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Abstract
The detection and segmentation of polyps during colonoscopy can substantially contribute to the prevention of colon cancer.
Assisting clinicians using automated systems can mitigate the risk of human error. In this work, we present our polyp
segmentation approach, submitted to the EndoCV2022 challenge. Common polyp segmentation methods are based on
single-model, single-frame predictions. This work presents a symbiosis of three separate models, each with their own strength,
as part of a segmentation pipeline and a post-processing step designed to leverage unique predictions for more temporally
coherent results.
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1. Introduction
Colorectal cancer is one of the most commonly found can-
cer types, ranking second in females and third in males
[1]. By detecting and subsequently resecting polyps dur-
ing colonoscopy screenings, the risk of developing the
disease can be reduced significantly. With the advance of
machine learning in the medical domain, deep learning-
based methods have the potential to assist in detecting
and segmenting these polyps with high accuracy. The
EndoCV2022 challenge[2] addresses generalizability of
such deep learning models for segmentation in endo-
scopic video sequences. The method presented in this
paper tackles this issue with three primary design de-
cisions: (1) The provided challenge dataset underwent
a curation process that ensures annotation quality. (2)
An ensemble of three networks with complementary
strengths was trained for the segmentation prediction.
(3) Finally, a post-processing step was implemented to
address false-negative frames caused by majority vote. A
fallback mechanism was set to reweight the predictions
of a single model in order to enable unique predictions.
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2. Datasets
The dataset provided by the EndoCV2022 polyp segmen-
tation sub-challenge[2, 3, 4] consists of 46 sequences
of varied length, totalling 3,290 image frames and their
corresponding polyp segmentation masks. Further-
more, three public polyp segmentation datasets were
added as external data, namely CVC-ColonDB[5], CVC-
ClinicDB[6] and ETIS-Larib[7], to enrich the diversity of
the dataset. These account for 1,108 additional training
images, resulting in 4,398 frames in total.

3. Methodology
Our challenge strategy rests on three main pillars: (1) A
data pre-processing step to ensure high data annotation
quality, (2) the network architecture selection and train-
ing step, which yields the segmentation models, and (3) a
post-processing step, which leverages model heterogene-
ity and uses structural similarity[8] of consecutive frames
in order to handle false-negative masks. An overview is
depicted in Fig.1.

3.1. Data pre-processing
Correct data annotation of the training set is crucial to
the learning capabilities of any segmentation model. In
order to ensure annotation quality, the provided chal-
lenge dataset was curated by manually removing images
with implausible or temporally inconsistent annotations,
to the best of our judgement. An example is shown in
Fig.2. This was conducted under the assumption that
false annotation would harm the training process more
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Figure 1: Overview of heterogeneous model ensemble pipeline. Data is curated. Predictions of Efficient-UNet[9] ensemble,
nnU-Net[10] and Hierarchical Multi-Scale Attention Network[11] are combined. Post-processing yields final prediction.

than having a larger number of frames for training. The
external datasets described in section 2 underwent the
same selection process. Including external data, the re-
sulting training dataset amounted to 4,106 image-mask
pairs.

Figure 2: Example of inconsistent annotation. The up-
per row depicts three consecutive frames of the provided
seq23_endocv22 sequence. The lower row shows the segmenta-
tion mask. The image at position 𝑡 has fewer polyps annotated
compared to the neighboring frames, despite the polyps not
being obstructed or out of sight.

3.2. Neural network architectures
In order to solve the polyp segmentation task, a model
ensemble was designed that consists of parts with com-
plementary strengths. This was realized by using an
nnU-Net[10], which is configured to automatically adapt
its pre-processing and training framework to different
datasets, and thus serves as a strong segmentation base,
a Hierarchical Multi-Scale Attention Network[11], which
combines predictions of multiple scales for a better predic-
tion performance, and an ensemble of Efficient-UNets[9],
one of which is equipped with an internal GRU-layer to
process temporal information. By focusing on incorpo-
rating temporal as well as high-resolution information,

we expected more knowledge to be leveraged from the
provided high-resolution video sequences.

3.2.1. nnU-Net

The nnU-Net is able to automatically determine key de-
cisions to set up the segmentation pipeline for training,
irrespective of the dataset. While it has ranked first on
many 3D-segmentation challenges1, its self-configuring
strategy can also be applied to 2D images. The nnU-Net
was expected to provide a solid base prediction.

3.2.2. Hierarchical Multi-Scale Network

By treating the polyp segmentation as a classic computer
vision task, it is possible to use established segmentation
models that perform well on complex natural images.
The Hierarchical Multi-Scale Attention Network (HM-
ANet) was chosen as it is a state-of-the-art architecture
in semantic segmentation on Cityscapes2. The HM-ANet
operates on higher resolutions and combines predictions
from different scales. This was expected to result in a
precise polyp segmentation, irrespective of the size of
the polyp.

3.3. Efficient-UNet Ensemble
Most of the current segmentation models operate on
a frame-by-frame basis. In order to capture temporal
information, one approach is to incorporate a recurrent
neural network layer to a standard segmentation model,
such as a Gated Recurrent Unit (GRU)-layer. The chosen
base segmentation model is the Efficient-UNet (Eff-UNet).
It is an encoder-decoder architecture with an EfficientNet
as its backbone, which is able to scale with model size

1medicaldecathlon.com,https://kits19.grand-challenge.org,https:
//www.med.upenn.edu/cbica/brats2020
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Figure 3: Example of differently sized polyp images with their segmentation masks from the provided challenge set.

and outperform other ConvNet backbones. One GRU-
layer was added to the bottleneck of the Eff-UNet, to
form an Eff-GRUNet. Consecutive images are loaded in
batches of size two. They are encoded, pooled, flattened,
sequentially fed into the GRU-layer and then reshaped
and fed to the decoder. The Eff-UNet is trained separately
from the Eff-GRUNet. Variants of both combined form
the Eff-UNet ensemble.

3.3.1. Combining networks and weighting

Since the HM-ANet operates on high resolutions, it was
expected that it performs well on very small polyps, as
well as being able to fully capture larger polyps in their
entirety. During ensembling, the HM-ANet was designed
to be weighted higher for the small and large polyps.
Since there is no standardized definition of polyp sizes,
the thresholds were set empirically by observing refer-
ence labels of public polyp datasets[5, 6, 7]. An example
is shown in Fig.3.

3.4. Post-processing by reweighting
To mitigate the error of false-negative predictions, a post-
processing step is added that considers empty segmen-
tation masks and their surrounding frames. If a neigh-
boring frame is polyp-positive and is similar to the cur-
rent frame, then any non-empty prediction of the cur-
rent frame is reweighted, effectively allowing a polyp-
positive prediction despite non-majority. The similarity
score used for this approach is the structural similarity
score(SSIM), as it is able to take texture into account.

4. Experiments and Results
The original training dataset was split into four parts
using GroupK-fold for 4-fold cross-validation(CV) train-
ing, balancing the number of frames and sequence IDs.
Each fold has 11-12 sequences with around 750 frames.
The following subsections describe the implementation
details and experiment results after hyperparameter op-
timization.

4.1. Implementation details
The nnU-Net was used as a framework and manual
changes were made to its automatically generated con-
figuration. The short edge of the image was resized to
512px with the other being resized according to aspect
ratio. The patch-size was set to 448 x 448. The data was
then heavily augmented with operations such as rotation,
intensity and gamma augment, scaling, mirroring and
blurring.

For the HM-ANet, the data was normalized and ran-
dom scaling between [0.5,1], random crop to 512x1024,
RGB-shift, and random vertical and horizontal flipping
was performed. The model was initiated with weights
pre-trained on PaddleClas3. The training was conducted
in three phases: 1) Training the model on original chal-
lenge data, 2) fine-tuning the model on challenge and
external data, and 3) fine-tuning again on challenge data
only.

For the Eff-UNet ensemble, the data was resized to
480x480 (Eff-UNet_480) and 256x256 (Eff-UNet_256), in-
corporating different resolutions. Resizing to 256x256
was chosen for the Eff-GRUNet, to fit memory restric-
tions. Augmentations such as rotation, elastic and grid
deformation were used.

In order to combine the predictions, the segmented
polyps were divided into small (≤ 0.4% of image size),
large (≥9% of image size) and medium (rest) polyps. If
polyps were predicted as small or large, the weight of
the HM-ANet was increased to 0.5, while the others were
decreased to 0.25 each. If the polyp was of medium size,
the models were weighted equally at 0.33. The final seg-
mentation was formed by thresholding the weighted pre-
dictions at 0.5. To address false-negatives resulting from
an unmet majority criterion, unique single-model pre-
dictions were encouraged if neighboring images were
structurally similar (SSIM > 0.9) and predicted to be
polyp-positive. The single model prediction weight was
then increased to 0.5. This proved to solve some false-
negative cases, as illustrated in Fig.4.

4.2. Single model experiment results
All final single model DSC scores are reported in Table 1.
The nnU-Net was trained with external data added to the

3paddleclas.readthedocs.io/en/latest/index.html
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Figure 4: Example of post-process reweighting. The ensemble prediction at time step 𝑡 is empty. Because SSIM > 0.9 and
prediction is non-empty for at least one of the neighboring images, the single model prediction is weighted with 0.5.

training set, resulting in a mean CV DSC score of 0.67.
Training only on the challenge set or the external dataset
resulted in a worse DSC score of 0.57 and 0.55.
The HM-ANet had a mean CV DSC score across all folds
of 0.70. During training and inference, predictions of
scales [0.5,1] were combined. Experiments with scales
of [0.5,1,2] resulted in a worse performance of 0.69 with
more false-positives in empty images. Training in three
steps as described in sub-subsection 4.1. yielded the best
result. Other training strategies such as training on a
combined dataset or pre-training on the external dataset
and fine-tuning on the official dataset resulted in a worse
performance. 4-fold cross-validation was used to deter-
mine the stopping epochs for all three phases. A final
inference model was then trained on the entire dataset.
The three Eff-UNet models were each trained on the com-
bined dataset over four folds, resulting in 12 models. The
mean CV DSC scores of the Eff-UNet_480, Eff-UNet_256
and Eff-GRUNet were 0.69, 0.71 and 0.62, respectively. As
an alternative experiment, the Eff-UNet_480 was trained
with external data for pre-training and challenge data
for fine-tuning. This performed worse compared to us-
ing the combined dataset, resulting in a mean CV DSC
score of 0.65. In order to decrease inference time, two Eff-
UNet_480, one Eff-UNet_256 and one Eff-GRUNet were
selected for the ensemble, based on validation score and
fold representation. The final prediction was determined
by majority vote. The mean CV DSC score of the final
ensemble was 0.70.

Table 1
Cross-Validation scores of all models, including the compo-
nents of the Eff-UNet ensemble. Underscored values indicate
selection for Eff-UNet ensemble. Bold values indicate compo-
nents of the final heterogeneous ensemble.

DSC score Fold 0 Fold 1 Fold 2 Fold 3 Mean
nnU-Net 0.65 0.84 0.70 0.50 0.67
HM-ANet 0.67 0.82 0.69 0.60 0.70
Eff-UNet_480 0.67 0.80 0.69 0.62 0.69
Eff-UNet_256 0.68 0.80 0.71 0.65 0.71
Eff-GRUNet 0.61 0.72 0.58 0.60 0.62
Eff-UNet Ens 0.67 0.80 0.71 0.60 0.70

4.3. Reweighting and ensembling results
In order to test the reweighting strategy of the HM-ANet,
the proportion of small and big polyps was calculated
for the validation splits. For folds 0-3, the ratios were
45%, 28%, 37%, and 65%. For single models, fold 1 had
the most medium polyps and highest average CV score.
Fold 3 has the most non-medium polyps, and the lowest
average CV score. However, the difference in DSC scores
between models is small. Since the ratio was highest
for fold 3, an experiment is conducted where the three
single models were validated on only the small and big
polyp images of fold 3 (n = 483 out of 738 frames). The
resulting DSC scores are 0.63, 0.66 and 0.70. The simple
ensemble receives a score of 0.73 and the ensemble with
reweighting of HM-ANet a score of 0.74. Adding post-
processing did not decrease or increase the score for this



validation set.

5. Conclusion
Our investigation showed that the HM-ANet was favor-
able for small and large polyp cases, which our dedi-
cated weighing strategy takes into account during en-
sembling. Notably, on a dataset with small and big
polyps, it achieves a DSC score of 0.74, improving the
best-performing single model HM-ANet by 0.04. The
post-processing leverages self-adaptive training as well
as temporal and high resolution information by enabling
unique predictions of all three heterogeneous compo-
nents, resulting in less false-negative predictions. The
inference time as the sum of the slowest component (nnU-
Net) and the ensembling step is 0.71 fps.
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