
Alignment-based modules for encapsulating ontologies?

Jérôme Euzenat1, Antoine Zimmermann1, and Fred Freitas2

1 INRIA Rhône-Alpes, Montbonnot, France
2 UFPE, Recife, Brazil

Abstract. Ontology engineering on the web requires a well-defined ontology
module system that allows sharing knowledge. This involves declaring modules
that expose their content through an interface which hides the way concepts are
modeled. We provide a straightforward syntax for such modules which is mainly
based on ontology alignments. We show how to adapt a generic semantics of
alignments so that it accounts for the hiding of non-exported elements, but honor
the semantics of the encapsulated ontologies. The generality of this framework
allows modules to be reused within different contexts built upon various logical
formalisms.

1 Introduction

Reusing knowledge was at the origin of introducing ontologies in the Knowledge shar-
ing project. In addition, sharing is one of the main feature of the web. However, in the
current state of the semantic web, reuse is difficult to achieve with available tools. In
particular, the recommended ontology language for the semantic web, OWL, features
an owl:import primitive that fails to provide much control on what is imported. From
an ontology engineering point of view, this is a major drawback of the definition of
ontologies in the semantic web.

Our goal is to design a module system for ontologies that brings to ontology engi-
neers typical properties of software engineering modules. Moreover, we want it to be
general enough to be adapted to any logical formalism. Software engineering modules
are based on the separation between the interface and the implementation of a module.
The interface describes the entities of the module that can be used outside of the mod-
ule while the implementation is not available outside but through this interface. This
helps controlling what is provided by a module. The properties typically expected from
a module system are:

Encapsulation enforces module independence by “hiding” implementation details to
importing modules. Module specifications are described as an interface which is
what can be called by importing modules. So module implementation can evolve
without affecting the importing module specification and modules are replaceable
by others offering the same interface. In terms of ontologies, the implementation
corresponds to the set of axioms used to define it.

? Jérôme Euzenat and Antoine Zimmermann have been partly supported by the European NeOn
integrated project (IST-2004-507482).



Separate development. Since what imported modules provide is well-defined, soft-
ware developers can rely on this interface and develop their own part. This would
be useful as well for ontology development in which one can concentrate on the
development of part of the model while the part it is relying on are still underspec-
ified.

Separate compilation decreases development time by avoiding recompiling huge ap-
plications at every change. This has has been ackled by [15].

Reusability. Because module specifications are descriptions of a coherent and explicit
set of primitives that a module is meant to provide, a module can be reused in
another similar context.

Separate execution allows to be more efficient by executing local code first. In ontol-
ogy engineering, this is especially useful for inference system [9].

This paper describes a framework for making modules that can offer most of the
features of software engineering modules. Other features like modularization of existing
ontologies or optimizing particular properties (e.g., inference needs) are not considered
here. As far as designing modules is concerned two approaches can be considered:

Composing (M ⇐ M ′
1 ⊗ . . .M ′

n) is the favorite approach in software engineering
where a software is built by assembling modules;

Partitioning (O ⇒ O′1 ⊕ . . . O′n) is the back-up strategy when one starts with some
monolithic software (or ontology) and attempts at transforming it into a modular
software. Depending on the reasons to do this (allowing separate inference or gen-
erating modules for reuse), the results may be different.

Some other approaches aim at identifying the subparts of ontologies required for inter-
preting some particular piece of knowledge [4]. These techniques do satisfy a momen-
tary need and are not really relevant to ontology engineering preoccupation in which
modules are defined for being reused.

We adopt here an ontology engineering approach to modules: we do concentrate
on how to specify reusable modules rather than how to partition legacy ontologies. Of
course, for this to work correctly, the perimeter of each module must be precisely de-
fined and interfaces between modules be precisely designed. This requires to be able to
express what is visible or hidden, thanks to the definition of interfaces. Moreover, in or-
der to reuse modules designed independently, the module infrastructure has to provide
means of relating them in a consistent way. This is achieved by specifying—or referring
to existing—ontology alignments in the modules. This way, the module framework can
take advantage of ontology alignment technologies, in particular alignment composi-
tion. These modules can replace ontologies wherever they are used. For that purpose,
we must define their semantics, i.e., what are the consequences of an ontology module.
We propose a syntax for specifying explicit modules that can be reused and provide the
hiding properties that have been considered and that allows relating modules with align-
ments. We give a thorough overview of existing module semantics and analyzes their
appropriateness with regard to the desired features. We show that our module frame-
work can be adapted to most of these logical formalisms.

We will first motivate this work with a concrete example in Sect. 2. We will then
provide a syntax (Sect. 3) and describe a generic semantics (Sect. 4) that can be adapted



Package

Stay
Trip

Country
Excursion

Flight

City
Train

Town
BoatTrip

Flug FlightVol

Country

Region

City
LH BAAF Geo

Plane Rail Boat

Accomodation
Transportation

Animation

TravelAgent

Fig. 1. Dependencies between classes and properties defined in the travel agent example. Circles
represent modules that contains entities , simple arrows represent correspondences between en-
tities and double arrows mean that target entities are components of the source entity (and also
denote the import of a module by another one).

to most of the existing module languages. Last, in Sect. 5, we discuss the advantage of
using such or such formal semantics with regard to the desiderata we provided here,
and finally compare this work to other work on the same topic, that have been recently
published.

2 Motivating example

Imagine an integrating application like a travel agent that sells packages including travel
tickets and hotel stays, among other products and services. It is necessary that this agent
be able to use information provided by other sources. For that purposes, it will take
advantage of other modular ontologies. For instance, this TravelAgent module will pro-
vide packages including trip, accommodation and excursion and will rely on other more
qualified sources to define these facilities that it sells. These imported modules will pro-
vide the necessary information about Transportation, Accommodation and Animation.
This is displayed in Fig. 1.

Defining the module’s imports: A module like TravelAgent is an aggregating module
that generates new services by aggregating previously available information. Transportation

is a module that provides a homogeneous interface to other heterogeneous ontolo-
gies. For instance, this ontology could rely on several ontologies provided by specific



providers: Plane, Rail, Boat, for transportation means ontologies and Geo for geographic
information. So our module language should allow to express that:

– Module Transportation uses Modules Plane, Rail, Boat and Geo.

In fact, Transportation will only import specific information from the other modules:
destinations and origin properties of the Flight class but not planeNumber ; BoatTrip
from the Boat module, but not Cruise. For that matter, the language has to express:

– Module Transportation imports Class Flight and Properties originCity , destinationCity ,
company , price , tax and date from Module Plane.

– Module Transportation imports Class Train and Properties startStation , endStation ,
fees and date from Module Rail.

– Module Transportation imports Class BoatTrip and Properties boardingPort , unboardingPort ,
price and date from Module Boat.

– Module Transportation imports Classes City and Country and Property partOf from
Module Geo.

Declaring the module’s content: The goal of the Transportation module is to provide
the Trip class which will describe trips between two cities. It will also provide some
refined classifications of them such as DomesticTrip and InternationalTrip:

– Module Transportation defines Class Trip with Properties from which must be a City , to
which must be a City , price which must be an Integer, date which must be a Date and
means which must be a String.

– Module Transportation defines Class DomesticTrip as a kind of Trip.
– Module Transportation defines Class InternationalTrip as a kind of Trip.
– Module Transportation exports Classes Trip, DomesticTrip, InternationalTrip and Geo:City

and Properties from , to, price , date and means .

Additionally, the Transportation module will provide more information about its
core business, that is, its ontology definition. It will define what is the information that
it describes: i.e., Trip and its subclasses:

– A DomesticTrip is a Trip which starts from the same country as it is going to.
– An InternationalTrip is a Trip which is Not a DomesticTrip.

Aligning different modules: the Transportation ontology will have to provide a way to
map the export interface of the various ontologies into entities used in its body or in its
export interface. This is expressed by correspondences like the following:

– Class Flight in Module Plane is a kind of Trip in Module Transportation such that Property
means is equal to "plane".

– The sum of Properties price and tax of Module Plane corresponds to Property price of
Module Transportation.

– Property originCity of Module Plane corresponds to Property from of Module Transportation.
– Property destinationCity of Module Plane corresponds to Property to of Module Transportation.
– Class Train in Module Rail is a kind of Trip in Module Transportation such that Property

means is equal to "train".



– Class BoatTrip in Module Boat is a kind of Trip in Module Transportation such that
Property means is equal to "boat".

– Property country of Module Transportation corresponds to Property partOf of Module
Geo with a range restricted to Class Country of Module Geo.

Of course, the Plane module itself may be the integration of the ontologies of various
providers (LH, AF, BA). No one would require that ontologies modeling these providers
are semantically compatible: this is why such correspondences are needed. The case of
the Plane module is interesting since it can take advantage of existing available align-
ments (see Fig. 1). Such alignments could exist in an alignment repository, and the
module framework should allow to refer to them. Note that the correspondence involv-
ing Property country is not expressible in OWL so far, because range restrictions only
apply to classes, not properties.

Summarizing our needs: In summary, in this example, we would like to use some
external modules in such a way that:

– What is exported by each module is precisely defined:Transportation exports Trip;
– The importing module can restrict the imported entities that are used: TravelAgent

can import Stay but not Meal from Accommodation for instance; and
– The imported entities can be rewritten by matching the imported entities to internal

forms: a Flight is matched to a Trip.

But by doing so we would like that some semantic consequences apply to modules.
In particular we want that:

– What is true of a Flight in BA is also true of a corresponding Trip in Transportation;
– Whatever consequence of BA that does involve entities not imported in Transportation

is not necessarily a consequence of Transportation.

These intuitions will be made more precise later.
This organisation provides independence between the different modules that partic-

ipate in the module system. The only contract between two modules is that they provide
definition for the elements in their export interface.

In particular, modules do not provide any guarantee on the “implementation” of
these modules, i.e., the axioms that govern the concepts defined inside the module. As
a result, the implementation of a module can be improved without altering the export
interface and thus without preventing the application to work. This is encapsulation.

On the contrary, if the export interface is modified in such a way that the application
will not be able to work, this can be checked without looking at the axioms. This ensures
the separate development property for these modules. For instance, the Flight modules
may integrate new company ontologies without changing its export interface.

This also allows to reuse modules more easily: if a new better module providing Rail

information is available, it can, as soon as it provides the same export interface, replace
the old one without breaking the whole application. The Geo module has typically been
reused from an external source.

These properties require a particular semantics for these modules that differ from
the classical semantics that would result from the transitive closure of imports in OWL



Feature Description Syntactical representation
id Module identifier URI reference

IMPORT INTERFACE
uses List of modules URI references

imported-entities List of ontology entities from im-
ported modules

URI references or keyword ALL

DEFINITIONS
alignments List of alignments URI references or locally defined corre-

spondences
content Entity definitions and axioms either an external ontology identified by

a URL or axioms that can use imported
classes and properties

EXPORT INTERFACE
exported-entities List of entities from either the on-

tology defined in content or from
the imported entities in imports

given by URI references or by key-
words ALL or ALL*

comments Textual description of what the
module is made for

a character string

Table 1. Module features, their meaning and values (the ALL keywords are given here for com-
pleteness purpose and not used in this paper).

(that is the union of all axioms of the transitive closure of imports). In particular, the
consequences of a module can only be formulas made of the concepts and properties
in the interface of modules and as soon as a module does not export the entities that it
imports, they are not visible anymore from importing ontologies.

We provide a concrete syntax for doing this and we define a generic semantics that
encompasses several specific formalisms. We discuss to what extent these formalisms
can satisfy the requirements.

3 Syntax

This section introduces the various features that can be put in a module definition and
proposes a general module definition for ontology language. We will mostly rely on
Description Logics (like OWL) as an ontology language. However, the semantics can
accommodate other languages as we show in Sect. 4.

3.1 Module features

A module contains an ontology definition which can use entities of imported modules
(i.e., classes and properties). So the module syntax proposed here imposes that imported
modules be clearly specified, and only entities from these modules are used, in addition
to locally defined ones. In order to correlate potentially heterogeneous imported mod-
ules, they are related thanks to ontology alignments, that may be defined locally into the



module definition or referred to with a URI reference. Finally, in order to ensure encap-
sulation, the module definition explicitly states which entities are exported, i.e., which
ones are allowed to be used by other importing modules. Additionally, there should be a
textual description of what the exported concepts represent, which should explain what
is guaranteed to stay true throughout the evolution of the module. This allows speci-
fying the behavior of the module while not displaying the internal implementation. In
particular, only the terms given in the export interface need to be showed to external
users. These elements are presented in Table 1.

Of course, the module content (i.e., alignments and ontology) can only refer to im-
ported ontology entities that are part of the import interface. In turn, the import interface
can only refer to entities which are part of the export interface of the imported modules.

Alignments and ontologies can be referred to by a URI reference, which means that
it is possible to reuse published alignments and ontologies independently of a module
definition. In this case an ontology is interpreted without its owl:import features.

The graph of imported modules, i.e., the uses relation, must be acyclic.
We have defined an RDF/XML syntax that follows the same structure. Instead of

using this equation based syntax, it reuses the RDF/XML syntax of OWL and that of
the Alignment format [5].3

3.2 Abstract syntax

In order to define the semantics of the module system we consider an abstract syntax
for the ontology modules that is easier to manipulate.

Definition 1 (Ontology module). An ontology module M = 〈id,M, I, A,O,E〉 is a
sextuple such that:

– id is a URI identifying the module;
– M = (Mi)i∈J is the set of imported modules defined over a set of indices J;
– I = (Ii)i∈J is the import interfaces for M ;
– O is the content ontology, defining local terms and local axioms that may use im-

ported terms;
– A = (Aij)i,j∈J is a set of alignments interconnecting ontologies from M or O,

and
– E is the export interface of M.

A base module encapsulating an ontology will typically be expressed as 〈id, ∅, ∅, ∅, O,E〉.
We must now introduce the other elements. Ontologies can be seen as OWL on-

tologies but, as we will see, the semantics does not need to rely on this assumption.
An alignment is a restriction of the definition of alignment found in [5, 6], in which the
confidence value is always maximal.

Alignments are based on correspondences which relates entities from two ontolo-
gies:

3 An example of the concrete XML syntax can be found at
http://www.inrialpes.fr/exmo/people/zimmer/module.xml.



Definition 2 (Ontology alignment). An ontology alignment between ontologies O1

and O2 is a set of triples 〈e1, e2, r〉 such that:

– e1 ∈ O1 and e2 ∈ O2 are ontology elements (e.g., class, properties, individuals)
from the two ontologies to align;

– r is an alignment relation (taken from a given set R) that is asserted to hold between
e1 and e2 (e.g., subsumption, equivalence, disjunction, etc.).

These triples are called correspondences.

It is clear that any module described with the concrete syntax can be translated in a
module description in the abstract syntax.

4 The semantics of modules

The semantics describes how to interpret modules and what are the semantic conse-
quences of a module. In this section, we do not describe a specific semantics, but rather
we give generic notions that are common to most of module logical formalisms.

Whichever formalism is used, there is a need to differentiate between local inter-
pretation of a module (i.e., interpretation of the ontological content) and global inter-
pretation which takes into account imported modules and alignments. This section first
present the local semantics with very general definition (§4.1). Then, a generic seman-
tics of alignments is proposed (§4.2). Finally, we describe the notions introduced by the
global semantics (§4.3).

4.1 Local semantics

Since many ontology languages can be used to specify the local content of a module, we
will give a very general definition of interpretation and models of an ontology. However,
as in our examples, the ontology language will typically be a Description Logics (e.g.,
OWL-DL), as it is the case in most of existing modular ontology languages (in fact, all
but E-connection [11])

All the modularization formalisms have in common that a local ontology O is char-
acterized by its signature4 S and a set of axioms built over this signature.

To each ontology language is associated a notion of interpretation I which is a
mapping from the elements of a signature to elements of a domain of interpretation ∆,
and a notion of satisfaction |=l which relates interpretations to the axioms they satisfy5.
A model of an ontology O is an interpretation I of the signature of O that satisfies all
of its axioms.

4 The signature of an ontology is the set of syntactic elements (e.g., classes, properties, individ-
uals) used in O.

5 In order to differentiate the interpretations of (non-modular) ontologies and the interpretations
of modules, we use the term “local” when we interpret the ontological (non-modular) content
of a module, thus the indice l in the satisfaction relation |=l.



4.2 Alignment semantics

An alignment connects entities from 2 different ontologies. Interpreting them implies
interrelating both ontology interpretations. In the literature, there are several ways of
expressing correspondences in alignment. They can be plain ontological axioms, bridge
rules, queries, or E-connections.

Nevertheless, all these formalisms can be describe with the definition given in §3.2
with a common “meta-semantics”. Relation symbols r ∈ R appearing in the corre-
spondences are associated to a binary relation r̃, of which definition is specified by the
modular ontology language used.

Definition 3 (Satisfied correspondence). Let c = 〈e1, e2, r〉 be a correspondence in
an alignment between O1 and O2. If I1 and I2 are interpretations of O1 and O2 re-
spectively, then 〈I1, I2〉 is said to satisfy c iff eI1

1 r̃ eI2
2 . This is written I1, I2 |= c.

For instance, consider an alignment language where relation symbolv is associated
to the inclusion of sets, i.e., ṽ is ⊆. In this case, 〈e1, e2,v〉 is satisfied iff eI1

1 ⊆ e
I2
2 .

Definition 4 (Model of an alignment). Given two ontologiesO1 andO2 and an align-
mentA ofO1 andO2, a model ofA is a pair 〈I1, I2〉 such that for all c ∈ A, I1, I2 |= c.
The set of all models of A is written Mod(A).

With this definition, the models of an alignment do not have to satisfy the ontolo-
gies. This is useful when one needs to determine consistency of an alignment, but do
not have access to the ontologies, or when for other alignment manipulations. More-
over, this also ensures encapsulation at the alignment level, since it prevents alignment
satisfiability to be dependent on a particular ontology implementation. Sect. 5 describes
how existing alignment formalisms comply with these abstract definitions and discusses
their advantages and disadvantages.

With the notable exception of E-connection, all these formalism can be adopted to
provide a formal semantics to alignments in our module framework. The next section
describe the global module semantics.

4.3 Interpreting modules

In the most general case, the interpretation of a module is recursively defined in function
of the interpretations of its imported modules. This recursive definition assumes that
there is no cycle in the import chain, so each chain eventually leads to a base module
with no import. Detection of cycles should be syntactically checked, since this definition
is not well founded otherwise. If one thinks in term of software engineering, this is not
a major limitation. Indeed, when a new module is designed, it has to import existing
modules. This way, it is not possible to have cyclic references.

Definition 5 (Base module interpretation). Let M = 〈id, ∅, ∅, ∅, O,E〉 be a base
module. An interpretation of M is a local interpretation I of the content O of M, with
domain of interpretation D.



Definition 6 (Module interpretation). Let M = 〈id,M, I, A,O,E〉 be a module. An
interpretation of M is a triple I = 〈I, (Im)m∈M , ·̃〉 such that:

– I is an (local) interpretation of the content O of M, with domain of interpretation
D. D is also called the domain of interpretation of module M;

– For each imported modulem ∈M , Im is a module interpretation ofm over domain
of interpretation Dm;

– ·̃ is a mapping that associates to each r ∈ R a binary relation r̃ according to the
corresponding semantics of alignments (see §5.1 for specific alignment semantics).

In order for an interpretation to satisfy a module, there are four conditions:

1. the local interpretation must be a model of the content of the module, i.e., all local
axioms must be satisfied;

2. the imported modules must be satisfied by their respective interpretations;
3. the alignments between the imports must be satisfied by the respective pairs of

interpretations;
4. finally, the local interpretation and the imported modules interpretation must agree

on the interpretation of the interface I .

The fourth item is a bit ambiguous. The notion of “agreement” on the interpretation
actually depends on the specific formalism used. This is discussed in the next section.

In order to reason with modular ontologies, we have to define what are the semantic
consequences of a module. They are defined as follows:

Definition 7 (Consequences of a module). Let M = 〈id,M, I, A,O,E〉 be a module.
Let δ be an axiom built upon the signature of the content of M (which includes the
import interfaces of I). δ is a consequence of M, written M |= δ iff for all models
〈I, (Im)m∈M , ·̃〉 of M, I |= δ.

Obviously, if a formula is a consequence of the content ontology of a module, then it
is a consequence of the module itself.6 Additionally, it is desirable to derive knowledge
about the imported terms according to the imported modules knowledge. However, if
something is true about a concept C in a module, it is not necessarily true in another
module that imports C.

Depending on the formalism used for module semantics, knowledge that is trans-
fered from imported to importing modules varies. The next section describe how can-
didate semantics fits within our module framework, and discuss the relevance of each
existing formalism.

5 Discussion and related work

Work related to modular ontologies has expended greatly in recent years. We will divide
this section into two parts. The first focuses on logical formalisms developed to reason
with modular ontologies. We show that our modular framework can be adapted to most
of them, but some better guarantee the properties that we advocate. The second section
presents other related work.

6 Note that only the consequences related to the exported terms are useful to an external module
that imports them.



5.1 Modular ontology languages

An already deep and interesting discussion about modular ontology languages have
been carried on in [8]. However, our vision of ontology modularization differs from the
authors’, and we do not share some of the assumption they make.

Modular ontologies without ontology languages: It is possible to implement mod-
ules without any specific formal language dedicated to it. [8] proves that reasoning in
P-DL or in a restriction of DDL and of E-connection is logically equivalent to ques-
tioning a non-standard reasoning service over a traditional description logic. However,
this completely discard the engineering approach. Indeed, although the execution of an
encapsulated function is equivalent to the execution of the same inlined function, the
utility of encapsulation is unquestioned.

Morevoer, in [7], the authors define two such reasoning services (conservative ex-
tension and locality) that are pretended to be necessary to achieve modularity. Unfortu-
nately, it is almost impossible to guarantee conservative extensions when modules have
been developed independently and are related with alignments.

Nonetheless, an advantage of this approach is that the consequences of a module
relative to its export are correctly transfered to the modules that import it.

Modularity without alignments: This is the approach offered by P-DL [1]. In fact,
modules are only related to each others thanks to “import statements”. Then imported
terms are directly used in axioms. In fact, this can perfectly fit in our modularization
framework, since a correspondence 〈e1, e2, R〉 can represent an axiom e1Re2, whereR
can be v, ⊇, ≡ or other semantic relationships like individual membership ∈, disjunc-
tion⊥ and so on. This way, the binary relation R̃ has the same value as its interpretation
in the local representation language. Moreover, P-DL already offers most of the facili-
ties that we expect from a modular system. It is possible to assert that a term is private
or public; imports are explicit. Nonetheless, the lack of a looser alignment definition im-
poses strong interdependencies between modules. The use of heterogeneous modules
can easily break consistency, because modules may have been developed for different
context (this is discussed in [2]).

Pan et al. [13] define a notion of semantic import that differs from P-DL. The inter-
pretation of imported terms do not coincide entirely between the imported and import-
ing module. The local interpretation of an imported term must be equal to the import’s
interpretation of the term intersected with the local domain of interpretation. For in-
stance, consider a class Cj defined in module j, which is imported by module i. Then,
the local interpretation Ii of i and Ij of j has to satisfy CIi

j = C
Ij

j ∩∆Ii , where ∆Ii

is the domain of interpretation Ii. There is a sound and complete procedure to deter-
mine whether an axiom is transfered through the import chain. This offer an alternative
import semantic that we have to consider further.

Using bridge rules: Bridge rules were introduced with DDL [2]. These rules express a
semantic relation asserted to be true from one module point of view. A correspondence



〈e1, e2, R〉 represents a bridge rule 1:e1
R−→ 1:e2, whereRmay bev,w, = in DDL or

⊥, ∗ in C-OWL. The relations R̃ are defined as follows: there exists a domain relation
r12 s.t. eI1

1 ṽe
I2
2 (resp. eI1

1 w̃e
I2
2 , eI1

1 =̃eI2
2 , eI1

1 ⊥̃e
I2
2 , eI1

1 ∗̃e
I2
2 ) iff r12(eI1

1 ) ⊆ eI2
2 (resp.

r12(eI1
1 ) ⊇ eI2

2 , r12(eI1
1 ) = eI2

2 , r12(eI1
1 ) ∪ eI2

2 = ∅, r12(eI1
1 ) ∪ eI2

2 6= ∅). Such rules
are also used by C-OWL [3] and, with a revisited semantics in [10].

Because of the domain relations, this type of semantics very well comply with het-
erogeneous knowledge. However, they lead to unintuitive inferences, that are partly
solved by [10]. Moreover, bridge rules are not transitive, which forbids alignment com-
position (as proved in [17]). Since alignment reuse is one of our key concern, we con-
sider it a strong drawback.

A non-directional version of bridge rules is given in [16]. So, this formalism al-
lows alignment composition and offers enough tolerance to heterogeneity. However,
no complete reasoning procedure nor complexity results are provided by the authors.
Nonetheless, it may prove interesting to investigate, and also fits well in our modular
framework.

Relating ontologies via queries: In [15], two modules are related with external con-
cept definitions C1 ≡ M2 : Q2, where C1 is a concept name, M2 is a module and
Q2 is a conjunctive query. This is represented as a correspondence 〈C1, Q2,≡〉 and
CI1

1 ≡̃Q
I2
2 means there is a domain relation r12 such that r12(CI1

1 ) = QI2
2 . This ap-

proach addresses two important issues in modularization: compilation and change ro-
bustness. Though it has not been investigated so far in other approaches (to the best of
our knowledge), knowledge compilation could be envisaged with other formalisms. In
fact, since the export interface is supposed to stay the same, the knowledge derivable
from it could also be maintained and crystallized as precompiled axioms. There are sev-
eral problems though. External concept definitions are directional in the same sense as
bridge rules, so they are not composable. Moreover they only relate a module to its im-
ports, not two imports together. This means that it cannot take advantage of externally
defined alignments between two imports.

E-connection: E-connections [11] are quite different from what precedes. They use
cross-ontology role restrictions to relate concepts from different modules. In fact, an
E-connection assertion can involve terms from more than two ontologies. Therefore,
it is not possible to represent these in an alignment as defined in Def. 2. However,
〈C1, C2, R〉 can represent axiom 〈R〉C1 ≡ C2. R̃ is then defined as follows: there is a
binary relation RM s.t. RM (CI1

1 ) = CI2
2 . The main advantage of E-connection is the

possibility to distribute reasoning, and its strong tolerance to heterogeneity. However,
E-connection is difficult to integrate in our framework because cross-ontology axioms
are part like the one given above are part of the ontology, while our approach uses
ontology alignments that can be manipulated independently from the ontologies.

5.2 Other related work

Since non-modular ontologies already exist, several teams are working on extracting
modules out of existing large ontologies [9, 4, 14]. Although this issue is an important



one, these work do not consider the extraction of reusable module nor the design of a
reuse-oriented module system, but rather a set of classical OWL ontologies with which
reasoning is efficient. Indeed, none of these works is capable of defining a clean inter-
face for encapsulating the content.

Modularity with CASL as described in [12] is, like our approach, designed with no
particular logics in mind. It shows how to use the specification language CASL to de-
velop modular ontologies. Although this approach has some similarity with ours, it does
not offer support for specifying explicitly what is exported and imported. Moreover, it
has no support for ontology alignments. Since it merely focus on the ontology design
task, its purpose is orthogonal to ours.

6 Conclusion

Ontology modules are now urgently needed on the semantic web: the lack of support for
modules in OWL has to be corrected. Most of the effort has so far concentrated on par-
titioning ontologies for providing more efficient reasoning, or on studying the semantic
properties that have to be ensured by a module system. Real engineering facilities were
often overlooked, with notable exceptions.

In this paper we have rather focused on ontology modules from an ontology en-
gineering standpoint. As such, the important properties of modules are encapsulation,
information hiding, replaceability of modules and reusability. Moreover, a module sys-
tem should provide some glue in order to align the interface between imported modules
or imported and importing modules.

From this perspective, we designed a module system reusing ontologies and ontol-
ogy alignments. This ensures a flexible accommodation of existing external ontology
alignments. We provided a syntax allowing the specification of what is imported and
exported by a module, while not being stuck to a particular logical formalism. The
concrete XML syntax is grounded on OWL ontologies and the Alignment format.

An important issue is to define what are the consequences of a module in the same
way the consequences of an ontology are defined. We showed how to accommodate ex-
isting modular ontology formalism in order to reason with modules. Unfortunately, we
showed that none of them gathers all the properties expected from a modular system.
Yet, our framework is general enough to capture many ontology and ontology align-
ment languages, and considers alignments as distinct objects that can be manipulated
separately.

According to this specification, we are currently developing a module system able to
fully take advantage of existing OWL ontologies and alignments. In the near future, we
will integrate additional facilities for the export interface, that will allow to guarantee
by proof that a property holds for the exported terms (like invariance of the concept
hierarchy).

References
1. Jie Bao, Doina Caragea, and Vasant Honavar. On the Semantics of Linking and Importing

in Modular Ontologies. In Proc. of 5th International Semantic Web Conference (ISWC’06),
volume 4273 of LNCS, pages 72–86. Springer, 2006.



2. Alex Borgida and Luciano Serafini. Distributed Description Logics: Directed domain corre-
spondences in federated information sources. In On the Move to Meaningful Internet Systems
2002: CoopIS, DOA, and ODBASE : Confederated International Conferences CoopIS, DOA,
and ODBASE 2002, volume 2519 of LNCS. Springer, 2002.

3. Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini, and Heiner
Stuckenschmidt. C-OWL: Contextualizing ontologies. In Proc. 2nd International Semantic
Web Conference (ISWC’03), volume 2870 of LNCS. Springer, 2003.

4. Mathieu d’Aquin, Marta Sabou, and Enrico Motta. Modularization: a Key for the Dynamic
Selection of Relevant Knowledge Components. In Proc. 1st Workshop on Modular Ontolo-
gies (WoMO’06), 2006.

5. Jérôme Euzenat. An API for Ontology Alignment. In Proc. of 3rd International Semantic
Web Conference (ISWC’04), volume 3298 of LNCS, pages 698–712. Springer, 2004.

6. Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer, Heidelberg (DE), 2007.
7. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. A logical frame-

work for modularity of ontologies. In Proc. of 20th International Joint Conference on Arti-
ficial Intelligence (IJCAI’07), pages 298–303, 2007.

8. Bernardo Cuenca Grau and Oliver Kutz. Modular ontology languages revisited. In Workshop
on Semantic Web for Collaborative Knowledge Acquisition (SWeCKa’2007, 2007.

9. Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Modularity and
web ontologies. In Proc. 10th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’06), pages 198–209. AAAI Press, 2006.

10. Martin Homola. Distributed Description Logics Revisited. In Proc. of the 20th International
Workshop on Description Logics DL’07. Bolzano University Press, 2007.

11. Oliver Kutz, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. E-connections of
abstract description systems. Artificial intelligence, 156(1):1–73, 2004.

12. Klaus Lüttich, Claudio Masolo, and Stefano Borgo. Development of modular ontologies in
casl. In Proc. 1st Workshop on Modular Ontologies (WoMO’06), 2006.

13. Jeff Pan, Luciano Serafini, and Yuting Zhao. Semantic Import: an Approach for Partial
Ontology Reuse. In Proc. 1st Workshop on Modular Ontologies (WoMO’06), 2006.

14. Julian Seidenberg and Alan Rector. Web ontology segmentation: analysis, classification and
use. In Proc. 15th World Wide Web Conference (WWW’06), pages 13–22, 2006.

15. Heiner Stuckenschmidt and Michel Klein. Integrity and Change in Modular Ontologies. In
Proc. 18th International Joint Conference in Articifial Intelligence (IJCAI’03), pages 900–
908. Morgan Kaufmann, 2003.

16. Antoine Zimmermann. Integrated Distributed Description Logics. In Proc. of the 20th In-
ternational Workshop on Description Logics DL’07. Bolzano University Press, 2007.

17. Antoine Zimmermann and Jérôme Euzenat. Three Semantics for Distributed Systems and
their Relations with Alignment Composition. In Proc. of 5th International Semantic Web
Conference (ISWC’06), volume 4273 of LNCS, pages 16–29. Springer, 2006.


