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Abstract 
This paper presents a method that uses convolutional neural networks for audio recognition in 

an open-set scenario. The audio sounds in an open-set scenario are usually out of the training 

data distribution, which necessitates a model that can recognize the known classes while 

rejecting the unknown ones. We propose a convolutional approach for recognizing audio 

events, that can effectively address open-set recognition by adding inclusion probabilities of 

extreme value machines. Extensive experiments conducted showed that our proposed method 

outrivals representative existing methods under the open-set regime. 
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1. Introduction  

The audio recognition process requires sufficient statistical information taken from previously 

observed data representations [1]. Traditional recognition systems rely on the hypothesis that all of the 

data for testing and training comes from the same database, often with an equivalent distribution. This 

type of recognition is called closed-set recognition. Several algorithms, including Convolutional Neural 

Networks (CNNs), have had a lot of success with machine learning applications, due to their simplicity, 

good performance, and probabilistic interpretation. However, in open-set recognition applications, the 

label set often expands as new classes occur during the test phase, in which the robustness of these 

methods can drastically weaken. To solve this problem, the boundaries around known classes must be 

well-defined, so the system can either reject the instance as a new class or label it as a member of one 

of the existing classes. In this paper, we tackle the problem of open-set audio recognition by utilizing 

the extreme value machine (EVM) with a convolutional neural network for robust audio recognition. In 

this paper, Section II summarizes the related work, section III illustrates the architecture, section IV 

discusses the evaluation metrics, and section V demonstrates the experimental results. 

2. Related Work 

CNNs with the SoftMax activation function have been used in closed-set recognition tasks and 

demonstrated an outstanding performance in many applications in literature, such as speech sound 

recognition [2], audio source identification [3], and environmental audio recognition [4]. However, 

traditional closed-set recognition methods have no way of rejecting data from previously unknown 

classifications. The perception of open-set recognition has attracted more interest in image recognition 

and computer vision researchers for both deep and shadow classifiers. Some non-deep efforts have been 

investigated in [5] for open-set image recognition.  The work was then expanded in [6] by proposing 

the 1-vs-set machine approach to improve the robustness of image recognition. A Weibull-calibrated 

SVM was introduced in [7] for open-set image recognition. It was built for minimizing the empirical 

error and open space risk. An open-set algorithm called PSR-SVM was proposed in [8] to compute the 

posterior probability distribution for all classifier outputs, using a confidence measurement to determine 

whether a certain event belongs to a specific group of predefined events or not. Similarly, in radar image 

recognition, an automatic target recognition was published in [9], where open-set recognition was used 

on high-scale resolution in radar images. It formulated an automated target images recognition. For the 

deep open-set problem, a deep CNN for face recognition produced some promising results in [10]. 

Gutoski et al [11] introduced a human action recognition system using a 3D CNN that rejects inputs 

belonging to unknown classes. A deep CNN for environmental sound recognition was proposed in [12] 
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but it did not perform an open-set recognition well. In this paper, we adapt the EVM and meta-

recognition [13] in the SoftMax activation layer function. This method measures the sample signal 

probability and detects a potential novel class. 

3. Methodology 

The proposed CNN architecture includes several convolutional layers [14]. The convolutional layers 

extract higher-level features for the final classification. We used 2D CNNs since they can capture the 

spatiotemporal information of the signal [15]. The output of the last convolutional layer is compressed 

into a 1D vector after the series of convolutional layers. The automatically generated feature vector is 

the result of this phase. 

3.1. Preprocessing 

Each audio signal is composed of different frequencies and different energy amplitudes, with quick 

variations within a short time. There is a need to define and represent audio signals such that a robust 

recognition system can be built. We have chosen the log-Mel spectrogram since it has proven to be 

suitable to model the human auditory system and is used in many speech and audio recognition tasks 

[16]. The Mel spectrogram is a spectrogram that converts frequencies to the Mel scale. It is computed 

by using a set of overlapping triangle filters to ascertain the energy of each spectral band. Audio features 

are obtained by computing 64 log-Mel bins with a window length of 1024 and a hop size of 500 samples 

at a 44.1 kHz sampling rate.  

3.2. Network Architectures 

The architecture block of the CNN is composed of convolution layers and pooling layers. A 

convolution layer applies filters to the input then takes the inner product and adds the bias. Each filter 

has its own bias and weights. A pooling layer reduces the dimensionality of the subsequent layers. It is 

applied to each convolution feature map independently. Please refer to [2] for a more detailed 

description. The input features (2D Mel spectrogram array) are organized to be fed into the CNN 

algorithm, each representing a small window of input audio signal for training or testing. Rectified 

Linear Unit (ReLU) activation functions are used in each convolutional layer, which imposes 

nonlinearity on the feature maps.  

When we apply more convolution and pooling techniques to feature maps at higher levels, their 

resolution decreases. Before feeding the features to the output layer, they must be integrated across all 

frequency bands. On top of the last CNN layer, fully connected hidden layers are formed. The SoftMax 

is the output layer used as an activation function to predict probability over the class labels. Each 

number in the softmax function's output is inferred as the probability of belonging to each class. 

However, for open-set recognition, SoftMax cannot work well, so we propose to replace it with the 

EVM to determine the probability of the output for each class. 

For closed-set recognition, let us assume the known classes 1 2{ , ,..., }NC C C , where Nk  is the number 

of known classes. The final layer has the same size as the number of known classes. We denote the 

representation of this final network layer as ( )y f x= , where f  denotes the network as a function. 

When an audio data point x  arrives, the SoftMax function to label this sound is defined as follows:  
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The SoftMax function assigns a certain probability to each training class by computing the maximum 

SoftMax probability, which is suitable for the optimization of the deep network in the closed-set 

recognition. In open-set settings, we need to consider x N , where the class 1NC + corresponds to a novel 

class. The crucial step is to find a suitable value for thresholding between known and unknown classes. 

Some previous works such as [11] and [17] used test data distributions and thresholds values. In this 

work, we set a threshold by calibrating the activation vector with the inclusion probabilities of each 



class, where the extreme-value theory indicates that the Weibull family of distributions is fit for this 

purpose [18]. To build a matched score distribution during training time, the distance between all 

training samples from a given class and its associated class mean   is calculated using some distance 

functions, such as, Euclidean, hybrid, and cosine distance. Then, a Weibull distribution is equipped to 

the tail of the matched distribution. We used the libmr library [13] to compute the parameters in the 

Weibull distribution, whose values of hyperparameters were taken as suggested in [19]. 

4. Evaluation Metrics 

We assess the effectiveness of our proposed algorithm by computing similarities after aligning the 

recognition outputs with a reference ground truth. The evaluation utilizes cross-validation, which allows 

evaluation of the accuracy of data that may not be part of the training dataset. Two fundamental 

assumptions have been used in the DCASE/ AASP challenges [20] to evaluate how individual audio 

sounds are classified: 

• Segment-based evaluation: the system output and ground truth are compared for each segment 

length. 

• Event-based evaluation: the system output is considered the same within all ranges (duration) of 

the event. This means that event labels in the recognition output will be compared to the ground 

truth events. 

Let us consider a binary classification, where the labels consist only of positives or negatives. Based 

on true labels and predicted labels, we divide the metrics into four intermediate statistics: true-positive 

(TP), false-positive (FP), true-negative (TN), and false-negative (FN). A count is made for each category. 

Applying this to a multi-class problem, every single classifier that produces a “positive” or “negative” 

prediction can be “true” or “false” depending on the corresponding ground-truth label.  

4.1. Recognition Accuracy  

The recognition accuracy (RA) can be described as the ratio of the correctly labeled predictions to the 

whole pool: 
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4.2. Precision And Recall 

Precision (Pr) is the ratio of predicted positive samples that are calculated correctly (true) divided by 

all predicted positive samples, while recall (Re) is the fraction of predicted positive samples correctly 

detected from all ground truth positive samples (labels). For multi-class classification, there are two ways 

of computation: macro-averaging and micro-averaging [21].  

1

1
 

N
i

macro

i i i

TP
Pr

N TP FP=

=
+

  
1

1 N
i

macro

i i i

TP
Re

N TP FN=

=
+

      () 

1

1

 

( )

N

i

i

micro N

i i

i

TP

Pr

TP FP

=

=

=

+




 1

1

 

( )

N

i

i

micro N

i i

i

TP

Re

TP FN

=

=

=

+




        () 

4.3. F1-measure 

The F1-measure includes both precision and recall merged in a single score, which is computed as the 

harmonic mean between precision and recall. The F1-measure is computed as: 
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4.4. Confusion Matrix 

The confusion matrix ( , )CM i j  summarizes the performance of multi-class recognition. It depicts the 

various ways in which the classification model gets confused when making predictions. Each column of 

the matrix represents a real class, whereas each row represents a predicted class. The diagonal of this 

matrix ( )i j=  reveals the correct prediction.  

5. Experiments 

Extensive experiments were conducted using Python. A Keras [22] implementation of CNNs was 

used, with TensorFlow [23] as the backend. First, we carried out closed-set recognition experiments 

where the audio dataset is separated into training and testing datasets. 

 
Figure 1: Confusion matrix of event-based recognition 

 

Figure 2: Confusion matrix of frame-based recognition 

To model the classifiers, we applied the 5-folding cross-validation technique where a total of 80% 

is used as the training dataset, while the remaining 20% of the data is used for testing. The experiment 

is conducted on the DCASE2016 dataset. This dataset consists of audio recorded in everyday life, which 

includes 11 sound classes that were recorded in an office environment: clearing throat, coughing, 

speech, drawer, keyboard, keys drop, knock, laughter, page-turning, phone ringing, and a door slam.  



5.1. Closed-set Recognition 

The classification output is evaluated to be correct or not according to the ground truth. We did not 

perform comparisons with other algorithms in this part, because the experiments in a closed-set regime 

aim to evaluate the ability of the algorithm to differentiate among recognized classes. The comparison 

will be conducted later in the open-set recognition part. As can be noticed from Fig. 1, the event-based 

confusion matrix discloses that most of the classes have been recognized very well except door-slam 

and phone-ring classes, whose accuracies were 60% and 70 %, respectively. Fig. 2 shows the confusion 

matrix after applying frame-based recognition. The right column reveals the percentage accuracy of 

each class. Most of the classes have been recognized correctly, and some misclassification can be also 

observed that is because the similarities among these classes are high. The sound class has a great impact 

on the results, as expected. For example, the door-slam class was the hardest class to recognize, 

probably because of the short length of such sounds. 

Known
 Yk

Target
Yt

 
Figure 3: Venn diagram of acoustic classes. 

5.2. Open-set Recognition 

The experiments in this section were performed to recognize audio sounds where the testing set also 

includes classes that may not be part of the training dataset. These experiments measure the capability 

to discriminate known classes from novel classes and to discriminate known classes from one another. 

The level of openness for a classification task can be defined as: 
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Where the subscripts ,k t  and u are for the known, target, and unknown label sets, as defined in Fig. 

3. The testing dataset is defined as test k t uY Y Y Y=   , while the training dataset is the combination 

train t kY Y Y=   , and the unknown classes are its complement  |  and  u train testY y y Y y Y=   . If we set k tY Y=  

these yields train kY Y= .  

We used varying degrees of openness and followed k-fold cross-validation to obtain robust evaluation 

metrics. The experiments were performed by generating different amounts of openness. Our experiments 

were conducted for several evaluations in which we examined how well our proposed algorithm 

performs in comparison to other representative algorithms: W-SVM [6], IOmSVM [8], OSNN [24], 

and OSmIL [25]. 

https://www.wordhippo.com/what-is/another-word-for/can_be_noticed.html


 
Figure 4: F1-measure as a function of openness for open-set recognition. Results computed for event-
based metrics. 

The parameters of all previous algorithms were set according to the corresponding paper. To ensure 

a fair comparison, all of the algorithms were run on the same dataset and the same distribution of classes. 

 
Figure 5: F1-measure as a function of openness for open-set recognition. Results computed for frame-
based metrics. 

The experimental results are depicted in Fig.4 for event-based recognition and in Fig.5 for frame-

based recognition. It is clear that there are considerable differences in the performance among the 

different methods. Looking at these figures, all the methods, in general, suffer from a performance 

decrease if the openness increases. However, our proposed algorithm performs relatively well compared 

to the other methods, in terms of determining the novel classes and discriminating among the known 

classes. The OSmIL algorithm had the worst performance. As expected, the performance of event-based 

measures outperforms the performance of frame-based measurements. 

6. Conclusion 

In this work, we presented a CNN network architecture that is efficient for robust audio open-set 

recognition. Extensive testing was done to distinguish between known and unknown audio classes. Our 

proposed method overall outperformed representative previous work across a wide range of openness 

levels. For further work, more research should be done to see how well the proposed CNN performs on 



large real-world audio datasets. Experiments and algorithmic modifications for incremental learning 

should also be performed. 
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