
Towards a Parametric Ontology Modularization
Framework Based on Graph Transformation

Mathieu d’Aquin1, Paul Doran2, Enrico Motta1, and Valentina Tamma2

1 Knowledge Media Institute (KMi), The Open University, Milton Keynes, UK
m.daquin@open.ac.uk

2 Department of Computer Science, University of Liverpool , UK
pdoran@csc.liv.ac.uk

Abstract. Several tools and techniques have been proposed recently
for extracting modules from ontologies. Being focused on some particu-
lar application scenario, modularization tools generally rely on their own
definitions and intuitions about modularity. In this paper, it is proposed
that these different techniques be expressed under a common framework.
As most of the existing approaches rely on the traversal of the graph un-
derlying the ontology to harvest relevant entities and axioms, the frame-
work chosen is based on graph transformation. An abstract model for
representing ontologies as attributed graphs is described, along with the
reformulation of existing module extraction techniques as graph trans-
formation rules. The ultimate goal of this work is to build a parametric
modularization tool, enabling application developers to easily compare,
apply and combine different approaches for module extraction, or even
create entirely new techniques.
Keywords: ontology module extraction, graph transformation, para-
metric modularization

1 Introduction

Recently, the idea of modularization has gained important attention from the
Semantic Web community, as tools and methods for developing and managing
large ontologies are more and more required. This notion of modularization, or
modularity, comes from software engineering where it relates to the design of
software made of well defined components that can be managed and reused in-
dependently. However, as the definition for a good software module is already
vague [1], there is no clear agreement on the criteria for decomposing an ontol-
ogy into modules. Many different approaches have been proposed, in particular
for extracting significant modules from existing, and potentially large scale on-
tologies (see e.g. [2–6]). As shown in [7], these techniques rely on their own
assumption about modularity, based on the particular application scenario they
are focusing on (reasoning, visualization, evolution, ontology reuse, etc.) This
heterogeneity of approaches, aims, and implementations hampers the compari-
son and reuse of existing tools. A framework is required to facilitate the selection
and combination of the appropriate techniques for particular application scenar-
ios.



While they are presented and implemented in different ways, resulting in
different modules, techniques for ontology module extraction are generally based
on similar principles: they rely on the traversal of the graph structure underlying
the ontology to gather entities and axioms considered as relevant for the module.
Each technique relies on its own assumptions, its own rules, about which relations
should be traversed and which entities and axioms should be included. Based
on this observation, it is believed that a graph transformation model [8] can
be used as a basis for a common framework for ontology module extraction. In
such a framework, a modularization technique would be expressed as a set of
transformation rules, applied upon a graph representation of the source ontology.
The interest in designing this framework is twofold:

– Providing a common, well founded comparison framework for ontology mod-
ularization techniques helps in better understanding the intuitions on which
they are based, their relative strengths and limitations, as well as the situa-
tions in which they are relevant or not.

– On the basis of this framework, a “parametric modularization tool” can be
built, in which different approaches can be exploited, combined and even
created by the user, to obtain the modularization that matches the require-
ments of his application. The parameters in that case relate to the set of
graph transformation rules, that can be visualized and edited in a simple,
“graphical” way.

The proposed framework is based on the structural representation of ontolo-
gies in the form of graphs. Another interesting outcome of this work is that it
provides a basis for studying the limitations of the considered structural (syn-
tactic) techniques in taking into account the underlying semantics of ontologies.
In particular, we expect difficulties in the integration of approaches relying on
reasoning (like [4] and [5]).

In this paper, we provide the initial step towards such a framework. Section 2
presents a brief overview of ontology module extraction. Section 3 investigates a
model for representing ontologies as graphs and extraction operations as trans-
formation rules. The intention is to show the feasibility and the interest of such
an approach by reformulating several existing module extraction techniques as
graph transformation rules. This is done in Section 4. This leads to a discus-
sion in Section 5 on the implementation of a tool for parametric modularization
based on the framework presented in this paper. Finally, Section 6 presents the
conclusions and future work.

2 Ontology Module Extraction

This paper only considers techniques for extracting one ontology module from an
existing ontology, what we call ontology module extraction techniques. Descrip-
tions of other types of modularization techniques, including ontology partitioning
and query based view extraction can be found in [7] and [3].



An ontology is defined as a set of axioms (subclass, equivalence, disjointness
relations, etc.) The vocabulary of an ontology O, also called its signature Sig(O),
is the set of entity names that are employed in the axioms of O.

The task of module extraction consists in reducing an ontology O to the
sub-part, the module, that covers a particular sub-vocabulary. It has been called
segmentation in [3] and traversal view extraction in [2]. More precisely, given an
ontology O and a set SV ⊆ Sig(O) of terms from the ontology, a module ex-
traction mechanism returns a module MSV , supposed to be the relevant part of
O that covers the sub-vocabulary SV (Sig(MSV ) ⊇ SV ). Techniques for mod-
ule extraction often rely on the so-called traversal approach: starting from the
elements of the input sub-vocabulary, relations in the ontology are recursively
“traversed” to gather related elements to be included in the module. The rela-
tions between these entities are also included to build a self-contained ontology
module, taking the form of an ontology (i.e. a set of axioms).

Several tools implementing more-or-less sophisticated techniques have been
recently proposed, generally focusing on a particular use-case for modularization.
For instance, in [6] Doran et al discuss a module extraction approach dedicated
to ontology reuse, and [2] is a module extraction tool directly integrated in
an ontology development environment (Protégé), where the extracted module
is integrated into the ontology currently being edited. Other approaches are
involved in specific application scenarios like the selection of relevant knowledge
components from online ontologies [4]. Finally, modularization is often viewed
as a way to improve the scalability of reasoning mechanisms when dealing with
large ontologies. Corresponding techniques have been developed for example
in [3] and [5].

All these techniques are detailed in Section 4, where they are reformulated
within our common, general framework.

3 A Graph Transformation Model for Modularization

The techniques briefly mentioned in the previous section are intended to be used
in different application scenarios. As such, they rely on different intuitions about
ontology modularity and, therefore, generally give different results [7]. However,
these techniques are all based on the same principles: starting from a sub-set of
the named entities of the original ontologies, they traverse the graph underlying
the ontology to harvest relevant entities to be included. In this section, we build
a graph transformation model, composed of a graph model for ontologies and
a rule model for extraction, in order to provide a common framework in which
these techniques can be reformulated.

3.1 Representing Ontologies as Attributed Graphs

We chose to rely on directed, attributed graphs, as it is a powerful enough
model to represent ontologies written in RDF-S, OWL, or DAML+OIL. The



underlying RDF graph3 model of these formalisms does not contain the features
required by the framework presented. In addition, attributed graphs are the
model implemented in the AGG library4 for graph transformation, therefore
providing an adequate basis for implementation. Below, we employ a simplified
definition for attributed graphs. Details about attributed graphs, their definition
and transformation, can be found for example in [8, 9].

Attributed graphs. An attributed graph G is a pair (NG, EG), where NG is
a set of attributed nodes and EG is a set of attributed edges. An attributed node
n = 〈Tn, AVn〉 has a type Tn and a set of attribute values AVn. An attributed
edge e = 〈Te, AVe, Oe, De〉 has a type Te, a set of attribute values AVe, an origin
node Oe and a destination node De. An attribute value is a pair (a, v) associating
a value v to an attribute a.

Ontologies as attributed graphs. Ontology representation languages are
mostly based on the RDF model, that is itself based on graphs. In that sense, rep-
resenting ontologies as attributed graphs is quite straightforward. We consider
four types of nodes: Class, Property, Individual and Literals. Edge types cor-
respond to properties used to relate different entities. For example, subClassOf
is a type of edge that can be used to link nodes of the type Class.

In the case of a named entity (i.e. the entity is associated to an identifier, a
URI), this name is used as a value for the attribute name in the corresponding
node. For example, if an ontology contains a class C, it would be represented as
a node of the type Class, with the attribute value name=C.

In the case of OWL or DAML+OIL, classes (and to some extent properties)
can be represented as expressions, using language constructs and other classes
or properties. The employed construct is represented in the class node as a
value for an attribute named const and special edges are employed to link
the corresponding node to the nodes of other entities used in its definition. For
example, we use op1 and op2 for the operands of a union (AtB) or an intersection
(A u B), as well as p and someV aluesFrom for an existential restriction (∃p.C).

A simple example. Following the principles described above, Figure 1
shows the representation as an attributed graph of the expression
PersonWithDogAndCat ≡ Person u ∃hasPet.Dog u ∃hasPet.Cat5

3.2 Graph Transformation Rules for Ontology Modularization

Most of the module extraction techniques are based, explicitly or implicitly,
on the idea of traversing the graph underlying the source ontology to collect
entities or axioms to be included in the module. The main difference between
3 http://www.w3.org/TR/rdf-mt/
4 http://tfs.cs.tu-berlin.de/agg/index.html
5 in the description logic syntax. Taken from http://owl.man.ac.uk/tutorial/

twopets.rdf



N1:Class (name=PersonWithDogAndCat)

N2:Class (const=u) N3:Class (name=Person)

N4:Class (const=u) N5:Class (const=∃)

N6:Class (const=∃) N7:Class (name=Dog)

N9:Class (name=Cat) N8:Property (name=hasPet)

≡

op2

op2

someV aluesFrom

op1

op1

p
someV aluesFrom

p

Fig. 1. Attributed graph representation of the expression PersonWithDogAndCat ≡
Person u ∃hasPet.Dog u ∃hasPet.Cat

these techniques is the rules they apply to decide wether or not an element has
to be included in the module. Therefore, based on the attributed graph model
for ontologies, we believe that module extraction techniques can be formulated
as graph transformation rules.

Graph transformation rules on attributed graphs. An attributed graph
transformation rule R = 〈LHSR, RHSR,MapR〉 is composed of an attributed
graph LHSR representing the left hand side of the rule (the premise), of an
attributed graph RHSR representing the right hand side of the rule (the trans-
formation), and of a set of mappings between LHSR and RHSR. Mappings
are either pairs of nodes (n1, n2) or pairs of edges (e1, e2), indicating a corre-
spondence between these two elements in two different graphs. For the sake of
simplicity, we consider nodes having the same label and edges of the same type
between corresponding pairs of nodes to be implicitly mapped.

Transformation rules for module extraction. The role of rules in the case
of module extraction is to decide which entities and axioms (relations) have to be
included in the extracted module. To represent included elements, a particular
boolean attribute is used, inc, that can be applied to both nodes and edges.
The premiss of a modularization rule generally contains one or more elements
having inc=true. The right hand side of such a rule generally contains additional
elements marked as included (inc=true).6

Module extraction techniques take as an input a sub-vocabulary of the on-
tology. This sub-vocabulary represents the starting point for the application of
the transformation rules. The first step of the process is therefore to mark the
nodes corresponding to the elements of this sub-vocabulary as included. Then,
6 To simplify the notation, we will consider the presence of the inc attribute as rep-

resenting inc=true. In case there is no indication about inc, it implicitly means
inc=false.



the transformation rules corresponding to the modularization technique are ap-
plied (in random order7) until no transformation is applicable. Applying a rule
corresponds to matching the left hand side of the rule into a subgraph of the
graph representing the source ontology (i.e. finding an isomorphic subgraph) and
replacing this subgraph by the one in the right hand side of the rule, taking into
account the mappings. Existing graph transformation engines (such as AGG)
implement this process and can be used for this purpose.

A simple example: the extraction of a subtree of the class hirarchy.
A very simple modularization technique consists in extracting a sub-tree of the
class hierarchy of the ontology, specifying (as the input sub-vocabulary) the
root class of this sub-tree. The following transformation rule implements this
technique:

Premiss Transformation

C1:Class (inc)

C2:Class

v

C1:Class (inc)

C2:Class (inc)

v (inc)

Once the input root class is marked as included, the rule is applied recursively
until the leaves of the hierarchy are reached, and marked as included. Therefore,
at the end of the transformation process, all the entities (nodes) and axioms
(edges) representing the considered subtree of the ontology class hierarchy are
included in the module.

4 Implementing Modularization Techniques as Graph
Transformation Rules

Our goal is to provide a common framework for module extraction techniques in
which a common mechanism, graph transformation, would be used and paramet-
rized by specialized transformation rules. In order to show the feasibility and the
relevance of such an approach, we detail hereafter the reformulation of several
techniques (from very simple ones, to more sophisticated) in our graph trans-
formation model for ontologies. Note that, in addition to providing the basis
for a tool for parametric, customisable module extraction, this also gives the
opportunity to better understand the intuitions, or assumptions, on which the
considered techniques rely, and to compare them on a common basis.

4.1 Galen Segmentation Service

The technique described in [3] has been developed specifically for the Galen on-
tology, but the core of the technique is generic and can be applied to any ontology.
7 This assumes that the rules are commutative.



It takes one or several classes of the ontology as an input, and applies the basic
idea that anything that participates (even indirectly) to the description (and so
the definition) of an included class has to be included. Therefore the (simpli-
fied) reformulation of this technique in our graph transformation framework is
straightforward:

Premiss Transformation
N2:∗

N1: ∗ (inc)

∗

N2: ∗ (inc)

N1: ∗ (inc)

∗ (inc)

A node or an edge marked with the type ∗ can be matched with a node or an
edge of any possible type in the graph model. Note that, according to this rule,
all the super-classes of included classes are included, as well as any definition
associated to included classes or properties. Individuals are not included.

4.2 For Knowledge Reuse

The technique described in [6] is focused on ontology module extraction for aiding
an Ontology Engineer in reusing an ontology module. It takes a single class as
input and extracts a module about this class. This approach is independent
of the language in which the ontology is expressed. The traversal carried out
for extraction is done conditionally, with the conditions changing to suit the
language that the ontology is expressed in. The approach it relies on is that, in
most cases, elements that (directly or indirectly) make reference to the initial
class should be included. In that sense, as it can be seen in the following rule, this
technique can be considered as the inverse of the Galen segmentation service.

Premiss Transformation

N2: ∗ (inc)

N1:∗

∗

N2: ∗ (inc)

N1: ∗ (inc)

∗ (inc)

It is worth noticing that, using this technique, all the sub-classes of the input
classes, as well as any entity using this class or other included entities in its
definition, will be included.

The above rule is very simple and shows that this module extraction tech-
nique can be easily represented using graph transformation rules. However, it
does not completely translate the corresponding technique, as [6] indicates: the
classes that are disjoint with the original input class should not be included.

This can easily be handled using the notion of negative application condi-
tion [10], that is an extension of the basic attributed graph transformation



model. Basically, a negative application condition is a graph associated to a
rule that, if isomorphic to the sub-graph matched by the premiss, prevent the
rule from being applied. In other terms, a transformation rule can be seen as a
tuple R = 〈NACR, LHSR, RHSR,MapR〉 meaning that, if there exists a sub-
graph SG of the source graph such that SG is isomorphic to LHRR and SG is
not isomorphic to NACR, then SG is replaced by RHSR in the source graph,
taking into account the mappings in MapR.

In the case of the last technique, adding another boolean attribute input
for identifying the input class8, the Negative Application Condition NAC of the
rule would be:

NAC
N2:Class (inc, input)

N1:Class

disjointWith

The NAC in that case acts as the expression of an exception to the rule.

4.3 For Knowledge Selection

[4] describes a module extraction tool integrated in a larger process, called knowl-
edge selection, that aims at retrieving the relevant components from online on-
tologies, to be used in webpage annotation. The principle here is, like the Galen
segmentation service, to include all the elements that participate to the defini-
tion of the included entities. However, compared to the previously mentioned
technique, the one of [4] has two main particularities: First it makes use of in-
ferences during the modularization process, meaning that the relations that are
considered can be inferred relations as well as declared ones. Second, in order to
reduce the size of the module (in particular, to facilitate its visualization), not
all the super-classes of the included classes are included. The technique actually
takes shortcuts in the class hierarchy by including only the named classes that
are the most specific common super-classes of included classes.

Concerning the use of inferences during the modularization process, instead
of taking as a source graph the representation of the elements declared in the
ontology, we use the translation of the inferred elements. In particular, in that
case, a subClassOf edge in the source graph no longer means that one class is
directly declared to be a sub-class of the other, but also that it can be inferred,
for example because of the transitivity of the sub-class relation. It is worth
mentioning that an incomplete reasoning mechanism could be implemented as
part of the graph transformation model, where inference rules on the ontology
language would be translated as graph transformation rules. For example, the
inferences linked to the fact that the subClassOf relation is transitive can be

8 This attribute can also be specified for other techniques, even if not used.



represented by a rule generating new subClassOf relations in the graph, on
the basis of existing ones. However, this would represent only a partial solution
since this implementation of ontological reasoning would be very incomplete and
inefficient compared to existing, tableau based reasoners.

Using the inferred graph, the first rule of the technique is the same as the
one of the Galen segmentation service, except that it excludes named classes,
which are treated separately.

Premiss NAC Transformation
N2:∗

N1: ∗ (inc)

∗

N2:Class (name!=””)

N1: ∗ (inc)

∗

N2: ∗ (inc)

N1: ∗ (inc)

∗ (inc)

As explained above, concerning named classes, only the most specific common
super-classes of included classes are included in this technique. The most specific
super-class C of two classes A and B is a super-class of both A and B such that
there is not any other super-class of A and B that is a sub-class of C. This can
easily be represented by a combination of the (positive) premiss of the rule and
of a negative application condition:

Premiss NAC Transformation

N3:Class

N1:Class (inc)

N2:Class (inc)

v

N3:Class

N4:Class

N1:Class (inc) N2:Class (inc)

v

v
N3:Class (inc)

N1:Class (inc)

N2:Class (inc)

v (inc)

Note that these two rules make use of the fact that the implicit, indirect
sub-class relations are made explicit. Comparing the rules, and considering that
the ones corresponding to the technique in [4] are more “selective” than the one
of Galen, it seems obvious that it will result in smaller modules.

4.4 Prompt Traversal View Extraction

Prompt is a tool including several ontology manipulation and comparison fea-
tures that are integrated as a plugin of the Protégé ontology editor. In particular,
it includes a feature called traversal view extraction, which can be seen as an on-
tology module extraction technique [2]. With this tool, modules extracted from
external ontologies are integrated into the ontology currently being edited.

Starting from one class of the considered ontology, Prompt traverses the
relations of this class recursively to include related entities. In that sense, the
principle is similar to the one applied in [3] and [4]. However, there are two



main reasons that distinguish Prompt from these techniques. First, while [3, 4]
intend to provide an automatic method, Prompt is designed as an interactive
tool, allowing the user to incrementally build ontology modules by extending the
currently extracted one. Second, Prompt allows the user to select the relations
to be traversed and to associate to each of them a level of recursion, at which
the algorithm should stop “traversing” the relation.

Whilst this first particularity of Prompt, its interactivity, affects only the
overall system; the second one introduces a certain level of sophistication in
the transformation rules required to implement it. In order to identify selected
properties to be traversed, an attribute selected is associated to the node they
correspond to. Another attribute is used to represent the maximum recursion
level for each of the selected properties. Two rules are considered: one for the
first step of the traversal, and one for the following steps.

Premiss Transformation
N2:∗

N1: ∗ (inc)

P:Propety (selected,maxrecur=x)

P

N2: ∗ (inc)

N1: ∗ (inc)

P:Propety (selected,maxrecur=x)

P (inc, recur=x−1)

Premiss Transformation
N2:∗

N1: ∗ (inc)

N3: ∗ (inc)

P

P (inc, recur= x (x!=0))

N2: ∗ (inc)

N1: ∗ (inc)

N3: ∗ (inc)

P (inc, recur=x−1)

P (inc, recur= x)

As we can see, this corresponds to a specialization of the Galen segmentation
service rule, introducing a limitation. Indeed, the Prompt rule applied with all
the properties selected and a level of recursion infinite would give the same result
as Galen. Otherwise, the result would be smaller.

4.5 Locality Based Module Extraction

[5] defines a module as a minimal, conservative extension [11] of the original
ontology with respect to the considered sub-vocabulary. Being a conservative
extension means that the meaning of the terms of the input sub-vocabulary
is completely captured by the module, as it is in the source ontology. In [5],
Cuenca-Grau et al. also show that computing a minimal module considering the



definition they provide is undecidable, and describe two different approximations
based on the notion of locality. The first method makes use of a reasoner to check
the semantic locality of the axioms to be included. This procedure is decidable
but, due to the use of a reasoning mechanism, it is also complex. The second
one syntactically tests the locality of axioms and can be realized in polynomial
time.

This technique clearly shows the limit of our framework based on graph
transformation. Indeed, since the first method relies on the use of a reasoner
to dynamically realise complex inferences for testing semantic locality, it could
not be implemented as graph transformation rules. The second method is based
on the syntactic inspection of the axioms of the ontology, looking in particular
at the structure of the entities linked by these axioms. Therefore, it should be
possible to design a set of transformation rules implementing the test of syntactic
locality, and so, the extraction of a module based on this notion. However, the
number of rules that are required is too numerous to make this approach really
practical.

5 Towards a Parametric Modularization Tool

In the previous section, a number of module extraction techniques were refor-
mulated using a common mechanism, graph transformation, parametrized by a
specific set of transformation rules. This has shown that the approach is feasible
for most of the existing techniques.

The ultimate goal of this work is to build a tool in which the user could
select the appropriate technique for his application, and even reuse, combine
or create rules from different approaches to build a customised modularization
technique. Figure 2 gives an overview of the architecture of such a tool. The
components to implement would be the ontology-to-graph and graph-to-ontology
converters, in accordance with the model described in Section 3. As already
mentioned, we can rely on existing tools and libraries of graph transformation
engines. The ontology-to-graph and graph-to-ontology converters will be able to
take an ontology file as input or interface with a triple store, such as Jena9.

The techniques described in the previous section provide an initial pool of
rules that can be reused and combined. It could, for example, be possible to
add the recursion level of Prompt [2] to the techniques described in [4] or [6].
However, a more complete study of the interactions between rules is required, as
some may be incompatible, or may result in the whole ontology being extracted
as a module. In the same line of idea, important efforts are required to provide
support for the editing and creation of rules specifically for module extraction.
Graphical editors and mechanisms for the persistence of module extraction rules
need to be developed.

Also, a natural progression for such a tool would be to allow the user to
interactively build modules. It is unlikely that any one module extraction tech-
nique would extract a module that meets the requirements of the user and their
9 http://jena.sourceforge.net/



particular application. Thus, in the same way as Prompt allows, once an ini-
tial module is created, to refine it by choosing a new starting point. It would
be interesting to build a module interactively, and iteratively, letting the user
choose a different sub-vocabulary and a different set of transformation rules at
each step. In this way, by controlling how the elements of the original ontology
are to be included in the extracted modules, the user could build modules that
match the requirements of their application.

Fig. 2. Overview of the architecture of a parametric modularization tool based on
graph transformation.

6 Conclusion and Future Work

In this paper, we have shown that, even if they are based on different assump-
tions and implementations, most of the ontology module extraction techniques
rely on the same principles and can be reformulated in a common framework
based on graph transformation. By reformulating existing techniques as graph
transformation rules, the feasibility of such a framework has been shown. The
interests of this work are multiple. First, having modularization techniques gath-
ered together in the same format facilitates their comparison and evaluation. It
is simpler for the user to understand them, match them to his requirements, and
apply them. Second, this leads to the development of a parametric modulariza-
tion tool, in which the parameters are the rules to apply for module extraction.
The reformulated techniques provide an initial pool of rules to chose from and
to combine to build the adequate technique in a given application scenario. In
addition, this tool would give the possibility to easily (visually, graphically) build
entirely new modularization techniques by editing, modifying and creating new
module extraction rules, enabling application developers to obtain specialised



modularization techniques, without having to re-implement a new tool or mod-
ify an existing one.

The obvious next step of this work is the implementation of such a tool,
requiring the consideration of a number of different aspects, as described in Sec-
tion 5. Moreover, in order to facilitate the exploitation of this tool, and the
manipulation of modularization techniques as graph transformation rules, this
parametric modularization tool should be integrated within an ontology devel-
opment environment, such as Protégé.

Whilst reformulating the existing techniques into the graph transformation
framework presented in this paper, it became clear that some elements and
features are not easily represented in graph transformation rules. In particular,
when trying to reformulate [5] it appeared that it was practically unfeasible to
represent the test at the basis of this technique, the locality test, within our
model. In order to overcome this limitation, it would be interesting to introduce
externally evaluated predicates for nodes and edges, in addition to attributes.
Such a predicate could be use for example to call an external reasoner to check for
the locality of the considered axioms, and so implement the considered technique
in an hybrid way.

Another interesting direction for future work would be to consider the refor-
mulation of the partioning techniques, such as [12], [13], within the framework
presented in this paper. Partitioning techniques are more complicated in the
sense that they produce several modules, and are based on more complex, less
localized computations.

A full comparison between the set of rules needed for each reformulated
technique will be completed. This will, hopefully, provide a solid theoretical
comparison that would allow the user to better select which approach best fits
their needs.

Also, there is the need to consider scalability issues. With the framework
presented in this paper it is assumed that the whole ontology will be transformed
into a graph, which does not make sense in the cases where modularization is
used as a way to improve the performance of ontology tools, by considering only
a part of the original ontology. One possible solution to this scalability problem
would be to build the graph on the fly, as transformation rules are applied, rather
than building the whole graph in the beginning and then doing the extraction.

References

1. Parnas, D.: On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM 15 (1972)

2. Noy, N., Musen, M.: Specifying Ontology Views by Traversal. In: Proc. of the
International Semantic Web Conference (ISWC). (2004)

3. Seidenberg, J., Rector, A.: Web Ontology Segmentation: Analysis, Classification
and Use. In: Proc. of the World Wide Web Conference (WWW). (2006)

4. d’Aquin, M., Sabou, M., Motta, E.: Modularization: a Key for the Dynamic Selec-
tion of Relevant Knowledge Components. In: Proc. of the ISWC 2006 Workshop
on Modular Ontologies. (2006)



5. Cuenca-Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
Extracting modules from ontologies. In: Proc. of the 16th International World
Wide Web Conference (WWW 2007), pages 717-727, Banff, AB, Canada, May 812
2007. ACM Press. (2007)

6. Doran, P., Tamma, V., Iannone, L.: Ontology module extraction for ontology reuse:
An ontology engineering perspective. In: Proceedings of the 2007 ACM CIKM
International Conference on Information and Knowledge Management. (2007)

7. d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.: Ontology Modulariza-
tion for Knowledge Selection: Experiments and Evaluations. In: 18th International
Conference on Database and Expert Systems Applications - DEXA’07. (2007)

8. Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed
Graph Transformation. In: 2nd International Conference on Graph Transforma-
tion. (2004)

9. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Applications of Graph Transformations with Industrial
Relevance. Springer (2004)

10. Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative Application
Conditions. Fundamenta Informaticae 26 (1996) 287–313

11. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In Veloso, M.M., ed.: IJCAI. (2007) 453–458

12. Cuenca-Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic partitioning
of owl ontologies using e-connections. In: Proceedings of the 2005 International
Workshop on Description Logics (DL-2005). (2005)

13. Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hier-
archies. In: Proceedings of the 3rd International Semantic Web Conference. (2004)


