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Abstract
Previous research in the field of endoscopic computer vision has mainly focused on the detection of polyps using single images,
but not videos or streams of images. The Endoscopic computer vision challenges 2.0 (EndoCV 2.0) is designed specifically to
use streams of image sequences for the detection of polyps. In this paper, we describe our approach based on Gong et al. [1]
by leveraging deep convolutional neural networks (CNNs) combined with temporal information to improve upon existing
solutions for polyp detection. We demonstrate a detection system that combines similar ROI features across multiple frames
with temporal attention to predict the final polyp detections for an emerging frame. For evaluation, we compare our approach
to two classical image detection algorithms on a validation set based on training data provided by the challenge. The first one
is a Single Shot Detector (SSD) called "YOLOv3", and the second one is a two-step region proposal-based CNN called "Faster
R-CNN". To minimize the generalization error, we apply data augmentation and add additional open-source data for our
training.
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1. Introduction
The second leading cause of cancer-related deaths world-
wide is Colorectal cancer (CRC) [2]. An excellent method
to prevent CRC is to detect pre-cancerous lesions (col-
orectal polyps) of the disease as early as possible, using a
colonoscopy. During a colonoscopy, a long flexible tube
that is inserted through the rectum into the colon. The
end of the tube has a small camera, allowing the physi-
cian to examine the colon thoroughly 1. Computer sci-
ence researchers are developing new methods to support
physicians with this procedure. Polyp detection using
computers is called computer-aided detection (CAD). This
process of polyp detection has already been subject to
numerous publications.

However, these published solutions mostly focus on
detection on still images [3]. Therefore, most of the pub-
lished algorithms do not consider temporal dependencies
and do compare themselves on benchmarks which do not
consider temporal connections. To predict the final polyp
detections for an emerging frame, our approach based
on Gong et al. [1] utilizes temporal dependencies by
combining similar ROI features across successive frames
with temporal attention. Nevertheless, there are already
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some approaches in the literature addressing temporal
dependency in polyp detection: In Itoh et al. [4], tempo-
ral information is included through a 3D-ResNet. The 3D
ResNet is thereby combining present and future frames
for the detection of a new frame.

Furthermore, Qadir et al. [5] work with a traditional
localization model, such as SSD [6] or Faster R-CNN [7],
and post-process the output with an FP Reduction Unit.
This approach considers the area of the generated bound-
ing boxes over the 7 preceding and following frames
and identifies and adjusts the outliers. The use of future
frames causes a small delay, however, the actual calcula-
tion of the FP Reduction Unit is fast. A second promising
method by Qadir et al. uses a two-step process which
aims to decrease the proportion of false predictions. Fur-
thermore, the CNN that flags several regions of interest
(ROIs) for classification. The marked ROIs are then com-
pared with subsequent frames and their corresponding
ROIs and classified into true positives and false positives.
The underlying assumption here is that each frame in a
video is similar to its adjacent frames [5].

Xu et al. [8] designed a 2D CNN detector, which takes
the spatiotemporal information into account and uses
an ISTM network to improve its polyp detection effi-
ciency while maintaining real-time speed. The model
was trained on custom data. In addition, there is another
approach which includes the temporal dependencies via
post-processing. This approach uses fast image detection
algorithms like YOLO and, afterwards, combines these
predictions with an efficient real-time post-processing
technic. This post-processing technique includes the
predictions of polyps detected in past frames for future
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Figure 1: Overview of the polyp detection approach. t denotes the current frame for the detection. t - 1 denotes the frame
before frame t and t+1 the frame after frame t. The ROIs are aligned through temporal attention for different frames. This
figure is adopted from Gong et al. [1]

.

detections [9]. Taking these ideas forward, we imple-
mented a polyp-detection model using the "ROI-Align
Module" of Gong et al. [1] This allows the neural net-
work to attend to information in previous frames and
to combine ROI features from different frames for new
predictions.

2. Data
To train the model, we used two public available datasets
in addition to the challenge dataset:

• Kvasir-SEG [10]: 1000 polyp frames are included
in the data collection, along with 1071 masks and
bounding boxes. The sizes range from 332×487
pixels to 1920×1072 pixels. Gastroenterologists
at Norway’s Vestre Viken Health Trust confirmed
the annotations. The majority of the frames show
basic information on the left side, while others
have a black box in the lower-left corner that con-
tains data from ScopeGuide’s endoscope position
marking probe (Olympus). The data is available
in the Kvasir-SEG repository2.

• SUN Colonoscopy Video Database [11]: This
dataset comprises 49,136 polyp frames from
100 distinct polyps, all of which are thoroughly
documented. These frames were taken at Showa
University Northern Yokohama and annotated
by Showa University’s specialist endoscopists.
There are also 109,554 non-polyp frames present.
The frames have a resolution of 1240×1080 pixels.

2https://datasets.simula.no/kvasir-seg/

The data is available in the SUN Colonoscopy
Video repository3.

• PolypGen2.0 (Polyp Generalization) [12, 13, 14]:
This dataset is one of the two sets from the chal-
lenge and an extended version of the datasets
from the 2020 and 2021 challenges. Both sub-
challenges provide multi-center and diverse pop-
ulation datasets with tasks for both detection and
segmentation, but the emphasis is on evaluating
algorithm generalizability. The goal was to incor-
porate additional sequence/video data as well as
multimodal data from various sites. PolyGen2.0
consists of 46 sequences with a total of 3290 im-
ages. All frames have a resolution of 1920×1080
pixels.

We split the PolyGen2.0 dataset into training and val-
idation. For this purpose, 20 random sequences were
assigned to validation (1366 images) and the rest to train-
ing (1924 images). The resulting validation set was used
for all training steps.

3. Methods
In this section, we illustrate our approaches for the En-
doCV2022 challenge, depicted in figure 1. All our models
are trained on a NVIDIA QUADRO RTX 8000. After
exploring the data, we decided to choose an algorithm
which includes temporal information for the challenge,
since the test data provided includes entire videos rather

3http://sundatabase.org/
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Figure 2: This figure illustrates temporal ROI align design and
how its similarity map aggregation and temporal attention
are used to compute the temporal ROI feature. This figure is
adopted from Gong et al. [1]

than just images. The model is based on Gong et al. [1]
and will be explained in the following.
Most state-of-the-art single-frame object detectors use
the paradigm of region-based detection. When these de-
tectors are used directly for video object detection (VID),
object appearances in videos such as motion blur, video
defocus, and object occlusions can degrade detection ac-
curacy. These are frequent problems in endoscopy videos,
which make the detection of polyps more difficult. There-
fore, the main challenge is to design a method that can
utilize the temporal redundancy of the information ef-
ficiently for the same object instance in a sequence of
images or videos. To extract ROI features, most region-
based detectors use ROI Align. However, ROI Align only
uses the current frame feature map to extract features
for current frame proposals, resulting in ROI features
that lack the temporal information of the same object
instance in the video. Using feature maps of other frames
to perform ROI Align for the current frame proposals is
a straightforward and clear technique for using temporal
information. However, since the exact placement of the
current frame proposals in other frame feature maps is
unknown, the basic solution is ineffective.
Temporal ROI Align, on the other hand, defines a target
frame as a frame in which the final prediction is made
in real-time. In figure 2 the temporal ROI algin process
is illustrated. Temporal ROI algin also allows the target
frame to have multiple support frames, which are used to
refine the features of the target frame. To achieve this re-
finement, the proposed operator selects the most compa-
rable ROI features from the feature maps of the available
support frames. The temporally redundant information
of the same object instance in a video is contained in the
extracted most comparable ROI characteristics. The main
target now is to effectively capture diverse ROI features.
Average is inefficient, because a polyp may seem blurry
in some frames and clear in others. It is self-evident that

Figure 3: This figure shows a sequence of detections results
with our algorithm on the test dataset provided by the chal-
lenge. Time is in this sequence running from the left side
image to the right side while the polyp is moving to the left.

the ROI characteristics of clear object instances should
take precedence over the features of blurry instances in
aggregate. To aggregate the ROI characteristics and the
most comparable ROI features, multi-temporal attention
blocks are used to perform the temporal feature aggrega-
tion. A major advantage of Temporal ROI Align is that it
can extract the object features from support frames even
when a polyp is partially occluded in the target frame.
Therefore, the visible parts are dominant and features at
these locations can still get enhanced.

For our approach, the nerual network is trained for
10 epochs on our full dataset and then finetuned for 3
epochs on the challenge dataset. We choose the stochastic
gradient descent (SGD) optimizer with a learning rate
of 0.01, momentum of 0.9, and a weight decay of 0.0001.
Additionally, we use a linear training warm-up schedule
for 1 epoch. To enhance the generalization capabilities of
our model, we use the following augmentation-schema:
We applied a probability of 0.3 for upward and downward
flips and a vertical flipping probability of 0.5. In addition,
we rescaled the image with a probability of 0.64. We
also use a translation along the horizontal axis with a
probability of 0.5.

4. Results
In this section, we describe our results of the EndoCV2022
challenge. We highlight the performance of our approach
and compare it to two classic benchmarking algorithms.
One is an SSD algorithm called YOLOv3 [15] and the
other is the ROI Proposal algorithm called Faster RCNN
[16]. We trained both algorithms on the same data. For
the validation, we create a validation set. The validation
set consists of 20 sequences randomly chosen from the
provided data (no additional data is included). We test
the detection-created validation set. To enable the com-
parison of our results with the other participants of the
challenge we do also declare our final scores: Score(mAP)
13.12 % and score(mAP50) 27.05 % are our final detection
scores on the second round of the challenge evaluation.

Table 1 shows our results on our created validation
set for the detection task where YOLOv3 is a benchmark



SSD algorithm, Faster R-CNN is the FASTER R-CNN algo-
rithm with ResNet-101 backbone. For the evaluation, we
report the F1-score. The F1-score describes the harmonic
mean of precision and recall as shown in the following
equations:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 =
2 * Precision * Recall

Precision + Recall
=

2 * 𝑇𝑃
2 * 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

We count an annotation as true positive (TP) if the boxes
of our prediction and the boxes from the ground truth
overlap at least 50%. Additionally, we display the mean
average precision (mAP) and the mAP50 with a minimum
IoU of 0.5 [17]. The mAP is calculated by the integral of
the area under the precision-recall curve. Thereby, all
predicted boxen are first ranked by their confidence value
given by the polyp detection system. Then we computed
precision and recall for different thresholds of these con-
fidence values. When reducing the confidence threshold
recall increases and precision decreases. This results in
a precision-recall curve. Finally, for this precision-recall
curve, the area under the curve is measured. This results
in the mAP.

Table 1 shows that our approach is outperforming clas-
sical benchmarks on our validation data; this is mostly
due to our temporal dependencies included in the algo-
rithm which are not included in the Faster-RCNN ap-
proach. Notably, SSD algorithms like YOLOv3 are still 20
FPS faster than our approach in detecting single images.
Nevertheless, our approach yield a huge recall increase
of 9.5 % compared to the fast YOLOv3. We do especially
emphasize this as recall is one of the most important
metrics in real clinical use. As it is more important to
find a missing polyp than to have additional false positiv
detections. Figure 3 shows a sequence of detections re-
sults with our algorithm on the test dataset provided by
the challenge. Furthermore, figure 4 shows a qualitative
comparison of the three detection algorithms. We can see
that all algorithms are detecting the polyp. Nevertheless,
Yolov3 and Faster-RCNN are distracted by light reflec-
tions and therefore also draw wrong detections. Through
temporal ROI align, our approach can incorporate the
detections from previous frames and therefore does not
get distracted by the light reflections.

5. Discussion
In this section, we like to discuss two main points: First,
the limitations of our approach, and second how to use
our approach in clinical useful settings. The first limita-
tion is the current speed of our system. With an inference
performance of 24 FPS, the algorithm is not capable of

YOLOv3 Faster-RCNN Our approach

Figure 4: This figure shows a qualitative comparison of the
three detection algorithms.

Table 1
Evaluation results of our validation split. We compare our
approach based on Gong et al. [1] to two different polyp
detection baselines on the same validation split from the chal-
lenge. Precision, Recall, F1, and mAP are given in %, and the
speed is given in FPS.

YOLOv3 Faster-RCNN Our approach
mAP 13.8 14.2 18.8
mAP50 27.5 28.9 32.8
Precision 32.2 34.5 32.4
Recall 30.1 32.4 39.6
F1 31.1 33.4 35.6
Speed 44 15 24

detecting every image with an endoscopy processor pro-
cessing at 30 FPS. This can be mitigated by pruning and
quantization-aware retraining. This on the other hand
reduces the accuracy of the algorithm. Additionally, in
the literature, a lot of benchmarking scores on still polyp
images are already exceeding 80 % F1 score [18, 19]. Nev-
ertheless, those are not directly comparable with our
evaluation as they are using different data sets and do
not include sequences of images.

The second and most drastic issue is that the system
in its current form only works with video data and not
a real-time stream of videos due to the dependencies in
the algorithm, including preceding and future frames in
the prediction. This issue may be solved by changing the
algorithm to only use the preceding frames. In its current
form, the algorithm can be used to evaluate endoscopies
after they are completed or to detect polyps with wireless
capsule endoscopy (WCE).

6. Conclusion
Overall, we demonstrate our approach to the Endoscopic
computer vision challenges 2.0. We show a detection
system that combines similar ROI Features across frames
with temporal attention to create the final for polyp de-
tections for a new emerging frame. The system thereby
uses present, past, and future features on the temporal
axis to create new polyp localizations. We show that the
system exceeds classical benchmarks algorithms based



on individual frames on our validation data from the
challenge.
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