map to RDF, but also how to extract data from different
data sources [3], and how to publish using various methods [4]. Even when mapping languages
provide enough features to be deemed end-to-end, executing a KG construction exists within a
wider context, e.g., being part of a Knowledge Graph Lifecycle [5], or as a collection of subtasks
to allow for optimization [6]. As such, even though KG construction rules can be described
interoperably using, e.g., a mapping language, its position within the wider and narrower tasks
makes it interpretable as being (a part of) a workflow.

The state of the art on workflow languages focuses on a variety of features, of which we focus
on the combination of being a declarative approach, separating abstract tasks from concrete
implementations, and capturing execution provenance information.

An imperative paradigm (i.e., exact ordered instructions defining how to execute a program) is
suitable for processes that are unlikely to change, however, a declarative approach is recom-
mended when workflows resemble processes with changing requirements and constraints that



require them to be executed in different ways. Declarative paradigms can be used to represent
data flow, i.e., the data dependencies between tasks, and are more robust to change as they
describe what needs to be done, instead of how [7].

Interoperability diminishes when there is a tight coupling between tasks and implemen-
tations [1], e.g., when using ad hoc approaches. Thus, the separation of description and
implementation is crucial to interoperability [8].
Provenance information including the execution details is required for reproducibil-

ity [9]: unambiguous and fine-grained descriptions of the workflow tasks [10].
Several workflow specifications exist, and can be divided into two parts: executable specifi-

cations (i.e. the descriptions contain sufficient details to be automatically executed), such as
the Common Workflow Language (CWL), and Workflow Description Language (WDL); and
descriptive specifications such as P-PLAN and the Open Provenance Model for Workflows
(OPMW). To the best of our knowledge, no specification exists that can describe the provenance
workflows in sufficient details whilst also focusing on automatic executability and remaining
loosely coupled from the implementation. CWL allows for describing a computational workflow
and the command-line tools used for executing its tasks [11]. CWL prioritizes on making
it straightforward to re-run a workflow on a different machine, requiring explicit execution
definitions, resulting in a tight coupling between tasks and implementations. WDL focusses
on readability, making it easier to learn, but is less expressive [12]. P-PLAN extends the W3C
standard PROV [13]. It allows for describing workflow steps and link them to execution traces,
and was applied in projects that focus on interoperability [14] and reproducibility [10]. OPMW
is an extension of P-PLAN [14]: a simple interchange format for representing workflows at
different levels of granularity (ie. abstract model, instances, executions).

The Function Ontology (FnO) [2] presents a similar approach towards interoperable data
transformations using Semantic Web technologies. An implementation-independent function
description allows for a decoupled architecture that separates the definition from its execution,
and the inputs and outputs of a function are explicitly described. Furthermore, a recent update
to FnO includes composition: compose a new function from other functions.

3. Method and Implementation

In this paper we put forward our approach towards interoperable and reproducible workflows
through declarative descriptions that separate description from implementation in a standardized
language. This provides the flexibility of tasks being implemented by different tools and allows
detailed provenance capture.

We represent tasks using implementation-independent semantic function descriptions: being
semantically described makes tasks uniquely identifiable, unambiguously defined, universally
discoverable, and linkable [2]. We then represent workflows as compositions of functions. For
simplicity, we currently only consider sequential execution of tasks. The data flow between
composed tasks is represented by input and output mappings between functions. Such a
composition mapping describes how an input or output of one function is linked to the input or
output of another function. For example, within a KG construction workflow this is needed to
connect the output of an RDF generation task to the input of the subsequent publishing task.



Figure 1: Workflow defined as a function composition: GenerateRDF and Publish are function descrip-
tions of the tasks that share parameters, while ETL is a description of the constituting workflow.

An example of a function composition for an ETL workflow is illustrated in Figure 1.
We consider the Function Ontology (FnO)1 as the model to describe functions and function

compositions representing tasks and workflows, respectively. FnO allows linking abstract
functions to concrete implementations, hence, providing sufficient detail to be directly executed.
The recently-added specification of how to compose functions allows us to describe complete
workflows using a single and simple language. We clarify using a working example of an Extract-
Transform-Load (ETL) workflow comprising two tasks: i) generating RDF; and ii) publishing
the generated RDF. Due to space restrictions only excerpts of the descriptions are shown.

Our workflow system requires us to create semantic descriptions of each task. First, we
define the task of generating RDF as a function that takes the URI to a mapping, and the URI
to which the result should be written. We make use of the RML mapping language to have an
interoperable RDF generation step. Secondly, we define the publishing task as a function which
takes the URI to the generated RDF data as input parameter and outputs a URI to the endpoint
through which it is published. These descriptions are shown in Listing 1.
1 @prefix fno: <https://w3id.org/function/ontology#> .
2 @prefix fns: <http://example.com/functions#> .
3
4 fns:generateRDF a fno:Function ;
5 fno:expects ( fns:fpathMappingParameter ) ; fno:returns ( fns:fpathOutputParameter ) .
6
7 fns:publish a fno:Function ;
8 fno:expects ( fns:inputRDFParameter ) ; fno:returns ( fns:returnOutput ) .

Listing 1: FnO task descriptions for generating RDF and publishing RDF

We describe an overarching ETL task as the composition of these two functions, illustrated in
Listing 2, using fnoc:CompositionMapping. fnoc:Composition links the output of the first task
to the second task by means of a fnoc:CompositionMapping. A fnoc:CompositionMapping links
a source fnoc:CompositionMappingEndpoint to a target fnoc:CompositionMappingEndpoint by
means of fnoc:mapFrom and fnoc:mapTo, respectively. A fnoc:CompositionMappingEndpoint
specifies the fno:Function and either fno:Parameter or fno:Output that are being mapped. Note
that, depending on how parameters and outputs are mapped, different composition mappings
are possible:

• fno:Parameter to fno:Parameter. This is needed to link the parameters of the composed
function to parameters of its constituent functions. In Figure 1, for example, this is needed

1https://w3id.org/function/spec/

https://w3id.org/function/spec/


to link the mapping parameter of the overarching ETL function to the mapping parameter
of the GenerateRDF function.

• fno:Output to fno:Parameter. Needed to define the data flow between functions. In
Figure 1, for example, this is needed to link the output of the GenerateRDF to the input of
the Publish.

• fno:Output to fno:Output. This is needed to link outputs of constituent functions to
outputs of the composed function. In Figure 1, for example, this is needed to link the
output of Publish to the output of the overarching ETL function.

1 @prefix fno: <https://w3id.org/function/ontology#> .
2 @prefix fnoc: <https://w3id.org/function/vocabulary/composition#> .
3 @prefix fns: <http://example.com/functions#> .
4
5 fns:ETL a fno:Function ;
6 fno:expects ( fns:fpathMappingParameter ) ; fno:returns ( fns:returnOutput ) .
7
8 fns:ETLComposition a fnoc:Composition ;
9 fnoc:composedOf

10 # map the input of fns:ETL (fpathMappingParameter) to the input of fns:generateRDF
11 [ fnoc:mapFrom [ fnoc:constituentFunction fns:ETL ;
12 fnoc:functionParameter fns:fpathMappingParameter ] ;
13 fnoc:mapTo [ fnoc:constituentFunction fns:generateRDF ;
14 fnoc:functionParameter fns:fpathMappingParameter ] ] ,
15 # map the output of fns:generateRDF (fpathOutputParameter) to the input of fns:publish
16 [ fnoc:mapFrom [ fnoc:constituentFunction fns:generateRDF ;
17 fnoc:functionOutput fns:fpathOutputParameter ] ;
18 fnoc:mapTo [ fnoc:constituentFunction fns:publish ;
19 fnoc:functionParameter fns:inputRDFParameter ] ] ,
20 # map the output of fns:publish (returnOutput) to the output of fns:ETL
21 [ fnoc:mapFrom [ fnoc:constituentFunction fns:publish ;
22 fnoc:functionOutput fns:returnOutput ] ;
23 fnoc:mapTo [ fnoc:constituentFunction fns:ETL ;
24 fnoc:functionOutput fns:returnOutput ] ] .

Listing 2: FnO Composition ETL workflow description where the output of the first task is
linked to the input of the second task

We aligned FnO compositions to standardized provenance information using P-PLAN, com-
plementary to the existing alignment between FnO and PROV-O [15]. By aligning with P-PLAN
we benefit from existing work that provides interoperability with several prominent workflow
systems [14].

A fno:Function can be linked to one or more fno:Parameter(s) and one or more fno:Output(s).
Furthermore, it can be considered as a planned execution activity (p-plan:Step), using (fno:expects/p-
plan:hasInputVar) and producing (fno:returns/p-plan:hasOutputVar) variables (p-plan:Variable).
A fno:Composition combines one or more fno:Functions, and describes how parameters and
outputs are connected. It can be considered as a p-plan:Plan, which is composed of smaller
steps (fno:Function(s)). The execution of a fno:Function can be considered as a p-plan:Activity.
Listing 3 shows a snippet of how to construct P-PLAN descriptions from FnO compositions.
The full snippet is available online 2.
1 PREFIX p-plan: <http://purl.org/net/p-plan#>
2 PREFIX fnoc: <https://w3id.org/function/vocabulary/composition#>

2https://gist.github.com/gertjandemulder/9ed4b3d21f10fe62e3689473453fffd9
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3 CONSTRUCT {
4 ?c a p-plan:Plan .
5 ?x p-plan:isStepOfPlan ?c; p-plan:hasInputVar ?xIn; p-plan:hasOutputVar ?xOut.
6 ?y p-plan:isPrecededBy ?x;
7 p-plan:isStepOfPlan ?c; p-plan:hasInputVar ?xOut; p-plan:hasOutputVar ?yOut.
8 WHERE {
9 ?c a fnoc:Composition; fnoc:composedOf ?item.

10 ?item fnoc:mapFrom ?compositionSource ; fnoc:mapTo ?compositionTarget .
11 ?compositionSource fnoc:constituentFunction ?x .
12 ?compositionTarget fnoc:constituentFunction ?y .
13 OPTIONAL { # case: f.in -> f.in
14 ?compositionSource fnoc:functionParameter ?xIn .
15 ?compositionTarget fnoc:functionParameter ?yIn .
16 }
17 OPTIONAL { # case: f.out -> f.in
18 ?compositionSource fnoc:functionOutput ?xOut .
19 ?compositionTarget fnoc:functionParameter ?yIn .
20 }
21 OPTIONAL { # case: f.out -> f.out
22 ?compositionSource fnoc:functionOutput [] .
23 ?compositionTarget fnoc:functionOutput ?yOut .
24 }
25 }

Listing 3: Pseudo-SPARQL query for constructing the precedence relations in P-PLAN from the
CompositionMappings in FnO.

4. Use case

In this section we discuss POSH (Predictive Optimized Supply Chain): a motivating use case
showcasing the need for an interoperable KG construction workflow.

POSH is an imec.icon research project in which methods and software solutions are researched
that leverage data to optimize integrated procurement and inventory management strategies. A
data integration and quality framework is necessary to increase the accuracy and reliability of
supply chain data that has been collected from heterogeneous data sources (suppliers, customers,
service providers, etc.). To this end, a KG is generated from the heterogeneous supply chain
data and consequently exposed through a triple store endpoint. This enables our partners to
take advantage of running queries against a uniform data model without being burdened with
heterogeneous sources from which it constitutes, and focus on the designing algorithms for
optimizing the supply chain.

Within POSH, we developed a semantically-enhanced knowledge integration framework that
uses various data repositories and external (meta)data to provide a clear overview of the current
state of the supply chain and the necessary inputs for the prediction, optimization and decision
support methods. To iteratively accommodate for changing requirements and constraints, an
implementation-independent workflow system was needed. Within POSH, we applied our
method to provide workflow system flexibly enough to adapt to different technology stacks.



5. Demonstration

We created a proof-of-concept Function Handler that automatically executes FnO Compo-
sition descriptions using different implementations, available at https://github.com/FnOio/
function-handler-js/tree/kgc-etl. Furthermore, we provide tests3 in which we verify the execu-
tion sequence of an FnO Composition, and demonstrate the interoperability through function
compositions that resemble a KG construction workflow in which the RDF-generation task can
be implemented by different tools.

A fno:Function can represent anything executable, independent from the context in which
it can be executed, whether it is executed by an implementation in a specific programming
language (Java, JavaScript, Python, etc.), a command line tool, or Web service, etc. Not only
does this allow for interoperability across execution contexts, it also increases the flexibility
by which a function can be executed, hence, allowing users to develop custom functions when
developing a composition, consequently adding to the expressiveness in which workflows can
be defined using FnO. Although scalability is beyond the scope of this paper, we argue that the
functional paradigm, which is implicitly enforced by FnO, enables execution engines to exploit
existing data-processing frameworks (e.g. Flink and Spark).

6. Conclusion

Declarative function descriptions, and compositions thereof, allow us to define interoperable
and reproducible workflows. Interoperable as they are decoupled from the execution environ-
ment, where explicit semantics allow for the unambiguous definition of inputs, outputs and
implementations. Alignment with PROV allows for a reproducible workflow as both tasks and
execution details are provided, which enables to exactly determine which functions were applied
throughout the execution of the workflow. Alignment with P-PLAN increases interoperability
between workflow systems based on P-PLAN. For example, WINGS4 is semantic workflow
system for computational experiments that uses P-PLAN as an internal representation and can
execute its workflows on different existing execution engines. By extending existing P-PLAN
alignments [14], we can make use of the CWL ecosystem to execute our workflows described
in FnO, without diminishing our currently introduced interoperability and reproducibility. We
argue that we could exploit these bridges to translate workflows decriptions in FnO to other
systems, such as CWL. This also decreases our dependency on self-introduced projects such as
the Function Handler.

For future work, we can gradually increase the transparency of a mapping process as we can
interpret a mapping language as a way to describe compositions of transformation tasks. By
representing, e.g., a Triples Map in RML as a composition of data and schema transformation
tasks, we can provide insights in what a mapping does, and in what order. These insights could
help to provide optimization strategies to such kind of engines.

3https://github.com/FnOio/function-handler-js/blob/kgc-etl/src/FunctionHandler.test.ts
4https://www.wings-workflows.org/
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