The State of Multi-User Ontology Engineering

Julian Seidenberg and Alan Rector

Bio-Health Informatics Group
University of Manchester, United Kingdom
jms@cs.manchester.ac.uk, rector@cs.manchester.ac.uk

Abstract. Collaborative ontology engineering enables the creation of
large complex ontologies. However, few projects successfully perform
such multi-user ontology modeling. This paper gives an overview of ten
different ontology engineering projects’ infrastructure, architecture and
workflows. It especially focuses on issues regarding collaborative ontology
modeling. The survey leads on to a discussion of the relative advantages
and disadvantages of asynchronous and synchronous modalities of multi-
user editing. This discussion highlights issues, trends and problems in the
field of multi-user ontology development.

1 Introduction

Semantic technologies give rise to new opportunities in many scientific disciplines
where complex knowledge and processes need to be recorded. Organizations are
increasingly taking advantage of semantic technologies for modeling this knowl-
edge. Description logic based knowledge representation languages such a OWL
make such modeling possible. Skilled ontology engineers can create ontological
models of the real world and use tools to check their consistency, as well as in-
fer information that is only implicitly contained in the model; they thereby can
serendipitously discover new knowledge [10].

As these ontologies grow larger they expand beyond the capabilities of a
single person. A team of multiple ontology engineers is required to build and
maintain such large ontologies. However, there are only few modeling projects
that manage to successfully perform multi-user ontology development. This pa-
per discusses some of these projects and the design choices and trade-offs they
faced. This paper also offers suggestions for improved editing tools and editing
methodologies.

Our survey methodology involved conducting detailed interviews with mem-
bers of ten different ontology engineering projects. Interviews were conducted
either by phone or in person. The ontologists were asked to describe their or-
ganization and modeling process in detail. They were also asked to complete a
questionnaire and encouraged to elaborate verbally on their answers.

2 Asynchronous vs. synchronous editing

The majority of the projects questioned in the user study perform only very
basic multi-user ontology development. That is, they allow only one person to
edit the ontology at any one time. Some projects edit ontologies asynchronously,
while others synchronously work on a single shared knowledge base. A discussion
of the relative advantages and disadvantages of these approaches follows.

2.1 Traditional concurrent editing

There are many different models for changing traditional structures like databases,
computer programs and text documents. Ontologies differ from these traditional

document types. Ontologies are used to represent knowledge using description

logic. This allows the meaning of statements in an ontology to be expressed in

such a way that a computer can understand and make inferences about them.

Some traditional systems also capture semantics at a schematic level. These sys-

tems do not, however, usually allow frequent and/or dynamic modification of
these schemata.

Specifically, ontologies written in the OWL description logic [6] can be clas-
sified by a description logic reasoner, which allows errors (logical contradictions)
to be found, implicit knowledge to be made explicit and complex queries to be
answered. However, with the additional power of these semantic tools come new
possibilities for mistakes and conflicts. For example: in a multi-user scenario one
person might define a VegetarianPizza as not having Meat and not having Egg
as an ingredient while someone else creates an OmeletPizza as a subclass of
VegetarianPizza as shown in Figure 1. The conflict between OmeletPizza and
VegetarianPizza could not occur in a traditional database-like application, since
such systems generally do not capture semantics.

is-A

- = 3 haslngredient
. -
," Omelet ... /
\ Pizza
‘| Egg Meat

Fig. 1. Example of conflict that can only occur in a semantic multi-user editing scenario

3 Project descriptions

A total of ten different projects were evaluated in this user study. The projects
were the following:

3.1 Project overviews

OpenGALEN ! The GALEN project created a large ontology of human anatomy,
pathophysiology, function, surgical procedures, pathology, diseases and drugs.

The ontology is divided into 2738 modules organized across three mono-
hierarchies (trees) that conflate both compile-time dependencies and editorial
groupings. Any number of such modules could be locked and checked-out by any
of the twenty members of the multi-national development team. Some modellers
would check out modules for many weeks.

Locks created some degree of safety between the modelers, as well as allowing
individual modelers to develop from an infrequently changing baseline. However,

! http://www.opengalen.org

occasionally there were problems with two editors independently creating the
same concept and/or referencing concepts that did not yet exist.

New releases of the ontology were published roughly every six months. Con-
struction of a new release required all modelers to return and unlock all their
locked modules. The complete ontology was then processed by a single curator
who iteratively performed tasks such as correcting syntax errors, classifying the
complete ontology, correcting any violations of asserted invariants and removing
reported redundancy until the ontology classified without error. The episodic
curation process typically took one to two weeks, in part because classification
alone was a lengthy (2-3 hour) process. Any further modeling work done during
this curation time needed to be repeated after the completion of the new release.

Ordnance Survey 2 The Ordnance Survey collects and maintains very detailed
topographic data for Great Britain. It is building an ontology of relationships be-
tween topographic features. Of the three people in the organization who routinely
edit ontologies, only one engineer is allowed to make changes to this ontology at
any one time. Changes are discussed in face-to-face meetings or via email.

Anesthesia Patient Safety Foundation Data Dictionary Task Force 3
The APSF-DDTF is using a simplified cut-down version of the Protégé OWL
ontology editor [4] to model an ontology of anesthesia. The ontology is largely
based on a small section of SNOMED CT, but also captures some unique aspects
of anesthesia that do not make sense in the context of SNOMED. It is edited in
face-to-face meetings with a single scribe making all of the changes that a group
of experts agree upon. At any other time members informally agree on who will
take up the baton and edit the ontology.

Additionally, on rare occasions, some multi-user concurrent editing is done.
Independent parts of the ontology are edited concurrently. The changes are then
manually stitched together into a single ontology using a XML editing tool.

BioPax Consortium * The BioPax Consortium is a world-wide effort to de-
velop a multi-level ontology of biological pathway information. The ontology file
is emailed between members for editing. Only one person changes the file at any
one time. Changes are discussed in conference calls.

U.S. National Cancer Institute ° The National Cancer Institute in the
United States is continually refining the NCI-Thesuarus, a large biomedical on-
tology of diseases, therapies and other topics related to cancer research.

The ontology is currently being maintained using a set of tools from the
Apelon corporation. A group of 16 editors work on the ontology. These editors
import a copy of the ontology into their own private individual database and
make changes independent of each other. Every month all changes are sent to a
central curator who integrates the changes and resolves any conflicts. The curator

2 http://www.ordnancesurvey.co.uk
3 http://www.apsf.org

4 http://www.biopax.org

® http://www.cancer.gov

works for three to eight hours to produce a new updated baseline version of the
knowledge base. This baseline is then re-imported by all the editors and they
again start working independently.

The conflict resolution step is a bottleneck in the NCI process. While the
curator is working to produce a new baseline all the other editors are idle. Editors
may not make any changes during that time, since these would be lost with the
release of the new baseline.

The NCI must balance the loss of productivity while a new baseline is created
with the danger of two editors independently creating concepts of the same
name, or worse: concepts with different names that were meant to express the
same thing. Ideally, infrequently creating new baselines minimizes the time lost.
However, frequently creating new baselines minimizes the possibility of problems
due to overlapping work.

Another important issue for the NCI is the lack of integration between tools:
the workflow, conflict resolution, editing and publishing tools are separate and
must be manually integrated. For example: editors must manually email their
change set to the curator for integration.

In order to address its modeling difficulties the NCI is planning to switch
to a different editing paradigm. They want to host their ontology on a central
database server to which individual clients connect using Protégé OWL. Any
changes immediately show up for all connected editors. If two modelers start
editing the same concept at the same time, one modeler’s changes will be lost
when the other commits.

Ontology for Biomedical Investigations % OBI is an international effort
to collaboratively build an ontology for biological and medical investigations
(formally known as the Functional Genomics Investigation Ontology (FuGO)
project).

The project currently includes 13 specialized communities with a total of 70
developers collaborating across four different countries. Only one person may
access the ontology at any one time. Major changes are made in face-to-face
meetings every six months with a single scribe editing. Minor changes require
approval from everyone in the community to make sure that no one else is al-
ready working on a change. Since the community is world-wide, time differences
between countries result in a two day delay for even the most minor change (e.g.
adding a comment).

The project uses Protégé OWL to edit an ontology stored in a subversion
repository. Side projects are sometimes launched as branches from the main
ontology. These must be manually merged into the main ontology once complete.

Imperial Cancer Research ” Imperial Cancer Research at University College
London is building an OWL ontology of diseases and treatments related to breast
cancer. Existing ontologies were found to be too large and confusing to use. The
ontology is being maintained by a single person.

5 http://obi.sourceforge.net

" http://www.cancerresearchuk.org

Systematized Nomenclature of Medicine ® The SNOMED RT (Reference
Terminology) project was a large effort to create very large reference terminology
of medicine. At its peak, the project employed thirty domain experts around the
USA to concurrently construct the ontology. It was completed in the year 2001.
The SNOMED RT project endeavored to create a very high-quality knowl-
edge base by using dual independent review. Sets of concepts are assigned and
distributed out to modelers. Each concept is sent to at least two different model-
ers. These modelers create definitions for their assigned concepts and then send
them back into a central server. An automated conflict resolution tool analyses
the resulting definitions and, if the two modelers definitions don’t match, initi-
ates a conflict resolution procedure. The conflict resolution tool allows modelers
to discuss and eventually reach a consensus on how to best model the term in
question. 2 to 6% of concepts usually result in conflicts, though this is very much
dependent on the nature of the subject area being modeled. Some areas produce
no conflicts, while in others almost every concept results in a conflict [1].
SNOMED CT (Clinical Terms) is continuing the development of SNOMED
merged with the CTV3 terminology (formally known as Read Codes) used in
the United Kingdom. Contrary to the RT development, CT no longer uses dual
independent review. The ontology is primarily edited synchronously in a central
location (Chicago) with all modelers connecting to a central database. Addition-
ally, three or four modelers/centers outside of the main location asynchronously
edit branches of the terminology. These branches are integrated into the main
ontology approximately every two weeks. While this integration is going on all
asynchronous editing stops, but it is usually performed overnight, so little actual
downtime occurs. Any conflicts that arise are assigned to and corrected by mod-
elers in the central location. The integration results in a new baseline ontology
which is distributed to the outside modelers for reviewed asynchronous editing.

Editing is performed using Apelon’s Terminology Development Environment
(TDE).

Clinical e-Science Framework °? The CLEF project at the University of
Manchester and University College London aims to integrate, organize and ex-
tract data from clinical information (e.g. medical records).

The two researchers at the University of Manchester have collaboratively
constructed an ontology of medical concepts for use in the project. Only one
person makes changes to the ontology at any one time. Changes are discussed
face-to-face.

CancerGrid '° CancerGrid is a consortium of ontology and software develop-
ers that is working on providing terminology servers to cancer research centers
throughout the UK. They integrate various large ontologies (GO, SNOMED,
NCI-Thesaurus) into each server and allow researchers to access, query, anno-
tate and locally extend the unified knowledge corpus.

8 http://www.snomed.org
9 http://www.clef-user.com
10 http://www.cancergrid.org

While CancerGrid is not directly developing an ontology of its own, it is
very much involved in multi-user ontology engineering and provided us with
requirements for future tools in light of its aims.

3.2 Project matrix

Table 1 shows modes of editing that various projects use. The most common
workflow is to simply pass around a single file, so only one user edits the ontology
at any one time. The table also details the projects’ members’ preferred mode of
editing, assuming a choice of synchronous and asynchronous tools were available.

. asynchronous locking vs. opti-
Project . .
vs. synchronous mistic non-locking
OpenGALEN asynchronous locking
Ordnance single-user
n/a
Survey (async preferred)
APSF-DDTF single-user n/a
(sync preferred)
BioPax single-user n/a
asynchronous (apelon) non-locking
NCI L .
synchronous (protégé) non-locking
single-user
OBI (async preferred) n/a
Imperial Cancer single-user n/a
Research (async preferred)

SNOMED RT asynchronous non-locking
SNOMED (|| ~ Poth synchronous non-locking
and asynchronous
single-user

LEF
© (sync preferred) n/a
CancerGrid||(asynchronous preferred) n/a

Table 1. Modes of editing by project

4 Project types
4.1 Modes of editing
Multi-user ontology development can be divided into two basic modes of editing:

1. Asynchronous editing: multiple ontology engineers working on individual
copies of a knowledge base, submitting their changes to a central server.

2. Synchronous editing: multiple ontology engineers symultaniously con-
nected to a single knowledge base on a server with changes taking effect
immediately.

Synchronous editing has the advantage that changes (and errors) are imme-
diately visible to all parties involved. Another advantage is that there is only
a single master version of the ontology at any one time. With asynchronous
editing, there is always the potential of multiple branches [8] being created.

However, in a synchronous editing environment all parties must always be
connected to the same server. Disconnected editing on trains and airplanes is not
possible. This also prevents editors from going away and working in a sandbox

environment to test a potentially harmful series of changes. In an asynchronous
environment potentially dangerous changes can be independently developed, ver-
ified to be safe and then integrated with the rest of the ontology.

A mistake, conflict, or inconsistency can be disastrous in a synchronous en-
vironment. An error could result in the knowledge base becoming unusable for
all connected users and editors. If the integrity of the knowledge base is critical
then a synchronous environment is particularly dangerous. In contrast, in an
asynchronous environment an error can be undone before it affects anyone else,
thereby reducing the cost associated with fixing errors. Also, even if an error
damages the complete knowledge base, its state can be selectively rolled back
with relative ease; while, in a synchronous environment, rolling back the knowl-
edge base to a previous state (or snapshot) will erase all the work done up to
that point (just not the offending update), and stop everyone’s progress while
the roll-back is being executed.

The asynchronous workflow requires that changes be integrated into the com-
plete knowledge base as editors submit them. This process is more complex than
clients directly operating on the central ontology. Different lengths of check-outs
create a degree of uncertainty about the state of the knowledge base. A modeler
could at any time submit a significant change. Most projects using asynchronous
editing therefore every so often collate all changes into a build/baseline/release
version, rather than being in a state of continuous flux.

4.2 Methods of conflict prevention

Means of preventing conflicts can also be divided into two:

1. Locking: a section of the knowledge base is locked in order to prevent mul-
tiple people editing it at the same time.

2. Optimistic non-locking: locks are not used. The inevitable conflicts are
fixed after they occur.

The advantage of locking is that it pro-actively prevents conflicts. However,
editing becomes more difficult, especially as the number of locks increases and
other users are prevented from accessing large portions of the knowledge base.
Locking (in an asynchronous setting) also requires some means of modularizing
or segmenting the ontology [7]. Optimistic non-locking methods removes barriers
to editing, thereby encouraging widespread editing, but there is an increased
effort required to fix errors.

Project management is more difficult using non-locking methods. The ability
for anyone to edit anything at any time makes it difficult for modelers to be
aware of each other’s editing. Locks force users to edit their pre-declared or
assigned areas.

In the absence of locks non-unique definition conflicts [1] can occur. That is,
two modelers can create different definitions for the same concept in the knowl-
edge base. This duplicate work is redundant. One editor’s work will inevitably
be lost. However, in certain circumstances such redundant work is desirable. For
example: during the construction of SNOMED RT each concept was modeled

by at least two people. Definitions were then compared and only accepted if all
modelers agreed. This lead to a higher-quality knowledge base at the expense of
duplicate work.

4.3 User preference singlesser
preferred
8%

Bynchronous
preferred

31% asynchronous]
preferred
62%

Fig. 2. Preferred mode of editing (n=13; some projects express multiple preferences)

The majority of ontology engineers questioned in our survey preferred an
asynchronous approach to multi-user ontology engineering to a synchronous
methodology (see Figure 2). Anecdotal evidence suggests that more technical
ontology authors with backgrounds in software engineering tended to prefer the
asynchronous model, while ontologists with life-science specializations, without
backgrounds in computer science tended to prefer a synchronous model.

The more technical ontologists tended to be comfortable with asynchronous
CVS-style systems and were aware of overlapping edit problems in a synchronous
system. Less technical ontologists were unaware of potential problems and wanted
a multi-user ontology editing to be as simple as possible. They regarded an asyn-
chronous editing system as too complicated.

5 Project statistics

Statistics of the various project were compiled. These are as follows:

Ontology structure The ontologies under development have a median of 3000
classes (mean of 58380), with an estimated average of about 3 restrictions per
class and a maximum number of about 25 restrictions on a single class. 60% of
ontologies under development are single large ontology, with only 20% of projects
using mutually importing ontology modules and another 20% creating multiple
disconnected ontologies (see Figure 4).

Ontology criticality Most of the ontologies under development are not being
used in critical systems within the organization. Errors mostly cause only minor
inconvenience (see Figure 3).

Ontology language The majority of ontologies are being developed using
Protégé OWL [4] utilizing the OWL ontology language, as shown in Figure 5.

Ontology maturity Half of the ontologies being developed by the surveyed
projects are mature (GALEN, Ordnance Survey, Anastasia, NCI, SNOMED),
which means they are well-established knowledge bases that are now being fur-
ther refined. Other KBs are either in early or in the middle stages of development
(as shown in Figure 6).

multiple
no inconvenience interconnected
20%
minor inconvenience multiple
disconnected

major inconvenience - 20%

loss of money

single ontology
60%

loss of life

o

1 2 3 4 5

Fig. 3. Ontology criticality: consequence
of errors in the ontology (x-axis: number Fig. 4. Ontology structure (n=10)
of projects that describe themselves as be-
longing to the a specific category)

mature
50%

Other Protege/
18% OWL
55%

Glaw
(GRAIL)

Fig. 5. Ontology development tools used Fig. 6. Maturity of ontologies under devel-
(n=11; some projects use multiple tools) opment (n=10)

Organizations 50% of organizations surveyed operate internationally. 80% of
organizations had multiple sites. 90% of organizations that perform multi-user
ontology development have their modelers distributed in different physical loca-
tions.

Communication Email is the preferred means of communication for almost all
organizations questioned. Only SNOMED and GALEN have dedicated workflow,
conflict resolution and communication tools. Other communication technologies
include: shared desktop clients, face-to-face meetings and the telephone. All of
these are used to approximately the same degree, but none as universally as
email.

6 Problems in multi-user editing

Multi-user ontology engineering is not very widely practiced. This section anal-
yses why this is the case and what can be done to enable better concurrent
ontology development.

A fixed questionnaire was used in our evaluation. Project representatives
were encouraged to elaborate on their answers and/or suggest new alternative
answers. However, beyond several adjustments resulting from a prototype ques-
tionnaire presented to two local projects (Clef and OpenGALEN), no additional
categories were suggested. Interviews were conducted either by phone or in-
person with one representative from each project.

6.1 General problems

more provenance [
locking -
ineversivie change | frequent classification [
violation of referential integrity richer ontology language
other inconsistency ‘ simpler ontology language
insufficient provenance _ frequent releases _
overlapping edit _ more education _
unintended changes | NI frequent backups | RN
task coordination _ frequent single editor mode _

o

2 4

=)
o

2

IS

6 8
Fig.7. Current problems in multi-user Fig.8. Current solutions to enable multi-

editing (x-axis: number of projects with a user editing (x-axis: number of projects us-
certain problem) ing a certain solution)

Figure 7 shows the main problems in multi-user ontology editing. Most
projects who’s members we interviewed are distributed over multiple physical
locations, many are even international (see section 5). This inevitably makes
co-ordinating ontology modeling difficult. Keeping control of the editing process
seems to be the main problem developers faced when attempting to do multi-user
ontology development. Another major source of problems included unintended
changes which occurred due to the concurrent nature of the editing process.

6.2 Current solutions

The most popular solution to concurrent editing problems is abandoning the idea
altogether. As also mentioned in section 3.2, Figure 8 shows that most projects
resort to passing their ontology between single individuals for single-user editing.
This seems to be a stopgap measure to allow developers to at least make some
progress. The general consensus is that ontology engineers would certainly prefer
a true multi-user workflow, if it was available.

6.3 Barriers to better solutions

lack of need low granularity of edits [N
workflow support _
security issues safety _
fear of inconsistency _ error prevention
high degree of concurrency
lack of literature _ X ————
erorcheoking |
lack of qualified engineers _ flexibility [
oty |
0 2 4 6 8 0 1 2 3 4 5

Fig. 9. What currently inhibits multi-user Fig. 10. Most important characteristics of

ontology development? (x-axis: number of a multi-user ontology editing system (x-

projects seeing each inhibiting issue) axis: number of projects seeing each char-
acteristic as desirable)

Figure 9 shows what is inhibiting organizations from performing their desired
form of multi-user ontology editing. Having sufficient tool support is clearly

critical for concurrent editing, with trained ontology engineers (and training
material) also being very important.

6.4 Summary of problems

Concurrent editing of shared ontologies is both difficult and error prone. Good
multi-user editing tools and quality training literature does not exist, so ontology
engineers resort to makeshift solutions such single user editing.

7 Tool requirements and design considerations

This section analyses the requirements for tools to support multi-user ontology
editing.

7.1 Tools overview

The most important tool in building ontologies is clearly the ontology editor.
Popular ontology editors include: Protégé OWL [4], Top-Braid Composer !,
Swoop [3], Apelon Terminology Development Environment 2 and Altova Se-
manticWorks 13,

To our knowledge Protégé OWL offers some support for synchronous develop-
ment and Apelon supports some asynchronous development. Still, both solutions
could be significantly improved. For example, as far as we are aware, none of the

above tools support any kind of locking.

7.2 Multi-user tool requirements

A multi-user tool requires a different set of features than a single-user applica-
tion. Figure 10 shows which characteristics users in the questioned organizations
considered most important for such a tool.

Unsurprisingly, simplicity was very important for the ontology engineers.
They found current applications too complicated to use. However, these devel-
opers were equally concerned about provenance information. They wished that
any multi-user tool automatically records as much provenance data as possible.

A low granularity of edits (the ability to select or edit a very small section of
an ontology for a short time), was not seen as very important. This was probably
due to ontologists not seeing the connection between this feature and the ability
to achieve a high degree of concurrency, which was classed as an important
feature. The lower to granularly of each edit, the more concurrent editors the
tool can support.

Surprisingly, users also found error prevention, safety and workflow support
to be relatively unimportant. These were perceived to add unnecessary complex-
ity to the editing process. Users commented that they would rather have the
ability to diagnose errors and rollback erroneous changes than be constrained by
a system that imposes significant restrictions to ensure total safety when edit-
ing. Also, rather than be constrained by a fixed workflow, ontology engineers
preferred a greater degree of flexibility.

Y http://www. topbraidcomposer . com

12 http://www.apelon. com
13 http://www.altova.com/features_owl.html

7.3 Duration of edits

Asynchronous edit duration In an asynchronous editing scenario the length
of time of a check-out is an important design consideration. The longer an ontol-
ogy engineer independently works on a section of the ontology, the greater the
chance for conflict. This is especially likely in an optimistic non-locking scenario.
The greater the number of conflicts, the more time must be spent by a cura-
tor (potentially in single-user mode, see section 6.2) or by a conflict resolution
system to negotiate a solution to the conflicts.

With that in mind, a longer duration of edit/check-outs should necessitate a
system of stricter locks to prevent a greater number of conflicts. However, stricter
locks also increase the barriers to editing (see section 4.2). This ability to carry
out widespread edits is especially important with long check-out durations, since
an ontology engineer might find that he or she needs to edit something that was
recently locked by someone else and therefore is likely to remain locked for some
time to come. So, in a long check-out scenario there is a conflict between conflict
prevention and widespread editing. A system designer must decide if widespread
editing or conflict prevention is the priority and choose to implement either
non-locking or locking respectively.

This trade off is especially relevant, since we found that the majority of
ontology engineers anticipated that, if working in an asynchronous ontology de-
velopment system, their duration of edit would range between one to five days.
This is illustrated by Figure 11.

0 - 10 minutes
10 - 60 minutes
1-5hours

5 - 30 days

o

1 2 3 4

Fig. 11. Duration of check-out during asynchronous editing (x-axis: number of projects
typically using check-outs of the specified duration)

Synchronous edit duration In a synchronous editing system multiple editors
should be prevented from simultaneously changing the same axiom in an ontol-
ogy. However, check-outs, as such, do not exist, so there is no need to consider
duration of edits with relation to locking, beyond the simple case of overlapping
edits.

7.4 Debugging considerations

When people build ontologies they inevitably make mistakes. If a statement in
an ontology represents a logical contradiction, then a description logic classifier
will highlight the unsatisfiable concepts. Debugging tools [9] [2] can then be used
to discover the cause of the error. Error correction tools can then be used to find

possible solutions [5]. In a multi-user environment error checking tools are even
more important, since contradictions can be introduced at any time any by any
of the ontologists working on the shared ontology. This is especially true if an
ontology is being edited synchronously.

Figure 12 shows the frequency of certain categories of errors resulting from
multi-user interactions, as well as how difficult these errors are to diagnose and
fix, as reported by the interviewed ontology engineers.

difficulty of fixing errors W frequency of errors

failure to subsume

class condition contradiction

|

unexpected subsumption

unexpected equivalence

property constraint contradiction

error without known cause

Il

5 10 15 20
Fig. 12. Common errors in ontology modeling and effort involved in correcting them
(x-axis: sum of all projects’ 0-5 rating of each frequency/difficulty)

o

Errors without any known cause were the most difficult to fix, as might
be expected, but these kinds of errors were also quite rare. Property statements
contradictions were the second most difficult to fix. Debugging tools handle these
kinds of errors quite well.

Failure to achieve the desired subsumption, while the most common error,
was not as difficult to fix as the two aforementioned errors. So, correcting a con-
tradiction was more difficult than achieving a desired subsumption. However,
while ontology debugging tools help editors diagnose contradictions, they do not
help with suggesting how to achieve desired subsumption relationships. That is:
it would be good if the ontologist could indicate a desired subsumption rela-
tionship and the tool could generate a series of suggestions as to how to achieve
this.

Interestingly, no one mentioned unexpected subsumption as even slightly
difficult to fix, even though it was the third most encountered error. This seems
to indicate that unexpected subsumption is less an error and more a natural
part of ontology development. Simply because a new subsumption relation is
unexpected does not mean that it that it is necessarily undesireable, quite the
opposite, in fact.

8 Summary

In this paper we have explored the findings from our survey of ten ontology de-
velopment projects with relation to multi-user ontology development. We found
that most organizations find multi-user ontology development very difficult, pri-
marily because of a distinct lack easy-to-use tools. Because of this most projects
end up resorting to a pass-the-pen mode of editing where only one user may edit
the ontology at any one time.

An asynchronous mode of editing using locking seems appropriate for a ma-
jority of organizations, based on their requirements, modeling styles and pref-
erences. This style of editing can also aid task coordination, which is the single
greatest problem reported during multi-user editing. Other modes of editing are
also applicable for more specialized projects with specific requirements.

Development tools need to be further improved beyond their present state.
The survey suggests that debugging and refactoring tools would greatly enhance
the multi-user development process, but their existence is relatively unknown.
Additionally, a use case for a new tool was found: such a tool, given a desired
subsumption relation, would suggest changes that result in the manifestation of
this relation.

All these factors point to an overarching need for a multi-user ontology de-
velopment methodology. That is: a clear guide for how to perform large-scale
ontology engineering.

References

1. K. E. Campbell, S. P. Cohn, C. G. Chute, E. H. Shortliffe, , and G. Rennels. Scal-
able methodologies for distributed development of logic-based convergent medical
terminology. In Methods Inf Med, 1998.

2. A. Kalyanpur, B. Parsia, E. Sirin, and B. Cuenca-Grau. Repairing unsatisfiable
concepts in OWL ontologies. In Furopean Semantic Web Conference, 2006.

3. A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, and J. Hendler. Swoop - a web
ontology editing browser. Journal of Web Semantics, 4(1), 2005.

4. H. Knublauch, R. W. Fergerson, N. Noy, and M. A. Musen. The Protégé OWL
Plugin: An Open Development Environment for Semantic Web Applications. In
Third International Semantic Web Conference (ISWC), 2004.

5. J. Lam, J. Z. Pan, D. Sleeman, and W. Vasconcelos. A fine-grained approach to
resolving unsatisfiable ontologies. In IEEE/WIC/ACM International Conference
on Web Intelligence (WI-2006), 2006.

6. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview,
February 2004. W3C Recommendation.

7. J. Seidenberg and A. Rector. Web ontology segmentation: Analysis, classification
and use. In 15th International World Wide Web Conference, May 2006.

8. M. Voelkel and T. Groza. Semversion: an rdf-based ontology versioning system.
In Proceedings of the IADIS International Conference, 2006.

9. H. Wang, M. Horridge, A. Rector, N. Drummond, and J. Seidenberg. Debugging
OWL-DL Ontologies: A Heuristic Approach. In Proceeding of the 4th International
Semantic Web Conference, 2005.

10. K. Wolstencroft, A. Brass, I. Horrocks, P. Lord, , U. Sattler, R. Stevens, and
D. Turi. A little semantic web goes a long way in biology. In 4th International
Semantic Web Conference (ISWC), 2005.

