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Abstract 
Digitalization promises huge improvements in various domains, such as production, health 

care, or mobility, through the integration of big data and artificial intelligence (AI). However, 

AI often builds on labelled data but labeling data can be complex or expensive, depending on 

both the properties of the data and access to people with domain knowledge. In particular, an 

underexplored field is capturing process knowledge, i.e., knowledge about the relationships 

among process steps. In this work, we propose and evaluate a game-based approach for 

capturing process knowledge. Taking the cooking domain as an example, we developed a 

prototype, in which players act as chef and cook dishes following their own recipes while each 

action is logged. The captured data is then compared to ground-truth models of common 

recipes. While the quantitative evaluation shows a decrease in motivation as well as fewer 

logged steps, qualitative feedback from participants identifies possible improvements of the 

concept. In summary, games can be a suitable approach for extracting experts’ process 

knowledge, when certain user requirements are considered. 

 
Keywords1 
Process knowledge, knowledge harvesting, process mining, knowledge extraction, domain 

expertise, serious games 

 

1. Introduction 

Sustainable knowledge management is a key 

topic in numerous domains, such as 

production [1], [2], health care [3], and 

management [4]. One particular question is how 

(expert) knowledge can be systematically 

captured digitally so that it can later be used as a 

knowledge base, for training, or for the creation of 

data-driven decision support systems [5]–[7]. 

While capturing specific types of knowledge is 

easy and can build on a vast pool of novices (for 

example, massive image classification via 
MTurk [8]), capturing expert knowledge becomes 

hard when access to experts is limited, expensive, 

or the tasks to be captured are complex [9]. 

In this paper, we consider the special case of 

capturing domain-specific process knowledge, 

i.e., when not individual items need to be 

classified or labelled but when also the 
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relationships between different entities are of 

interest. A question in this area is if the 

digitization of knowledge can be improved by 

amplifier concepts such as gamification or serious 

games in terms of the amount of data or data 

quality and whether this can be linked to 

individual user characteristics. Although our 

research addresses the extraction of expert 

knowledge from process planning in 

manufacturing in the long term, here we consider 

process knowledge that many people have: The 

preparation of food with the recipes as 

manifestations of their process knowledge. At a 

later stage, we will transfer our concept and 

findings to the production domain. 

1.1. Background 

In the long run, we aim at generating a digital 

representation of the process knowledge from 
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experienced process planners in textile 

engineering. On the one hand, this sector is 

characterized by domain experts that have much 

tacit experiential knowledge or even knowledge 

in motor memory. On the other hand, most 

companies in the sector are often reluctant to 

exploit the opportunities offered by digitization 

and digital knowledge management [10]. 

Consequently, the potential of capturing and then 

using digital knowledge for training or building 

automated decision support systems is untapped. 

Currently, process planning is more manual 

than digital: Planners usually write down their 

executed steps for a certain production process on 

paper, shortly after manufacturing the 

product  [10]. Normally, this only includes the 
steps taken and not the reasoning behind the 

decisions. To make these textual artifacts usable 

for building training materials, knowledge bases, 

or for training an AI, they must be digitalized and 

formalized. Yet, this is cumbersome and error-

prone for the workers, as many modern tools that 

are used within production settings, such as Excel, 

are confusing due to poor user experience and 

complexity [11]. Also, multiple workers will note 

down information differently, so the resulting 

digitalized information must be unified. 

Another approach for gathering the required 

process knowledge might be to interview workers 

to formulize plans for several different products 

and ask for their reasoning in interviews [9]. Yet, 

this would be more cumbersome, as this would 

require additional staff for conducting the 

interviews, the interviews would have a limited 

time frame and would thus require focusing on the 

most important or difficult cases only [9]. 

Both approaches face two difficulties. First, 

they require the worker to work in a repetitive 

setting, which reduces internal motivation [12]. 

Second, the data would need to be digitalized, 

which would require human classification and 

domain expert knowledge, and additional 

computational overhead. 

1.2. Vision and approach 

As a solution for these problems, we propose 

serious games as a method for extracting 

industrial process knowledge. Experts would 

playfully interact with a (simulated) production 

environment and thus share their experience and 

expertise with a system that captures all 

interactions. The knowledge captured digitally 

can then be used to train AI models for automation 

or decision support. 

In our serious game, the worker is intended to 

play inside a gamified version of the shop floor, 

where all tools, machines and resources are 

available. As before, the player then gets 

prompted to manufacture certain products, while 

the game tracks his actions. 

However, as this field is not yet researched, we 

conducted a proof-of-concept study, providing 

first insights on the pros and cons of our approach. 

To be able to reach more participants for the first 

proof-of-concept study, we realized a game for 

extracting cooking process knowledge instead of 

the specialized industrial use case. This allows us 

to gather extensive feedback more quickly, 
without the need for experts with their specific 

domain knowledge. The core idea should then be 

transferable to production use-cases, such as 

textile engineering, in the future. 

Compared to previous approaches, this would 

have multiple advantages. One, the knowledge is 

immediately available, so the digitalization and 

unification would be simpler, faster, and more 

accurate. Two, serious games have shown an 

increase in motivation, which would favour the 

workers. The increased motivation could lead to 

increased productivity, benefiting the companies. 

Three, the time spent gathering the logs could be 

reduced, as all input will be stored in one place. 

2. Related work 

This chapter introduces the core concepts of 

our vision and relates these to existing research. 

2.1. Serious games 

A Serious Games (SG) is a (often computer-

mediated) game whose goal is not primarily 

entertainment, but that convey knowledge or 

behaviour change [13]. They usually use 

simplified abstractions of problems and are thus 

not necessarily complete [14]. In our case, we 

would build on the persuasive potential of 

games [15] to motivate people to share domain 

specific process knowledge. Note that SG differ 

from gamification, where unaltered activities are 

reinforced with game elements, such as timers, 

points, badges, or leaderboards [16]–[18]. 

Both gamification and SG have shown success 
in medical contexts, (e.g., reminding people to 

wash hands properly [19], [20]), personal 

education (e.g., increased learning of a new 
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language [21] or to nudge students to learn 

efficiently [22].), but also in production (e.g., to 

convey knowledge and to study human behaviour 

in supply chains [23]).  

2.2. Knowledge extraction and 
process mining 

Knowledge Extraction (KE) is the act of 

gathering knowledge about a topic from 

structured sources, such as databases or XML, or 

unstructured sources, such as texts, images or—as 

in our case—games. The main goal is to create a 

ruleset or history for an AI to reason upon, to 

accurately predict solutions for the future. A very 

common approach is to create triplets, which are 
small information bits, linking multiple topics to 

each other. If enough triplets are created, one can 

follow this reasoning chain to create new 

information. This concept was the basis for the 

creation of the reasoner pellet [24]. KE is also 

used in medicine, either to provide data for dietary 

recommender systems [25] or to scrape patient 

information from clinical data [26]. 

While the above examples all focus on creating 

rulesets, Process Mining (PM) is working towards 

a unified process model [27]. This model can then 

be used to compare it with running work iterations 

or reasoned from. PM extracts information from 

event logs, which is a collection of activities, 

together with timestamps and process identifiers. 

PM defines a process as a theoretical series of 

activities (or actions of the worker), whereas a 

specific execution of this process is called a trace. 

Similar traces are grouped together, creating a 

variant, which in turn are used to create the model. 

PM also defines several disparity measurements 

between a variant and the model [28]. PM is 

widely used in business, as their production log is 

the ideal candidate to reason upon [27]. 

Computing a ruleset from a given dataset is 

difficult, as a wide variety of individual deviations 

as well as unification must be considered. 

The combination of PM and gamification is 

promising, as they complement each other. This 

has been done in some cases, but not many in an 

industrial setting. For example, [29] used PM to 

classify data collected from a gamified 

experiment. We on the other hand would like to 

use gamification to create a better process log. In 

contrast, [30] created a gamified environment in a 

production setting, but without extracting or 

analyzing knowledge. Their evaluation showed 

mixed results, as tasks were completed faster but 

also failure rates increased. 

As a reverse, [31] and [32] used gamification 

elements to facilitate learning in an industrial 

setting, either to teach lean manufacturing, or to 

identify warning indicators. While the authors 

used gamification in an industrial use-case, they 

focused on learning for the user, not extracting 

knowledge from them. 

This overview highlights the missing research 

into combining PM and gamification. Both have 

previously shown benefits on their own, but only 

rarely together. Especially in the industrial use-

case, where PM is widely used, the lack of a 

combined approach is glaring. 

2.3. Motivation 

The major benefit for the workers would be 

higher hedonic motivation while sharing 

knowledge. Psychology divides motivation into 

intrinsic ("I work on this topic because it is fun.") 

and extrinsic ("I work on this topic because I get 

paid for it") motivations [33]. Here, intrinsic 

motivation is more important, as extrinsic 

motivation quickly degrades and tasks are not 

continued if the rewards decrease. 

How can motivation be measured? Motivation 

can either be measured by using psychometric 

scales or by observing behaviour. Regarding the 

former, the Situational Motivation Scale (SIMS) 

is a validated scale that measures four dimensions 

of motivation, namely Intrinsic Motivation, 

Identified Regulation, External Regulation and 

Amotivation [34]. For the latter, the Free-Choice 

Measurement (FCM) can be used: Without any 

external control people can do a task or interact 

with a system. The time people invest is then an 

indicator of a persons’ motivation [35]. 

Combining both, SIMS and FCM, will provide 

richer reasoning behind the users’ behaviour. 

2.4. Research gap and objective 

The extraction of process knowledge has been 

insufficiently solved so far. Serious games 

promise to motivate people to interact longer in a 

virtual environment and thus make capturing their 

process knowledge possible by logging their 

interactions. In this paper we investigate if process 

knowledge can be captured by means of a SG, 
whether a SG achieves better results than a control 

condition, and what role user diversity and 
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motivation play. Our research is guided by the 

following hypotheses:  

H0: Process knowledge can be captured by 

means of a SG. 

As SG are often suggested as being more 

motivating, we compare the SG with a 

functionally equivalent control condition and 

postulate: 

H1: Users of the serious game for knowledge 

harvesting report higher motivation than users of 

a control environment. 

H2: User factors influence reported motivation 

after of the serious game 

SG promise higher motivation and higher 

motivation goes hand in hand with higher 

performance. Therefore, the following two 
hypothesis address the 

H3: A serious game captures more process 

knowledge compared to the control condition. 

H4: A serious game provides more accurate 

process knowledge compared to the control 

condition. 

H5: Higher motivation leads to more accurate 

process knowledge that can be captured. 

Hypotheses H1 and H2 focus on the users’ 

motivation, whereas H3 and H4 address the 

benefit of KE by means of a SG. H5 connects both 

aspects, providing pointers for further research. 

3. Implementation of conditions 

To evaluate the feasibility of process KE by 

means of SG, we implemented a low-poly kitchen 

game using the Unity3D engine. We used WebGL 

to make the game accessible to participants using 

a browser, featuring keyboard and mouse input. It 

is designed as a top-down, fixed-perspective 

camera. Participants play a chef interacting with 

the different components of the kitchen. Figure 1 

shows a screenshot of the game with the chef 

walking to the fridge. 

 
Figure 1: Screenshot of the Game. 

 

The goal of the game is to extract the recipes 

for several dishes from the players by capturing 

their interactions in the virtual kitchen (i.e., to 

extract process knowledge in the cooking 

domain). To achieve this, a prompt displays only 

the name of the dish and the player is then given 

interaction opportunities to perform the steps 

he/she would take to cook the dish in real life. 

Each interactable component in the game is 

modelled as either distinct cupboards, crates, or 

machinery. Cupboards hold container, i.e., pots 

and pans. Crates contain ingredients and 

machinery is e.g., an oven. Each container can 

hold an infinite amount of ingredients to reflect 

the different steps of a recipe, such as adding 

tomatoes. The container, and therefore the 

contained ingredients, can be cooked, baked and 

seasoned. The ingredients are divided into dairy 
products (milk, cheese, eggs), meats (fish, beef, 

minced beef), carbohydrates (noodles, bread) and 

vegetables (paprika, onions). Each category is 

contained in its own crate or inside a fridge. We 

choose these ingredients to allow for many 

possible recipes. Additionally, some of these 

ingredients can be cut into smaller pieces. 

There are three distinct forms of interaction of 

increasing complexity: cutting ingredients, 

seasoning and cooking. Cutting ingredients will 

always result in the same outcome without any 

choice of the player. Seasoning recipes have a 

wider variety of choices, but it is generally 

understood to have only a small effect on the 

result. This is different to cooking, as—depending 

on the heat and time settings—it is possible to 

burn dishes in real life. To keep the complexity of 

the game low, burning dishes is not possible in the 

game. Figure 2 displays the user interface for 

interacting with the stove. The player can choose 

the heat level, as well as the duration and can see 

a preview of the current ingredients. 

 
Figure 2: User interface for cooking dishes. 

 

There are two kinds of recipe queries in the 

game: mandatory and free choice. Free choice 

recipes are not logged, and players can decide 

how many recipes they want to complete. Only 

Stove
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the amount of completed free choice recipes will 

be used as a metric. Conversely, to complete an 

experiment each player must recreate the five 

mandatory dishes as recipes in the game. The 

recipes are green salad, omelettes, greek salad, 

burger and spaghetti bolognese. All interaction 

for these recipes is logged into a database, 

creating a process log. This allows a direct 

analysis of the resulting process models with the 

help of PM tools. 

PM allows for either the recreation of a process 

model from a sufficient log, or conformance 

checking the log with a ground truth model. We 

have chosen the latter, as creating an accurate 

model would require hundreds of traces, which 

will not be feasible for early evolution of the 
concept. We have therefore created ground truth 

models for each of the mandatory recipes. The 

ground truth model for a burger is depicted in 

Figure 3. This model follows standard PM 

notation. Rounded rectangles represent different 

activities, + denotes an AND transition, whereas x 

denotes an XOR transition. Note that this model 

allows multiple vegetables by heaving a loop. 

 

 
Figure 3: PM model for the recipe burger. 

3.1.  Control condition 

We created an additional, functionally 

equivalent, drag-and-drop web interface as a 

control setting. This interface was intentionally 

designed in a bland, unenticing way to reflect the 

visuals of modern tools such as Excel. It does not 

include any form of gamification. All interactions 

and resources that are available in the cooking SG 

are also available in the control condition. Error! 

Reference source not found. depicts the 

interface. 

 
Figure 4: Interface of the control condition. Using 
a drag and drop interface the participants could 
prepare selected dishes. 

 

4. Evaluation 

To evaluate the general feasibility of our 

approach, we conducted a user study with the SG 

and a control group. The following sections 

present our experimental method, the sample, and 

the main results of the study. 

4.1. Method 

The participants of our study were randomly 

assigned to either the SG or the control condition 

(game type as a between-subject factor). The 

control group is introduced to a bland drag and 

drop interface. Both groups have the same 

interaction possibilities and target recipes and 

were exclusively played on a computer. 

Participants were recruited from friends and the 

websites Positly and PollPool during May 2021. 

Due to the pandemic restrictions, they were able 

to choose their own place to partake in the 

experiment. 

As independent variables, we collected the 

participants’ demographics using an online survey 

on Qualtrics, such as age, sex, as well as job type 

and -field. To further evaluate the influence of the 

effect of exploratory user factors, we further 

measured the participants’ attitudes towards 

technology [36] and their attitude towards games 

on 5-point Likert scales under the assumption that 

experienced players might evaluate the game 

differently than people who don’t enjoy playing 

games. Cronbach's α shows that both scales have 

a high internal consistency (gaming α=.916, 

attitude towards technology α=.911). 

As dependent variables we measured a) the 

participants’ motivation after the interaction using 

the SIMS scale (intrinsic motivation α=.946, 

+

MincedMeat Cook

CUTSalad

CUTTomato

CUTBread

HandIn

x x

+
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internal regulation α=.862, external regulation 

α=.837, amotivation α=.811), b) the number of 

process steps done for a recipe, and c) the quality 

of the recipes cooked by the participants measured 

by PM’s fitness measure. For the last two 

measures, log files captured the interactions with 

the system and thus the process steps while 

preparing the dishes. 

4.2. Description of the sample 

Overall, 60 people participated in the study, 21 

in the SG (34%) and 39 in the control condition 

(64%). Most of our participants were in the age 

range between 18–30 years and most of the 

participants were women (61%). In terms of their 

current employment, our sample was diverse, 

with participants working in technical and non-

technical domains (see Figure 6). 

 
Figure 5: Age and gender distribution of the 
participants (male=blue, female=red). 

 

 
Figure 6: Job distribution of the participants. 

5. Results 

In the following, the results of the experiment 

are presented in the order of the hypotheses. 
 

Can process knowledge be captured by 

means of a serious game? First, we investigated 

whether process knowledge can be generated 

from the interaction logs of both the SG and the 

control condition and what the quality of the 

captured process knowledge is. 

Across the five different recipes from the 

experiment, the participants performed on 

average 11 steps per recipe (see Figure 8). The 

resulting average fitness is .51 and thus 

satisfactory, with the fitness of the captured 

process model for the green salad being highest 

and for spaghetti being lowest). 

 

Is the serious game more motivating than 

the control condition? To compare the reported 
Intrinsic Motivation between both conditions, we 

calculated a Mann-Whitney U (MW-U) test. 

Although the median Intrinsic Motivation appears 

lower for the SG condition (md=3.5) than for the 

control condition (md=4.7), this difference is not 

statistically significant (p=.223>.05). Therefore, 

H1 is not supported by the evidence. 

Note the non-normal distribution, measured by 

a seven-point Likert scale, of intrinsic motivation 

for the SG, displayed in Figure 7. While the 

control group has a central peak at around 4.9, the 

SG version has two peaks (bimodal distribution) 

at 2 ("Didn't enjoy it") and 6 ("Did enjoy it"). 

 
Figure 7: Histogram for Intrinsic Motivation after 
the serious game (red) and control condition 
(blue), measured on a 7-point Likert scale. 

 

Do individual user-factors influence 

motivation after interacting with the serious 

game? We surveyed six different user factors in 

this study: Gaming disposition, attitude towards 

technology, job field, highest degree, gender, and 

age. Neither job field, nor highest academic 

degree, nor the participants’ gender had any 
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significant influence on intrinsic motivation 

(p’s≫.05).Error! Reference source not found. 

As both gaming and attitude towards technology 

are continuous measurements, we evaluated their 

relation to the intrinsic motivation with a linear 

regression. In neither of the games does Gaming 

disposition have a significant influence (serious 

game: p=.411, control: p=.086). On the other 

hand, attitude towards technology, has a 

significant influence on the SG version 

(p=.042<.05, est. β=-2.09, SE=.959, t=-2.18, 

R2=0.2). As this effect is negative, we conclude 

that participants with higher attitude towards 

technology found the SG less motivating. 

 

Does the serious game capture more process 

data? Two measurements were analyzed to 

evaluate the validity of the H3. First, we compared 

the number of steps per recipe (see Figure 8). In 

the control condition, the participants contributed 

on average 16 recipe steps compared to 11 in the 

SG condition. A MW-U test showed that this 

difference is significant (p<.001). Consequently, 

H3 is refuted. 

The second measurement is the Free-Choice 

Measurement. Figure 9 depicts the histogram for 

both versions. As both versions are non-normally 

distributed, we calculated a MW-U-test and there 

is no significant difference between both versions 

(p=.216) (n(C)=39, n(SG)=21, mdn(C)=0, 

mdn(SG)=0),. Therefore, the serious game does 

not provide more data compared to the control 

condition and H3 is discarded. 

 
Figure 8: Steps per Recipe for both SG (red) and 
Control (blue) 

 
Figure 9: Free Choice Measurement for both SG 
(red) and Control (blue) 

 

Does the serious game provides more accurate 

process knowledge? As H3 evaluated the amount 

of data and not the quality thereof, we measured 

the difference in quality according to the models 

we provided. 

To evaluate the accurateness of the 

participants’ recipes, the standard measurement in 

PM fitness was used. Figure 10 depicts the 

average fitness for each of the recipes in both 

versions. Here, the overall difference as measured 

by Welchs’ t-test is not significant (t(4)=-0.878, 

p=.406). Thus, the accurateness of the data 

acquired in the serous games is not higher 

compared to the control condition and H4 is not 

supported. 

 
Figure 10: Fitness per Recipe for both SG (red) 
and Control (blue), allowing all Ingredients. 

 

Does higher motivation of the participants 

yield more accurate process knowledge 

captured? Next, we analyse if the partcipants’ 

motivation relates to the accuracy of the captured 

process knowledge. We first consider the SG 

condition and then the control condition. 
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We compared the averaged fitness of all 

recipes from each participant with the 

participants’ SIMS. In the SG condition, no 

correlations between the averaged Fitness and 

Intrinsic Motivation (p=.252, R2=.068), 

Identified Regulation (p=.239, R2=.072), 

External Regulation (p=.720, R2=.007) or 

Amotivation (p=.204, R2=.083) from the SIMS 

scales were found. Thus, motivation was not 

linked to the accuracy of the captured process 

knowledge in the SG condition. 

Contrary, there was a significant negative 

influence of both External Regulation 

(p=.009<.05, est. β=-2.06, R2=.185) and 

Amotivation (p=.009<.05, est. β=-2.48, R2=.185) 

on the average Fitness for the control condition , 
but no influence of Intrinsic Motivation (p=.234, 

R2=.058) and Identified Regulation (p=.324, 

R2=.022). 

Thus, the findings suggest that motivation 

influences the accuracy of the captured process 

knowledge only in the control condition but not in 

the SG condition. Consequently, H5 is partially 

supported although a more thorough investigation 

with a larger sample size is needed. 

6. Discussion 

In this article, we presented the rationale for 

capturing process knowledge and a SG situated in 

a kitchen environment that aims at extracting 

recipes as one of the most common manifestations 

of process knowledge that most people have. The 

overall goal was to let the players create their own 

recipes for a set of dishes and compare the results 

with a ground truth. We wanted to analyze if a 

SGs approach provides two major benefits: 

Firstly, it should increase the motivation of the 

player, because it would be more interactive than 

the blander counterpart. This would have been a 

major benefit to the workers. Secondly, deriving 

from this increase in motivation, players should 

have created additional data, as well as have a 

higher accuracy of their recipes. This has been 

evaluated in an online experiment with a control 

group that used a functionally equivalent drag and 

drop interface for sharing recipes. Next, we 

discuss the findings of our experiment and 

provide pointers for further research. 

First, our results indicate that we can extract 

peoples’ cooking knowledge for five common 

recipes in our study. The generated process logs 

were analyzed with PM metrics and achieved 

quite decent fitness. Thus, our SG approach for 

extracting process knowledge worked well. 

However, in the end, none of our formulated 

research hypotheses that compared the SG against 

a conventional user interface could be validated. 

There was no significant difference in motivation 

(H1, as measured by the SIMS) between the 

playful SG and the rather dull control condition. 

As we targeted the SG towards the elderly 

workers, different user factors have been 

discussed (H2). Yet, there hasn't been a significant 

influence from age, gender, job field, or gaming 

disposition. Only attitude towards technology had 

a negative effect. 

While there was a significant difference in the 

players’ intrinsic motivation, we could not yet 
identify the specific reasons for this effect. We 

found however that—independent of the 

experimental condition—older players reported a 

higher intrinsic motivation. This finding suggests 

that older participants might be more willing to 

share their experiences. A potential for KE and 

management that should be taped. 

Additionally, the SG provided less additional 

data (H3) and no difference in data accuracy (H4). 

The only measurable difference between the two 

versions was the better usage of the cutting board, 

as nearly every player in the SG used it, while not 

even half of the control groups’ players used it. 

We attribute this to a more intuitive understanding 

and higher visual clarity of the cutting board 

compared to the text field in the control condition. 

Due to its significant effort to program the SG 

compared to the conventional interface, we 

currently cannot recommend the SG in its current 

form to rise the workers’ motivation, or to 

increase the amount or quality of the extracted 

process knowledge. 

As we were only able to show a negative effect 

of External Regulation and Amotivation on the 

control version (H5), we suggest evaluating this 

difference further. The lack of negative influence 

of these modifiers in the SGs is an interesting 

point for further investigations. 

7. Limitations, outlook, implications 

Of course, this study is not without limitations. 

The biggest limitation is certainly the small 

sample size, which limits the transferability and 

the consideration of user diversity effects. Also, 

we found that the steeper learning curve of the 

serious game led to more dropouts compared to 

the control condition and thus unequal group 
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sizes. Nevertheless, the findings suggests that 

process knowledge can be captured digitally 

through serious games and that individual 

motivation, as a facet of user diversity, influences 

the result quantity and quality. This needs to be 

investigated and modelled in more detail in future 

studies. Ideally also under laboratory conditions 

and as a within-subject experiment, to mitigate the 

various biases of online survey. 

A major downside of the online evaluation 

approach was the difficulty of learning the basic 

interaction with the game. Additional feedback 

provided by the participants centered around 

confusion about the game and its interactivity. 

While we provided a text-based tutorial, many 

participants didn't truly understand the SG, which 
lead to indecision and quitting the game. This 

difficulty resulted in a small sample size for the 

SG, which limits the overall validity of our 

findings. For further studies we thus need to 

flatten the learning curve, for example through 

appropriate tutorials, We also recommend a 

supplementary, qualitative experiment in which 

the participants get a live explanation and training 

session before being asked to provide the recipes. 

This could significantly reduce the participants’ 

confusion and might result in a significant change 

in the overall results. Of course, this would mean 

an even further increase in workload, compared to 

a drag-and-drop or Excel-based solution. 

In summary, this study showed that process 

knowledge from the commonly known domain of 

cooking can be captured with a serious game, 

even if the consideration of motivational aspects 

revealed few surprises. While the digital capturing 

of cooking knowledge itself is only of marginal 

interest in specialized areas (e.g., to make cultural 

differences in the preparation of food measurable 

or for saving cultural heritage), the findings 

suggest the transferability of this concept to other 

domains and contexts. We postulate that this 

approach enables capturing process knowledge in 

areas of manufacturing that have been little 

digitised so far that may serve as data to increase 

automation and provide decision support [2], [10]. 
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