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Abstract  
The problem of determining how to implement a data mining system as looslly-coupled or 

tightly-coupled remains a major challenge as it affects the performance of the system and the 

consumption of memory and computation resources. The aim of the research is to propose a 

new approach to data mining design based on aggregating a data mining system with data 

intended for mining under the umbrella of database management systems. The authors 

produced a new algorithm to mine maximal itemsets depending on Bees' algorithm named 

Maximal Itemsets Mining Algorithm Based on Bees’ Algorithm, MMIBA. MMIBA was 

implemented as loosely-coupled miner. This research presents a new implementation for 

MMIBA using Oracle PL\SQL. The aim of this implementation is to combine the mining 

system with the data to be mined. This approach excludes many drawbacks associated with 

other approaches such as the conflict of data environment and mining system environment, 

data transfer between these different environments, and data format conversion due to the 

mismatch of the formats that are supported by various environments. This approach dominants 

the loosely-coupled implementation in considerable amount of execution time and memory 

consumption. The proposed system was tested using many real and synthetic databases with 

wide range of properties including size, number of items, database sparseness or its density. 

Many values for minimum support and conflict were used in these tests to prove the robustness 

of the designed system. Experiments showed that the techniques of implementing mining 

algorithms affected their efficiency, and this was demonstrated by increasing the efficiency of 

MIMBA when it was implemented by collecting data with the miner that uses it in a single 

software environment. 
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1. Introduction 

The discovery of frequent itemsets (FI) is one of the very important subjects in data mining [1]. The FI concept 

was firstly produced by Agrawal et al. [2]. A frequent itemset is a group of items coming frequently together in 

set of transactions satisfying minimum support (min_sup) [3–5]. The big challenge lies in the huge number of FIs 

that are generated from mining process especially when min_sup is set to small value [2, 6]. 

A FI is maximal if it is the longest itemset that satisfies min_sup and all its superset is infrequent [7]. Maximal 

frequent itemset (MFI) considered as dense representation of FIs because of their relatively low number [6]. For 

this reason, MFIs has rapidly been a paramount task in data mining field [3]. The number of MFIs is so small in 

comparative with the number of FIs. All the FIs can be generated from the set of MFIs. Due to two reasons many 

attempts were done to mine maximal itemsets instead of the mining of FIs to keep time and efforts complexities 

[6, 7]. 
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The object of study is the process of mining MFIs by utilizing the capabilities of Oracle DBMS 

which provides PL/SQL as programming language to implement the mining system in addition to its 

characteristic as repository to hold the data. This utilization is accomplished by selecting a suitable 

mining algorithm that is implementable by PL/SQL. 

The subject of study is the use of the PL/SQL or any programming tool provided by a DBMS to 

implement the mining system which depends on a PL/SQL implementable algorithm. 

The purpose of the work is to increase a data miner’s throughput with minimum allocated computer 

system resources by transferring many of the miner duties from the miner space to the BDMS space. 

2. Problem Statement 

Mining of the frequent itemsets from large transaction databases is one of the inherently difficult 

problems that classified as NP-complete problem. In addition to this difficulty, miners are implemented 

using loosely or tightly-coupled techniques, which leads to storing data in flat files that are difficult to 

manage, or that the data remotely stored in DBMS tables separated from the programming language 

environment, leading to a lot of I/O operations and repeated data transformation and transferring. Both 

techniques reduce the efficiency of algorithms and consume memory, computation resource, and I/O 

devices. 

3. Review of the Literature 

Durand et al [2] has introduced the FIBAD approach to compute nearly borders of frequent itemsets 

by utilizing dualization and computation of approximate minimal transversals of hypergraph. They used 

maximal frequent and infrequent itemsets to represent positive and negative borders respectively. They 

found that their method outperformed other methods in producing borders having the highest quality. 

Ganesh et al [4] has mined maximal patterns from the large database used for knowledge discovery. 

The contribution of their paper includes (i)Transposed Representation of Database ii) reduction of 

Database scanning (iii) Pruning the candidate itemsets in each step. Vertical Frequent Mining is deemed 

simple to use and effectively implemented. 

Kocak et al [7] are utilizing maximal frequent itemsets to propose a novel feature elicitation method 

based on data mining techniques for understanding significant patterns in octamer’s cleavability of 

acquired immune deficiency syndrome disease, which is caused by human immunodeficiency virus. 

The extracted features are used in the classification process implies significant results which may be 

used when developing a new medicine. 

Mais et al [6] has introduced a novel maximal itemsets algorithm by pairing MFI and Bees’ 

algorithm (BA). They exhibited a MFI-oriented BA for the purpose of mining MFIs from transactional 

database (TDB). Mining Maximal Itemsets Bees’ Algorithm (MMIBA) is population based stochastic 

algorithm. This paper depends on MMIBA therefore it will be explained in details. Elucidation of 

MMIBA algorithm is presented in Figure 1. Recall the parameters of MMIBA to be set such as N, M, 

E, nep, nsp, and ngh. 

The MMIBA algorithm is population based, so it firstly prepares its population of FIs that satisfy 

min_sup by generating them randomly. It mines MFIs from TDB by selecting higher FIs and select the 

highest FIs out of the higher ones, making union between them in order to generate new generation. 

The union is done between the highest FIs and half number of randomly selected FI population. Where 

the remaining FIs after selection the highest (i.e. higher-highest) are united with quarter number of 

randomly selected FI population. Each of the remaining higher-FIs population unites with one randomly 

selected FIs. 
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Figure 1: MMIBA Algorithm 

 

The MMIBA algorithm is population based, so it firstly prepares its population of FIs that 

satisfy min_sup by generating them randomly. It mines MFIs from TDB by selecting higher FIs and 

select the highest FIs out of the higher ones, making union between them in order to generate new 

generation. The union is done between the highest FIs and half number of randomly selected FI 

population. Where the remaining FIs after selection the highest (i.e. higher-highest) are united with 

quarter number of randomly selected FI population. Each of the remaining higher-FIs population unites 

with one randomly selected FIs. 

4. Materials and Methods 

Data mining algorithms usually deals with a huge data. Because these algorithms encounter issue of 

scalability with respect to vast data, traditional methods address this problem by selecting subset of data 

to be mined which is in-memory data [8, 9]. Another issue is that these algorithms depended on main-

memory data structure, limited amount of data that can be handled [9]. In addition, most data mining 

algorithms can only be loosely coupled with data infrastructures in organization and are hard to pour 

into existing mission-critical application [10]. In loosely coupled connection, data is transferred either 

between database and main memory or dynamically in client/server architecture generating network 

traffic [11]. Most data mining algorithms have been used flat files as data source of information that 

means handling specific file-format. Data integrity is another issue that is needed to be solved via 

consolidation data mining methods with DBMSs [11-13]   

DBMS technology presents many characteristics that make it valuable when performing data mining 

applications. Data sets, those are extremely larger than main memory, can be dealt with because the 

database itself is responsible for processing information, paging and swapping when needed. In 

addition, DBMS provides a simplified data management and closer integration to other systems [11]. 

Information used during mining processing is often clandestine. Consequently, DBMSs can be used 

as a way of supplying data security, which is the demand of many commercial databases. In this way, 

we avoid needing encryption algorithms to process information. [11] 

Most versions of Oracle DBMS support tightly coupled integration within database through 

executing user-defined computation database thus averting unnecessary network traffic. One sort of this 

1. Initialize population with random generated itemsets. 
1.1 Select frequent items from transactional DB (TDB) for new itemset generation. 
1.2 Determine the size of population represented by N. 
1.3 Generate unique N numbers represents N k-itemsets. 
1.4 Select k-items for each k-itemset from frequent items. 

 
2. Evaluate support for each itemset. 
3. While (stopping criterion not met)     //generating new itemsets. 
4. Select M longer frequent itemsets out of N and E longest frequent itemsets out of M. 
5. Perform union operation (more for best itemsets) 

5.1 Perform union operation between each of E itemsets and half no. of frequent itemsets to generate new 
itemsets. 

5.2   Perform union operation between each of M–E itemsets and quarter no. of frequent itemsets to 

generate new itemsets. 

5.3 Calculate the support of the new generated itemsets. 

 

6. Select the highest frequent itemset as candidate maximal frequent itemset. 
7. Perform union operation for remaining itemsets randomly. 

7.1 Perform union operation between each of itemsets-M and one of randomly selected frequent 

itemsets to generate new itemsets. 

7.2 Calculate the support of the new generated itemsets. 

8. End While. 
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implementation is the stored procedure, which is provided in Oracle PL/SQL within data dictionary. 

The aim of this paper is to introduce a new implementation of MMIBA using Oracle 11g PL\SQL to be 

supported with all the previously mentioned DBMS properties. 

Some Oracle 11g Database Features 

ORACLE DBMS is preferred to implement the maximal itemsets embedded miner because it has 

the following privileged features: 

1. ORACLE supports external stored procedures and PL/SQL, the complete, block-structured 

programming language for data manipulation (DML), which excludes the need for host language.  

2. ORACLE supports stored procedure within database that combines the DB with the user-developed 

programs to manipulate the data.  

3. ORACLE supports Open Database Connectivity (ODBC) mechanism that is used to access the 

various DBs of DBMSs. 

4. ORACLE supports Large Object Block (LOB), Character LOB CLOB, and Multi CLOB (MCLOB), 

data type, which allows us to store a very large number of transactions for one item or very long 

frequent patterns itemsets. 

5. ORACLE supports compound object and nested tables. 

6. ORACLE supports LONG data type, which holds up to 2 GB of data as one field. 

      The last three features of ORACLE are very important to represent dense databases prepared for 

mining.  

7. Subprogram inlining in 11g, ORACLE has presented the PL/SQL Function Result Cache, which 

eliminates the overhead of function calls by re-organizing the source code during compilation. 

8. PL/SQL enhancements in ORACLE 11g of the following features: Easy and simplified PL/SQL 

native compilation, Improved PL/SQL stored procedure invalidation mechanism, Stored Procedure 

Named Notation, Virtual columns in 11g, Query result cache in ORACLE 11g, PL/SQL function 

result cache, and Regular expression enhancements. 

Proposed Miners’ Architecture 

The architecture of the proposed miner is composed of many modules each of which is responsible 

for a specific task such that they collectively perform the task of finding the MFIs. These modules are 

initialization module, support counter module, frequent item selector module, m and e selector module, 

itemset-m selector module, new itemset generator module, maximal itemset selector module, and 

reporter module. (See Figure 2). 

Proposed Miners’ Modules 

Frequent item selector module (level 1) In order to discover MFIs, frequent items, 1-itemsets, must 

be found firstly. In this module, only frequent items will be selected from TDB and stored in a table 

which this module will construct it. The table is named "frequent items DB". It consists of three 

columns: freq_item, sup, and item_len. The fields' data types used for all columns of modules tables 

are CLOB and Number as follows: 
 

Freq_item  CLOB   --- stores frequent itemsets, 1-itemsets, 2-itemset, etc. 

Sup             number --- stores itemsets' supports. 

Item_len     number --- stores the length of itemset. 

Itemsets may have huge size, therefore the most suitable data type to hold an itemset is CLOB data 

type. These FIs are encoded numerically such that each FI has given a unique code (integer number) 

which represents it during mining process. These unique sequential codes are stored in table called 

"coding" table. Coding table has the following column: item, code . Coding step has two advantages: 

1) It simplifies the completely mining process, because it is easier to deal with item, feature, or property 

in DB as numbers than as names (sequence of characters) in terms of storing and retrieving FIs and 

performing union operations. 

2) Because MMIBA relies on randomization to explore search space (itemsets space), it uses 

randomization function to generate random numbers ranging between min and max values to form 

an itemset. These min and max values are min and max code of that FI. To decide whether the item 
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is frequent or not, the support of the item must be calculated and compared with the input value 

defined by the user which represents the threshold between frequent and infrequent items, i.e. 

min_sup. 

Figure 2: Presents the architecture of the proposed miner 
 

Initializer module (level 1) The task of this module is generating the initial population. Each 

individual of the population is an itemset of length k, i.e. k-itemset. Initially, the module constructs a 

table named "random itemsets DB". The table consists of the following columns: N (population size), 

K (the length of itemset), Itemset (holds the itemset itself), and Sup (represents the support of the 

itemset). Initializer module generates N numbers randomly, each of which represents the length of 

itemset. Moreover, for each K, the initializer will generate a random number K-times, which represents 

the itemset. After that, it will invoke support counter module in order to count itemset support (see 

figures 3 and 4). 

 

Figure 3 Abstracted PL/SQL code to generate K. 

Random itemset DB 

Support counter 

Frequent item DB 

Reporter  

Maximal itemset selector 

Maximal itemset DB 

Initializer   

M and E selector  

Frequent item selector 

TDB 

itemset-M  selector 

 
New itemset 

generator  

ME DB 

Min_sup 

Level 1   

Level 4 

Level 5 

Level 6 

New itemset 

from M-E DB 

New itemset from E DB  

Itemset-M DB 

New itemset from 

itemset-M DB 

          Execution Flow 

          Data Flow 

Level 2 

Level 3 

BEGIN 

  loop 

   rnum:=round (dbms_random.VALUE(min_value,max_value)); 

   SELECT count(*) INTO c FROM temp_itemset WHERE itemset1=rnum AND item=len_item; 

   exit WHEN c=0; 

  END loop; 

END; 
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The generated itemset is unordered and in form of one length itemset. To order it and making it of 

K-length itemset; a view is created and the order by Clause is used. The items of the generated itemset 

are ascendingly ordered and connected by “;” symbol. After all itemsets have been generated, support 

counter module is invoked in order to calculate the support of each itemset and store the result in 

"random itemset DB" table. 

Figure 4 Abstracted PL/SQL code to generate the itemset 
 

Support counter module (level 2). The task of this module is calculating the support of the itemset that 

is generated by initializer module. The support of 1-length item is gotten from frequent table and there 

is no need to scan the database to ch reduces time cost. If itemset's length is k-itemset, then its support 

will be calculated through count of tidset resulted from intersection among sets of tidset of each item 

that forming the itemset in TDB. After counting the tidsets resulted from intersection operation, random 

itemset DB will be updated and the resulted number will be inserted in sup column (consider figure 5). 

  

The longer (M) and longest (E) Selector Module (level 3) The job of this module is selecting M and E 

random numbers from N population size. They represent itemsets that are chosen according to fitness 

criterion such that M < N and E < M. M represents the higher fitness itemset where E is the highest 

fitness itemset. Initially, M and E selector module constructs a table named "ME DB". The table consists 

of  M_selected and Elite attributes. Then the module selects E and (M-E) and stores them in "ME DB" 

table (see figure 6). 

 

Figure 5:  Abstracted PL/SQL code of support generation 

 

BEGIN 

 loop 

  rnum:=ROUND (DBMS_RANDOM.VALUE(min_value,max_value)); 

  SELECT count(*) INTO c FROM initpop WHERE k=rnum; 

  -- check the uniqueness of K 

  exit WHEN c=0; -- if not found insert it in the table 

 END loop; -- if rnum previously found in the table 

END; 

 

IF item_record.item=1 THEN --if item length=1 

    V_ITEM:=1; 

SELECT sub into v_sup FROM frequent WHERE 

 freq_item=(SELECT itemset1 FROM    temp_itemset 

        WHERE item=1); 

ELSE   ------ if item length is more than 1 

  SELECT  COUNT(tidset),item_record.item 

   INTO   v_sup,v_item FROM  

   (SELECT  tidset FROM  trans WHERE item IN 

    (SELECT itemset1 FROM temp_itemset   WHERE     

      item=item_record.item)GROUP BY  tidset 

    HAVING COUNT (DISTINCT item)= (SELECT      

         COUNT(*) FROM 

       temp_itemset WHERE 

       item=item_record.item)); 

END IF; 
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Figure 6. Abstracted PL/SQL code for selecting M and E 

Itemset−M Selector Module (level 3). This module is in charge of selecting the remaining itemsets 

after selecting M better itemsets and Elite itemsets from random itemset DB. These itemsets are referred 

to as“itemset-M” itemsets. Initially, Itemset-M selector module constructs a table named “itemset_M” to carry 

the selected itemsets. The table consists of two columns, which are ID1 and Itemset_M. Then it selects the 

remaining itemsets from random itemset DB that are frequent and neither Elite nor M_selected (not 

within the itemsets in ME table) (see figure7). 

Figure 7. Abstracted PL/SQL code for selecting itemset-M. 
 

New Itemset Generator (level 4). this module is responsible for generating new itemset. Initially, 

the module constructs number of table to generate new itemsets resulted from union operation of Elite, 

M_selected, and itemset-M with frequent items in frequent item DB.The first table is “me_result” table, 

which consists of the following columns: ID1, ELITE, FREQ_ITEM, COMBINED_STR, and SUP. 

The generated itemsets are saved in new_gen_item table, which represents the population of new 

generation (see figure 8).  

insert into itemset_m 

 select rownum id1,  itemset 

 from (select * from initpop 

       where sup>=min_sup 

       AND ITEMSET NOT IN ( 

SELECT M_SELECTED FROM ME WHERE m_selected IS NOT NULL ) AND 

ITEMSET NOT IN ( 

SELECT ELITE FROM ME WHERE elite IS NOT NULL) 

Mnum:= ROUND (DBMS_RANDOM.VALUE(2,lcount)); 

   insert into t(m_selected) SELECT * FROM 

      (select itemset from initpop 

       where sup is not null group by itemset 

       order by max(length(itemset)) desc); 

   Enum:=ROUND (DBMS_RANDOM.VALUE(1,Mnum-1)); 

   insert into me(m_selected,elite) 

    (SELECT LEAD (m_selected, Enum) OVER (ORDER BY  LPAD 

    (m_selected,100) desc)     m_selected, 

      CASE 

   WHEN m_selected< NTH_VALUE (MAX (m_selected),Enum) 

   OVER (ORDER BY  LPAD (m_selected, 100) desc) THEN NULL 

       ELSE m_selected 

       END 

             Elite FROM t GROUP BY m_selected); 
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Figure 8. Abstracted PL/SQL code for generating new itemset (elite union freq_item) 
 

Maximal Itemset Selector (level 5). This module is responsible for selecting the best new generated 

itemsets from new_gen_item, new_gen_item2, and new_gen_item3 tables as candidate maximal 

itemset.  
 

Figure 9: Saving Elite maximal candidates in maximal table 

The module constructs a table named “tidtid” table to hold tidsets of each item that form an itemset. 

The table has the following column: ID1, TIDSET, and GROUP_ALL. Figure.9 depicts the skeleton of 

this module through very abstracted PL/SQL code.  

The Reporter Module (level 6). The reporter module shows Maximal itemsets (MI)s of each 

generation. Each generation displays, the contents of TDB, random itemset DB, frequent item DB, ME 

DB, itemset-M DB, new generated itemset from Elite U half no. of freq_item DB, new generated itemset 

from M-E U quarter no. of freq_item DB, new generated itemset from itemset-M U freq_item DB, 

maximal itemset DB. The reporter module exhibits for each item the set of tidsets that support this item 

insert into new_gen_item 

  select COMBINED_STR,SUP,REGEXP_COUNT(combined_str,';') 

  from ( 

  SELECT id1,COMBINED_STR,SUP,REGEXP_COUNT(combined_str,';') 

       from ( 

              SELECT id1,ELITE,FREQ_ITEM,COMBINED_STR,SUP, 

              ROW_NUMBER() over (PARTITION BY ELITE order by id1) RN FROM ME_RESULT 

              WHERE ( EITE,REGEXP_COUNT(combined_str,';') 

                    ) IN  

                         ( 

        SELECT ELITE,MAX(REGEXP_COUNT(combined_str,';') 

                         )  

                          FROM me_result where sup>=min_sup GROUP BY ELITE 

            ) and sup>=min_sup 

    ) where rn=1 

order by id1 

Loop  

   ,item_counts as 

                ( 

                  SELECT DISTINCT a.item 

                 ,COUNT(DISTINCT a.tidset) over() total_tidset 

                 ,COUNT(a.item) over(PARTITION BY a.item)item_occurrence_count 

                 FROM ( 

                        SELECT DISTINCT item ,tidset 

                        FROM all_items 

                      ) a 

                ) 

  SELECT listagg(item, ';') within GROUP(ORDER BY to_number(item))common_items 

  into cc FROM item_counts 

  WHERE total_tidset = item_occurrence_count; 

End loop; 
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in TDB. For random itemset DB, it exhibits population size N, the length of each randomly generated 

itemset K, k-itemset itemsets, and the support of each k-itemset sup. For frequent item DB, it exhibits 

each itemset item with its support sup and length Len. For ME DB, it displays number of best M selected 

itemsets m_selected and number of best E selected itemsets Elite. For new generated itemset from Elite 

U half no. of freq_item DB, it displays Elite, half no. of freq_item,combined_str which represents new 

generated itemset, and support sup. For new generated itemset from itemset-M U freq_item DB, it 

displays itemset-M, freq_item,combined_str which represents new generated itemset, and support sup. 

For maximal DB, it exhibits new generated itemsets with their tidsets that support them. 

5. Experiments 

Very low levels of Min-Sup values were adopted to test the speed and scalability of the proposed 

implementation, PL/SQL-MMIBA, and prove its ability to execute in spite of these values of Min-Sup. 

The experiments indirectly pointed to the memory utilization according to the used database and Min-

Sup values. It is well known that the lower value of Min-Sup leads to largest number of FIs and MIs in 

addition to the increment of the execution time and memory consumption. 

There are many real databases used for the experiments such as (Chess, Mushroom, Cancer Cells, 

Census Data, and Dense Census) in addition to synthetic databases. The following tables present a 

comparison among PL/SQ-MMIBA, Loosely -coupled implementation of MMIBA (LC-MMIBA), and 

MAFIA. As it is explained previously, MMIBA starts the execution with random values for its 

population, therefore its execution time is affected by the closeness or farness of these values from 

actual results to be mined, i.e., MIs. Therefore, to get fair comparisons, LC-MMIBA and PL/SQL-

MMIBA were executed 10 times for each Min-Sup value for a specific database and the average of 

these executions has been calculated and presented in the tables of result section. 

6. Results and Discussion 

Table (1) presents the execution times of the MAFIA, LC-MMIBA and PL/SQL-MMIBA using 

Chess DB and different values of Min-Sup ranged from 1% to 10% of the database size. It is obvious 

that MAFIA outperforms LC-MMIBA when the values of Min-Sup ranged from 1% to 7.5%. In 

addition, there is unexpected execution time for LC-MMIBA when the Min-Sup value equals 6%. 

Indeed, one of the ten executions of LC-MMIBA for Min-Sup=6% was considerably higher than the 

rest nine executions which affects the value of the presented average, i.e., 50:20. PL/SQL-MMIBA 

outperforms MAFIA and LC-MMIBA in all aspects of the Min-Sup and its execution time has regular 

decrement according to the increased value of Min-Sup.   

 

Table 1 

Execution time of MAFIA, Loosely-Coupled-MMIBA, and PL/SQL-MMIBA using Chess DB with 

various MIN-Sup values. 
 MIN-SUP VALUES 

Alg. 1% 2% 2.5% 3% 4% 5% 6% 7% 7.5% 8% 9% 10% 

MAFIA 78:02 60:55 50:00 40:57 40:21 40:00 40:00 40:00 40:00 30:45 30:42 30:42 

LC-

MMIBA 

100:01 90:03 90:00 90:00 60:23 50:15 50:20 40:27 40:02 30:34 30:02 20:55 

PL/SQL-

MMIBA 

64:33 50:55 47:58 40:30 40:07 40:00 30:25 20:18 20:12 20:06 20:00 10:50 

 

Table (2) presents the execution times of the MAFIA, LC-MMIBA and PL/SQL-MMIBA using 

Mushroom DB and different values of Min-Sup ranged from 1% to 10% of the database size. MAFIA 

does better than LC-MMIBA when the values of Min-Sup ranged from 1% to 4%. The execution time 

of MAFIA for many values of Min-Sup was not changed, for example consider the execution time when 

Min-Sup values are 7.5%, 8%, and 9%.  This case can be observed for LC-MMIBA for some values of 

Min-Sup. PL/SQL-MMIBA outperforms MAFIA and LC-MMIBA for all values of Min-Sup. As a 



47 

general observation, the nature of the database has imposed a slight and smooth decline for the 

execution time values when the values of Min-Sup increase, this observation can be considered for the 

three algorithms. 

 

Table 2 

Execution time of MAFIA, Loosely-Coupled-MMIBA, and PL/SQL-MMIBA using Mushroom 

DB with various MIN-Sup values. 
 MIN-SUP VALUES 

Alg. 1% 2% 2.5% 3% 4% 5% 6% 7% 7.5% 8% 9% 10% 

MAFIA 100:02 100:05 90:00 60:57 60:05 50:13 50:11 50:11 50:00 50:00 50:00 40:42 

LC-

MMIBA 

110:15 110:11 110:00 90:00 70:01 40:43 40:30 40:27 30:46 30:37 30:30 30:30 

PL/SQL-

MMIBA 

80:03 80:22 50:47 40:30 40:22 40:00 30:25 20:18 20:12 20:06 20:01 10:50 

 

Table (3) presents the execution times of the MAFIA, LC-MMIBA and PL/SQL-MMIBA using 

Cancer DB and different values of Min-Sup ranged from 1% to 10% of the database size. Cancer DB 

is dense database, which may justify the outperformance of LC-MMIBA and PL/SQL-MMIBA over 

the MAFIA algorithm.  One can see that a considerable difference in the amount execution time between 

MMIBA in its two implementations from one side and MAFIA from another side.  

 

Table 3 

Execution time of MAFIA, Loosely-Coupled-MMIBA, PL/SQL-MMIBA using Cancer Cells DB 

with various MIN-Sup values. 

 MIN-SUP VALUES 

Alg. 1% 2% 2.5% 3% 4% 5% 6% 7% 7.5% 8% 9% 10% 

MAFIA 170:1

3 

160:0

9 

150:0

0 

130:4

4 

130:1

3 

120:1

1 

110:2

1 

100:0

3 

90:2

3 

90:1

5 

90:1

0 

90:1

0 

LC-

MMIBA 

170:0

1 

150:1

3 

140:1

0 

130:0

9 

120:0

0 

110:0

0 

100:0

3 

80:01 80:0

1 

70:2

5 

60:5

0 

60:0

0 

PL/SQL

-

MMIBA 

150:3

8 

150:0

2 

130:2

1 

110:0

0 

110:0

0 

90:17 70:47 70:00 70:0

0 

60:2

5 

50:0

5 

40:1

3 

 

Tables (4) and (5) show the results using Census and Dense Census DB, they are dense database, 

but the latter is very dense in comparison with the former one. Some fields of the tables contain '*' 

which indicates an "insufficient memory space" error. These cases appeared in MAFIA and LC-

MMIBA implementation. This problem did not emerge with PL/SQL-MMIBA depending on Census 

and Dense Census DBs.  

 

Table 4 

Execution time of MAFIA, Loosely-Coupled-MMIBA, and PL/SQL-MMIBA using Census DB 

with various MIN-Sup values. 

 MIN-SUP VALUES 

Alg. 1% 2% 2.5% 3% 4% 5% 6% 7% 7.5% 8% 9% 10% 

MAFIA * 220:2

4 

200:0

0 

190:3

7 

190:1

3 

190:0

0 

160:1

2 

140:0

0 

110:1

5 

110:0

0 

110:0

0 

100:3

9 

LC-

MMIBA 

260:0

3 

210:5

0 

180:0

3 

180:0

2 

170:0

5 

160:4

5 

120:4

5 

100:3

2 

90:09 90:35 80:03 70:30 

PL/SQL

-

MMIBA 

270:1

7 

190:5

5 

170:0

0 

180:0

2 

170:2

0 

150:0

4 

100:2

0 

100:0

0 

80:03 70:13 70:00 60:14 

 

Table 5 



48 

Memory utilization of MAFIA, Loosely-Coupled-MMIBA, and PL/SQL-MMIBA using Dense 

Census DB with various MIN-Sup values. 

7. Conclusions 

This research presents a new implementation of MMIBA using Oracle 11g PL\SQL. The aim of this 

implementation is to combine the mining system with the data to be mined. This approach maintains 

scalability to large DBs and data integrity with DBMS.  In contrast with traditional mining approaches 

which use flat files, depend on limited facilities of programming languages, make extensive use of main 

memory and I/O traffics, embedded miner in DBMS can treat dataset larger than main memory. In 

addition, it avoids I/O traffics because all DBS, tables, programming language and other structures are 

in one environment (Oracle DBMS). This approach overcomes the loosely-coupled implementation in 

considerable amount of execution time and memory consumption. The proposed system was tested 

using many real and synthetic databases with wide range of properties including size, number of items, 

database sparseness or its density. Many values for minimum support and conflict were used in these 

tests to prove the robustness of the designed system. 

ORACLE DBMS is preferred to implement the maximal itemsets embedded miner since it has the 

many privileged features listed previously. According to the implementation of MMIBA algorithm, 

several new features have made a difference in implementation effort and time. Such features provided 

in Oracle 11g PL/SQL don’t exist in other programming languages. For example ORACLE's regular 

expression support comprised five functions (REGEXP_LIKE, REGEXP_SUBSTR, 

REGEXP_INSTR, REGEXP_REPLACE and REGEXP_COUNT). In addition, the availability of 

suitable data type for data mining such as CLOB to hold k-itemsets, plays important roles in supporting 

the efficiency of the proposed miner. We believe that such facilities in DBMSs make big difference in 

term of efficiency scalability, data integrity, execution time, memory consuming and security. 

The practical significance of obtained results is that the implementation of the miners as stored 

procedures with the data to be mined produced significant results such as the scalability, robust memory 

management, and efficient utilization of computation resources which leads to increasing the 

throughputs. Such implementation is associated with correct selection of an algorithm and DBMS. 

Prospects for further research are to study the ability of implementing more algorithms in different data 

mining tasks.  
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