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Abstract  
The remote accessibility of Industrial Control System (ICS) with the emergence of smart 

industrial infrastructure has initiated various vulnerabilities and security breaches in industrial 

networks and Supervisory Control and Data Acquisition (SCADA). The development of 

specific security mechanisms can reduce the vulnerabilities of physical and data explosions 

with less human intervention and control the environmental and financial loss. Traditional 

Intrusion Detection Systems (IDSs) are very much prone to false-positive rates, high 

implementation costs, and low-speed models. We propose a novel Smart Intrusion Detection 

with Risk Identification System (SID-RIS) incorporated with Deep Learning (DL) algorithms. 

The proposed model is trained and tested on BoT-IoT and KDD+ datasets for the optimal 

features. The results show that the model is most suitable for classifying the anomaly behavior 

of the data with high accuracy and low false rates.  
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1. Importance of security in IIOT 

The increased connectivity of smart machines raises the wagers. The first alarm situation to breach 

industrial security was in 2009, when the speed of the centrifuge nuclear enrichment plant was modified 

to spin out of control by a Stuxnet malware. This was introduced via flash drive for a stand-alone 

network, which spread automatically across the networks [1]. A new malware called Trident 

destabilizes Safety Instrumented System (SIS) and provides a path for hackers to destroy the files by 

feeding false data [2]. A strong, smart, and safe shield is very much essential to reduce industrial 

espionage, IP leakage, information theft, which may lead to the production sabotage. Industrial Control 

Systems (ICSs) have unique vulnerability, as each connected devices represent a potential risk in each 

layer of the network, which is particularly susceptible to cyberattack. The major cause of hazardous 

issues in the industrial sector is the incompatible operation system, outdated Programmable Logic 

Controllers (PLCs), and Human-Machine Interfaces (HMIs) in an isolated environment with a lack of 

regular updates on attack patterns, and poor standards [3]. Table 1 provide a detailed list of IoT attack 

and the proposed counter measures to mitigate the complications of the attack. 
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Table 1: Various IoT attack and the Counter Measures 

IoT Layer Attack type Measures 

Physical Jamming DoS, Collision, 
Exhaustion, Man-in-the-
Middle attacks 

Packet alternate (re)routing 
System logs modelling 
Spiking neural network classification 
CUmulative SUM (CUSUM) algorithm [4],[5] 

Datalink , Phishing, Data Transit Data encryption algorithm 
Intelligence Web Application Firewall (IWAF) 
URL Embedding (UE) [6],[7] 

Network Routing, DDoS, SCADA 
Modbus 
attacks 

Network filtering and Secure MQTT, ABE algorithm 
Next Generation firewalls filtering capabilities 
Mapping by extracting URLs from spam mail [8] 

Transport System flooding Intrusion detection and prevention system 
Compressed Transport Protocols 
Ingress filtering and IDS solutions [9] 

1.1.  Introduction – IDPS 

An Intrusion Detection System (IDS) is a network security technology built to detect vulnerable 

exploits in the cyber world. IDS is classified in two forms based on the detection component as Network 

Intrusion Detection System (NIDS) and Host-based Intrusion Detection System (HIDS). A NIDS 

observes, monitors, and analyzes the network traffic to identify suspicious events, whereas HIDS trace 

abnormal activities and report to the security server. Anomaly Intrusion Detection (AID) observes the 

behavior by scanning the ports. Signature Intrusion Detection (SID) matches predefined patterns based 

on vulnerability and exploit are used to defend the situation [5]. SID methods have high rate of 

accuracy in classifying known attacks and AID methods are popular in identifying zero-day attacks; 

Both of the methods pro- duce high false-positive rates. IDS detects and reports to the security 

system but, lacks in preventing the exploitation, neither raise any automatic action to mitigate the risk 

[6]. Nowadays Intrusion Detection and Prevention System (IDPS) has become the dominant 

deployment option for the security system [7]. Feature selection, compatibility, and unavailability of the 

labeled dataset are the primary challenges faced by the current IDS models. Immense efforts are 

required to collect labeled datasets from real-time network traffic and preserve the confidentiality of 

the internal data. Feature selection plays a vital role in the development of the classification model, 

to learn good features on a limited amount of labeled data in supervised classification [8]. These 

features can be applied for other classification models with a small amount of dataset. Deep learning 

techniques are more popular for feature reduction and classification; these methods are successfully 

applied in image, audio, text, and numerical dataset for developing application models [9]. In this present 

work, we propose a Deep Learning (DL)-based NIDS model for classification and identifying the most 

relevant features and detecting the anomalies. We call our proposed model of intrusion as Smart 

Intrusion Detection with Risk Identification System (SID-RIS). The model is trained and verified on 

the KDD+ datasets and UNSW-BoT-IoT dataset. We have presented a comparative analysis with the 

existing techniques to evaluate the efficiency of our model. 

1.2.  Organization  

The remaining paper is organized in four sections. In Section 2, a few latest and closely related work 

is discussed. Section 3 presents an overview of the proposed model and the risk factor analysis with the 

implementation procedures on both datasets. The results and comparative analysis of the model are 

discussed in Section 4. We conclude our work with future scope in Section 5. 
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2. Related Work 

Focusing on security applications, DL techniques with remarkable quality of self-learning are 

beneficial to developing intrusion detection models. These models result in low false rates and high 

accuracy as compared to traditional machine learning techniques. The standard Neural Network (NN) 

architecture is created with a multi-layer perceptron using a liner stack classifier. Raw data in the form 

of numbers/images/audio are fed into the neurons as input represented with x1, x2, x3,..., xn. Each input 

is multiplied by weights (w1,w2,w3,…,wn) and passed to an activation function which maps the input 

signals into an output signal. 

 

𝑧 = 𝑓(𝑏 + ∑ 𝑥𝑖𝑤𝑖
𝑁
𝑖=1 )    (1) 

 

In Equation 1, x represents the inputs, w represents weights to be added for each input, z is used for 

output, b represents bias, and f represents the activation function. The model adjusts the weights and 

repeats the task to improve the accuracy using back-propagation. 

 

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) are the most popular 

methods used for detecting malware activities with self-learning techniques [13]. ANN is emphatic in 

monitoring network traffic and detecting Imminent attacks. ANN, CNN, and Deep Neural Network 

(DNN) are some of the supervised instance learning techniques trained with feed-forward neural 

networks. Yazan et al. [10] propose a Spider Monkey Optimization (SMO) algorithm for dimensionality 

reduction and the Stacked-Deep Polynomial Network (SDPN) for attack classification. The Deep 

Feature Embedding Learning (DFEL) model has been compared with KNNs, DT, and SVM and results 

with a 99.14% F1 score. Olakunie Ibitoye et al. [11]. compared a Feedforward neural network model 

with a self-normalizing neural network model for BoT-IoT dataset and resulted in 9% higher 

performance accuracy of SNN IDS than FNN IDS. A Generic algorithm- based Deep belief network 

model was proposed by Zhang et al. [12]. The model structure was integrated with a selection of features 

with crossover, mutation, and elite retention technique of generic algorithm. once the maximal algebraic 

value is reached the optimal structure is created. Restricted Boltzmann Machine (RBM) and Back-

propagation network (BPN) are used for classification [12]. Roopak et al. [13] pro- posed four different 

classification deep learning models as MLP (Multilayer Perceptron), 1d-CNN, LSTM, CNN+LSTM 

with a comparative analysis on machine learning technique. CNN+LSTM, LSTM, 1d-CNN techniques 

have high accuracy rate than SVM, Naive Bayes, and Random Forest machine learning techniques for 

the CICIDS2017 dataset. CNN+LSTM remains the best-proposed technique with 97.15% accuracy 

where LSTM results in 96.24% and MLP results in 13.66% false rates. Thamilarasu G. et al. [14] 

propose a three-layer framework with network connection phase, anomaly detection phase, and the 

mitigation phase to identify, analyze, and reduce the risk factor using CNN techniques. Another 

integrated technique using LSTM and CNN as Hybrid CNN model testing on UNSW dataset is 

proposed by S.smys et al. [15]. LSTM is used for feature extraction and CNN for intrusion detection. 

The model gave an excellent performance with a 2.19 sec training time. Another Deep belief network 

model tested on a real-time dataset proposed by Balakrishnan et al. [16]. This model enhances the 

security network compared to Domain Generation Algorithm (DGA) with 0.997 highest precision. 

Chao Liang et al. [17] propose a multi-agent system with the blockchain and deep learning (DNN) 

algorithm, tested for the NSL-KDD dataset, and resulted in 91.50% accurate on testing. The Transient 

Search Optimization (TSO) algorithm by Fatani et al. [23] maintains the balancing between exploitation 

and exploration phases. The model is tested on the most popular IoT datasets including KDDCUP-99, 

NSL-KDD, BoT-IoT, and CICIDS-2017. It achieves higher accuracy compared to several existing 

approaches. 

3. SID-RIS Model 

The traditional architecture of the IDS model is prone to security leaks. The multi-layer recursive 

structure analyzes the data at various levels and makes the model effective to handle the minute 

complications. The IoT system is exposed to multiple devices with different processing frameworks 
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connected to various locations. A single layer model lacks in generating enhanced performance, as it is 

restricted with the scope of the connected components. The multi-layer model is distributed across the 

system and executes the processes at each level covering the major to minor values based on the state 

of the system. A self-trained security model with previous inputs minimizes human interaction. In this 

section, we focus on the proposed methodology. The data set used in building the detection model, the 

feature extraction techniques, and the multi-layered Cascade detection and classification algorithm are 

explained in sequence in this section. 

3.1.  Dataset 

We use NSL-KDD and UNSW-2018-BoT-IoT datasets in the present work. KDD Cup dataset is 

prepared using the network traffic captured by the 1998 DARPA IDS evaluation program [24]. The 

BoT-IoT dataset is collected from Cyber Range Lab of UNSW Canberra [25]. 

 

KDD + Dataset We have used the NSLKDD+ dataset that has 41 labeled input features with binary 

and multi-class attack classification. A total of 38 traffic classes with 21 attack classes are available in 

the test data, from which 16 attacks and 1 normal class are considered for training. The attack records 

are grouped into four major classes as DoS, Probing, user-to- root (U2R), and root-to-local (R2L) [24]. 

We have selected KDD+ dataset with a total of 125973 records of which 58630 are attack values and 

67343 are normal records. 

 

UNSW-BoT-IoT dataset The BoT-IoT dataset is collected from the Cyber Range Lab of UNSW 

Canberra. The environment with the combination of normal and attack traffic is configured and 

collected in various formats. The dataset is created in three categories: i) entire dataset with all features, 

ii) 5% of data with training and testing files with all the features, and iii) 10-best features with training 

and testing splits. The dataset has been classified with nine types of cyber- attacks and is represented 

with 46 labeled feature classes. To test the efficiency of the model we have selected a 5% best- featured 

dataset which has 10,48,457 attack records and 118 normal values [25]. The dataset supports four attack 

classes as DDoS, DoS, Normal, reconnaissance, and theft. Table 2 displays various attack classes and 

number of records in each class for both the datasets. 70% of the data is considered as the training data, 

15% for the validation, and 15% for the testing. SID-RIS focuses on multi-class classification to train 

and trace various cyberattacks.  

 

Table 2: Attack class and no of records 

BoT-IoT Dataset KDD-Dataset 

Class No. of Records Class No. of Records 

Normal 118 Normal 67343 
DDoS 550955 DoS 45927 
DoS 471635 Probe 11656 
Reconnaissance 25846 R2L 995 
Theft 21 U2R 52 

Grand Total 1048575 Grand Total 125973 

3.2.  Data Normalization 

As the first step of normalization, we use the fill missing function to replace all the empty values 

with standard and constant values. In the second step, all the categorical values (NaN) are converted 

into numerical identities for easy prediction. We have applied one hot-encoding technique for 

conversion. This technique processes the categorical variable and converts it into a numerical 

representation. But at the same time natural ordering between categories with integers may result in 

poor performance or unexpected results, we have converted the string values to a new binary variable 

and added for each unique integer value. The BoT-IoT dataset contains three categorical features as 
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prototype, attack category, and sub category (NaN values) which are encoded into numerical form 

before producing as input to the network model. Normal values are indicated with 0 and the attack 

values as 1 or any categorical integer value based on the class. 

3.3.  Feature Extraction 

In this study, we are extending our previous experiment [26] in which we have concluded that the 

model tested with optimal features resulted in a minimum error, compared to the model trained for the 

entire dataset. In this study, we are using the best subset evaluated from feature reduction techniques. 

Then we train the sample with Cascading Feed Forward Back Propagation (CFFBP) classification and 

detection technique. We have selected the 10 best-featured samples provided by the BoT-IoT dataset, 

and for the KDD dataset, we have used CFS- Subset-Evaluator, a feature reduction algorithm, that 

results in six best features from 41 labeled values. The CFS subset evaluation technique generates a 

subset of attributes with the individual predictive ability of each feature, along with the degree of 

redundancy between them. The resulted features are highly correlated with the target class and have 

low inter co- relation with other input values. Further to improve the training efficiency and speed up 

the detection process, we have used the encoded values as input for detection models generated from 

the Auto Encoder (AE) technique. AE reduces the given input into the lower-dimensional format and 

regenerates the output as a new representation. To replicate the input vector against the output layer, 

and train the AE model, we implement a back-propagation algorithm. For a given input X and 

reconstruction result as x, the network is trained by minimizing the error L (x, 𝒙
^
) to measure the 

variation between the original input and the encoded output. We have trained AE with 25 hidden layers 

using the scaled conjugate gradient training algorithm. The model performance is evaluated using Mean 

Square Error (MSE) with L2 sparsity regularizes, the model results in with 6.66% MSE. 

 

To prevent over-fitting additional information is given to the model in the process of regularization. 

L2 regression is also considered as ridge regression with the linear regression in Equation 2 and the loss 

function with L2 norm of the weights represented in Equation 3. 

 

𝒙
^
= 𝒘𝟏 + 𝒙𝟏 +𝒘𝟐𝒙𝟐 +⋯+𝒘𝒏 + 𝒙𝒏 + 𝒃.   (2) 

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟(𝑥, 𝑥
^
) + 𝜆∑𝑁

𝑖=1 𝑤𝑖
2.    (3) 

 

In the above expression for an auto-encoder model, 𝑥
^
  with x as input variables, w represents the 

weight, and $b$ represents the bias. We use a loss function to analyze the difference between the true 

and predicted values. The regularization parameter is represented by λ  > 0 $ and ∑ is used to calculate 

the total loss and predict the efficiency of the model for each input and added weight. The neurons are 

"inactive" if their output value is close to 0 and active if it is close to 1; we use the sparsity parameter 

to make it inactive and avoid over-fitting issues. This checks that the average activation of each hidden 

neuron is close to it, which is a small value close to zero [27]. 

3.4.  Layering in SID-RIS 

We have selected Cascading Feed Forward Back Propagation (CFFBP) method to classify the 

anomaly and identify the attack and normal packets. As with all other network models, Feed Forward 

(FF) model consists of a single input layer, multiple hidden layers, and selected output layers. Back 

Propagation (BP) is used as a learning algorithm to train the network models by updating the weights 

and calculation the error values to propagate the prior layer. The non-linear transfer function of multiple 

layers allows one to learn both linear and non-linear relations between input and output vectors [28]. 

 

Connecting the input weights from each successive layer is the unique property of the proposed 

model. Networks with multiple layers have the potential to learn the complex relations between input 

and output vectors. The model begins with a single input layer and adds multiple connected layers one 
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by one in the process which receives connections from the original input layer and all previously hidden 

units. A connection from a neuron and multi-layer network is combined with a direct link and shaped 

through an activation function in the hidden layer [29]. Perceptions are added one by one in this 

correlation, it starts with a small number and ends up with a bigger size. Additional connections improve 

the speed and learning rate. The process is terminated when the net performance is accurate. Such 

network pattern is called as Cascading Forward Back Propagation Neural Network (CFBPNN).  The 

mathematical expression of CFBPNN is given in Equation 4. 

 

𝑦 = ∑𝑛
𝑖=1 𝑓𝑖𝑤𝑖

𝑖𝑥𝑖 + 𝑓0(∑𝑘
𝑗=1 𝑤𝑗

0𝑓𝑗
ℎ(∑𝑛

𝑖=1 𝑤𝑗𝑖
ℎ𝑥𝑖)).     (4) 

 

In Equation 4, y represents the output layer, ∑𝑛
𝑖=1  is used to calculate the sum of weights and bias 

of each layer. The special feature of this network is to carry forward the calculated weights and bias by 

establishing a direct relationship between the input and hidden layers using 𝑓𝑖𝑤𝑖
𝑖𝑥𝑖 + 𝑓0An activation 

function is used to train the complex patterns and take decisions for passing the values for the next 

layers. Figure 1, represents the internal structure of the cascade model representing the internal 

connectivity to the weights of the previous layer to next. 

 

 
Figure 1: CFBPNN Inner Layer structure 

3.5.  Experimental Setup 

The experiment is conducted on both dataset samples for optimal features adopted from the feature 

extraction model. The dataset is split into a 70% training set and 15%test set and 15% for validation 

according to the random data split method. The system is trained using cascading feed-forward network 

with seven inputs for the KDD+ dataset and 19 input layers for the BoT-IoT dataset. Five hidden layers 

(10 nodes each) and output layer (1 node) for four attack classes in binary form (0 for normal and 1 for 

attack) are considered. The model is trained and experimented on an I5 processor (16 GB RAM and 1 

TB Octan memory) with a window 10 operating system using MATLAB R2021a environment. Based 

on the repeated experiments conducted, we have adopted the network model with ideal parameters 

which produce the highest accuracy and the lowest false rate. We then define the evaluation parameters 

and finally, discuss the results. 

 

Various parameters used to activate the network are: i) Data division method: Random (dividerand), 

ii) no. of Epochs: 1000, iii) transfer function: Transit, iv) training method: Levenberg-Marquardt 

(trainlm), v) adaption learning function: learngdm, and vi) performance indicator: Mean Square Error 

(MSE). Cascading model is applied and tested for both the data sets with the same parameters given 

above. The only change in the size of the input layer is based on the number of features available in the 

dataset. 
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Figure 2: CFBPNN Internal Network structure 
 

Figure 2 displays the internal structure of the CFBPNN model with 19 features assigned to the input 

layer with 5 hidden neurons. 4 hidden layers with 10 neurons in each and one for the final output layer. 

Each layer is displayed with the weight and bias added from the previous node. The internal architecture 

of the CFBP model for the first input layer is indicated as process input 1 with five hidden layers Layer 

1..5. Training function Transig for each layer calculating the initial input weights and bias received from 

previous units a1to4 before the hidden layer and a1.. a4 carrying the weights for the next layer 

represented after the hidden layer structure in Figure 3, and finally, the classification output (four attack 

classes) represented with process Output single layer. 

 

 
Figure 3: Internal structure of the layer representing Transig function 

3.6.  SID-RIS Risk Factor analysis 

To identify the correlation between input and target variables, we have represented a correlation plot 

for all the six input variables and one target variable for the subset evaluated from KDD+ dataset. The 

relation between the variable and the impact is displayed in Figure 4. The diagonal cells represent self-

correlation. The last column and the row represent the correlation between the variable in a horizontal 

and vertical direction. From Figure 4a, we observe that Src-bytes and Dst- Bytes have high impact on 

the attack types. Diff-RV-rate, srv- error-rate, and logged-in-status variables are having very little 

impact with zero and negative values for the evaluated subset. Figure 4b represents the Correlation plot 

(coorplot) for BoT-IoT dataset with 18 input features and one target value with four classes. It is 

observed that only seven variables have a positive impact on the target variable and the other ten 

variables have a negative impact on the attack variable. This experiment helps in tracing the most 

prominent variable having a high impact on the attack variants. This technique can be further enhanced 

using the script to develop any prevention model. 
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Figure 4(a): Co-relation Plot for risk analysis KDD+ Dataset 
Figure 4(b): Co-relation Plot for risk analysis BoT-IoT Dataset. 

4. Results and Discussion 

The dataset with different input features with variant values is considered for the experiment. The 

dataset is prepossessed before analyzing self-taught learning on it. Categorical at- tributes with string 

values are converted into discrete numerical attributes using the one-hot conversion method. As 

discussed in the methodology section 3.3, optimal features are considered to train and test the model. 

The testbed is then trained with autoencoders, and the resulted data is used to develop a cascade 

classification model. These two approaches are applied for the evaluation of NIDSs on the selected 

samples with a random data split. The proposed model achieved very high accuracy and less false-alarm 

rates compared to the training implemented for the entire dataset. Cascading model is applied and tested 

for both datasets with the same parameters. As discussed in [26], the detection model is implemented 

only for the subset, evaluated with best features. This reduces the training time and results in the highest 

accuracy. Evaluation metrics project the performance of the model, it helps to determine the capabilities 

and discriminate the model results. We have tested the model for multi classes and analyzed the results 

using a confusion matrix. 
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4.1. Performance Metrics 

A confusion matrix is the most appropriate technique to analyze the performance of the classification 

model. The results of this technique identify the types of errors encountered by the model in the process 

of training and testing. The number of incorrect predictions is analyzed for each class assigned to the 

model with the target variable. The difference in the prediction and actual assumptions are projected in 

the matrix; it also includes the errors made by the classifier and the category which is wrongly analyzed. 

The elements of the confusion matrix are used to construct the accuracy of the overall model. The 

formula to calculate each element of the matrix and the precision is displayed in Figure 5. 

 

False Negative Rate (FNR): The ratio of false cases marked as true. 

Accuracy (A): The ratio of correctness for the classified samples. 

Precision (P): The ratio of the true positive samples to predict the positive samples. 

Recall (R): Represent the ratio of true positive values to the total value. This reflects the model's ability 

to recognize the attacks from a given class. 

 

 
Figure 5: Confusion Matrix – Calculations 

 

Our proposed CFBP-based Neural Network (CFBNN) model is used for mapping the patterns 

between input and target values. Various compositions of threshold functions are used in the layers with 

multiple combinations and the final results are projected in Figure 6. 

 

 
Figure 6(a): KDD+ Dataset                      Figure 6(b): KDD+ Dataset 

Figure 6:  Confusion Matrix - Calculations 
 

The model results in 100\% accuracy for the KDD+ dataset tested on the best features subset, and 

99.7\% accuracy for the BoT-IoT dataset. A minimum false rate is observed with 0.3\% for the theft 

category. The detailed analysis of attack detection ration for each class is given in Figure 7. 
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Figure 7: Performance of model for each attack class. 

4.2.  Comparative Analysis 

We have tested and compared the model of both the dataset samples and the result matrix is projected 

in Table 3. The CFBP model is proved more suitable for detecting the attacks with multi-class 

classification for both the sample datasets. The observational point is that the model shows excellent 

results for the KDD+ dataset, in which the testing and training are implemented for the subset generated 

using the feature selection method. The results for the BoT-IoT dataset are quite good compared to 

other state of art models, the model is most apt in identifying Dos attacks for various samples. There is 

a slight variation in identification of reconnaissance and theft attack with 0.1%. A detailed projection 

of the attack class with the resultant matrix is projected in Table 3. 

 

Table 3: Performance Metrics 

KDD+ Dataset BoT-IoT Dataset 

Attack Accuracy Precision Recall F1 
Score 

Attack Accuracy Precision Recall F1 
Score 

DoS 100% 1.0 1.0 1.0 DDoS 99.99 1.0 1.0 1.0 
Probe 100% 1.0 1.0 1.0 DoS 100 1.0 1.0 1.0 
R2L 100% 1.0 1.0 1.0 Reconnaissance 99.76 1.0 0.9 1.0 
U2R 100% 1.0 1.0 1.0 Theft 99.75 0.0 0.0 0.0 

 

The comparison with existing systems is shown in Table 4. The rule-based Decision tree (TDTIDS) 

model has the highest accuracy of all the existing models [18] with 99.98%. CFBP model has the 

benchmark of 100% in the identification of all class attack values. The DBN [12] and RNNIDS [22] 

models have a poor performance comparatively, while the other models’ performance are very close to 

each other. The multi-class feed forward neural network [21] has a very close accuracy with our 

CFBNN with a raised recall score but, CFBNN has less FPR which indeed reduces the scope of error. 

CFBNN performs much better than [14],[15],[22],[18] on the basis of accuracy, precision, and false 

rate which are the most important metrics for a detection system. The average false-positive ratio of our 

model is lower than all these models.  However, the disadvantage with the regular deep learning 

techniques is to determine values with the next layer but, our cascade model has the advantage of 

processing the previous weight and bias values to the next hidden layers; this improves the detection 

rate and reduces the error factor. The main goal of CFBNN is to improve the detection rate and reduce 

the error rate which is successfully accomplished with the six selected features executed in the CFBNN 

model. The test proves with 100% accuracy and 0% false rates. 
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Table 4: Comparison of DL- based IDS models for IoT 

Author and Reference Technique Data set Accuracy 

Zhang et al. [12] DBN for anomaly detection in IoT mobile 
network 

Simulated data 94%. 

Thamilarasu G. et al. [14] three phase model with DBN and DNN Real-time 97%. 
S. Smys et al. [15] Hybrid Convolutional Neural Network UNSW NB15 98.6%. 
Mohamed Amine 
Ferrag et al. [18] 

RDTIDS: Rules and Decision Tree-Based 
Intrusion Detection 
System 

CICIDS2017 96.995%. 

Abdelouahid Derhab et al. 
[19] 

Temporal Convolution Neural Network 
(TCNN) with Syn- 
thetic Minority Oversampling Technique-
Nominal Continuous (SMOTE-NC) 

Bot-IoT 99.998%. 

Alkahtani.H et al. [20] Hybrid convolution neural network with 
the Long Short-Term 
Memory (CNN-LSTM) 

IoTID20 98.80%. 

Mengmeng.Ge et al. [21] Multiclass Feed-Forward Neural 
Networks (FNN) 

BoT–IoT 999.79%. 

Qureshi et al. [22] Random Neural Network -IDS (RNNIDS) NSL-KDD 95.25%. 
Fatani A et al. [23] Deep learning and Meta Heuristics (MH) 

algorithms 
KDD Cup 99.62%. 

Proposed Model Cascade Forward Back Propagation KDD+,BoT-IoT 100%,99.7% 

5. Conclusion 

We propose SID-RIS, an intrusion detection model for IIoTs. The purpose of the present study is to 

improve the detection solution for IoT and IIoT devices and establish an accurate monitoring 

environment that handles unsafe structure and detect abnormal behavior. SID-RIS is based on deep 

learning. It classifies the given input based on cascading forward method. A CFS-subset evaluation 

technique is used to select the optimal features from KDD+ dataset and then process the subset for the 

training detection model. The model is examined on both KDD+ and BoT-IoT data set and evaluated 

using the confusion matrix. Our solution, CFBNN achieves better performance in terms of accuracy 

100% for the KDD+ dataset, and 99.7% accuracy and 1.1% false rate for BoT-IoT data set for multi-

class classification. To identify the risk factor, we have implemented a co-relation plot to trace the 

impact of the variable with the target and identified three variables for the KDD+ dataset and seven for 

the BoT-IoT dataset. In the future, we would like to extend our work to experiment with prevention 

techniques for other open datasets to generalize the results. 
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