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Abstract  
A method for the analysis of digital X-ray moiré images using artificial neural networks such 

as "multilayer perceptron" has been developed. Moiré images are obtained by the action of 

many forces on the surface of the analyzer crystal. Image analysis consisted in solving the 

inverse problem, namely in calculating the values of forces based on the intensity distribution 

of the moiré image. Moiré image contours after logarithmization, zooming and convolution 

were used as input signals for the neural network. Due to this image processing, the learning 

time of the neural network is reduced and the learning error remains low. The output signals 

of the neural network are the values of the set (series) of forces that generated the moiré 

image. Artificial neural network training was performed by the back propagation method. 

The training sample consisted of a series of calculated moiré images with known values of 

sets of forces. The artificial neural network was developed by Python in Google Colab cloud 

platform. The results of testing the developed program showed high accuracy of restoring the 

values of the set of forces in the analysis of calculated and experimental moiré images. 
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1. Introduction 

X-ray moiré images carry valuable information about the studied crystals due to their high 

sensitivity to small deformations of the crystal lattice, which allows to determine the relative 

deformations of the lattice with an accuracy of 10-8 [1-2]. However, the task of calculating the 

intensity distribution of the X-ray moiré image obtained using an LLL interferometer (triple Laue 

interferometer) is quite difficult due to the influence of many different factors: defects of the crystal, 

geometric characteristics of the interferometer and others [3-5]. In this paper, it is believed that the 

deformation of the crystal is due to many forces that cause the appearance of a characteristic intensity 

distribution of the moiré image in the form of light and dark bands. One way to calculate the values of 

the intensity of the moiré image is the numerical solution of a system of differential equations of the 

hyperbolic type (Takagi equations) [2-5]. In addition, the inverse problem of calculating the values of 

the set of forces based on the moiré image is even more complex and is not solved analytically. 

Therefore, the paper proposes to calculate the values of the forces set on the basis of moiré images 

using artificial neural networks (ANN) type "multilayer perceptron" [6-9]. The advantage of using 

ANN as a means of artificial intelligence in this case is the ability to train ANN on examples (training 

set), which does not require the construction of a complex mathematical model of X-ray 
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interferometer. Moiré image contours after logarithmization, zooming and convolution were used as 

input signals for the ANN [10-12]. The image contours are analyzed because the values of band 

periods (and their respective spatial frequencies) are extremely informative for X-ray moiré images, 

and the values of such band periods are proportional to the distances between the band contours. 

Logarithmization of the image intensity distribution allows to analyze both strong and weak signals, 

and image convolution is used to smooth them and identify common patterns. Zooming of images was 

used to reduce the training time of ANN. The output signals of the ANN are the values of the set  of 

forces that caused the appearance of the moiré image. ANN training was performed by the method of 

back propagation. The training set consists of a series of calculated moiré images with known values 

of force sets. The ANN was developed by Python language [13-15] in Google Colab cloud platform 

[16]. After training, ANN is able to solve the inverse problem, i.e. to restore the value of the forces set 

acting on the crystal, based on the analysis of calculated and experimental moiré images. 

2. Method of analysis of X-ray moiré images using artificial neural networks 
2.1. Sequence of formation and processing of moiré images 

Initial digital moiré images f are formed and processed as rectangular matrices f = (f (i, k)), where 

i = 0, ..., Mi-1; k = 0, ..., Nk-1; Mi is the height of the image in pixels, Nk is the width of the image in 

pixels [10-12]. The brightness of the images f is normalized in the range from 0 to 1. Experimental 

moiré images are scanned from photographic plates or read from CCD-detectors, and the simulated 

images are calculated by numerical solution of the system of differential equations [1-5]. In all cases, 

the intensity distribution of the image f depends on the values of the set of forces Pn, where 

n = 0,..., N-1, which act in the X-ray LLL interferometer on the surface of the studied crystal. The set 

of N such forces are in some way placed spatially, for example, linearly with a given step. 

Before analyzing moiré images f by ANN, it is necessary to perform their special processing to 

highlight the informative signs of the images and reduce their dimensionality. Such image processing 

consists of contouring, logarithmization, zooming and low-pass filtering. 

The selection of contours [11-12] is performed to quantify the period of dark and light bands on 

moiré images, because the distance between the contours describes the periods of the respective 

bands. The calculation of contours is performed by the Sobel method by convolving the image f with 

the kernel of the filter wSX to select horizontal contours SX and with the kernel of the filter wSY to select 

vertical contours SY, where the filter kernels are described by formulas 

𝑤𝑆𝑋 = [
−1 −2 −1
0 0 0
1 2 1

] , 𝑤𝑆𝑌 = [
−1 0 1
−2 0 2
−1 0 1

]. 
(1) 

The resulting contours cn0 = (cn0 (i, k)), where i = 0, ..., MiC-1; k = 0, ..., NkC-1, are calculated as the 

root of the sum of the squares of the horizontal SX and vertical SY contours. To avoid edge effects, the 

image of the contours (MiC × NkC pixels) is reduced (compared to image f) by the bandwidth BC 

(BC = 5 pixels) around the perimeter of the image, i.e. MiC = Mi - 2BC, NkC = Nk - 2BC. In the images of 

contours cn0, the intensity values of different sections can differ significantly, so for further analysis of 

all components of the signal with different intensities, the image of contours cnA with a logarithmic 

scale in intensity is used. 

The obtained images of contours cnA have a fairly high resolution, so the supply time to the inputs 

of the ANN pixel intensities training time will be long. Therefore, to reduce the training time of ANN 

on the basis of images cnA, the images of contours cn on a reduced scale (Miw × Nkw pixels) were 

calculated by cubic interpolation. Reducing the scale of images cn is done to such a size Miw × Nkw, 

which does not yet increase the training error of ANN. 

Scalable images of contours cn describe the local features of each band and do not have 

generalizing characteristics. That is, when training the images of the contours of the ANN will be able 

to accurately restore the values of the forces Pn only for those images that almost completely coincide 

with the images of the training set. Therefore, to give the ANN generalizing properties the low-

frequency filtering [10-12] of the image of contours cn by convolution with a kernel w = (w (m, n)) of 

size Mw × Nw in the spatial region is used according to the formula 



𝑓𝑤(𝑖𝑤, 𝑘𝑤) = ∑ ∑ 𝑐𝑛(𝑖𝑤 −𝑚 −𝑚𝐶 , 𝑘𝑤 − 𝑛 − 𝑛𝐶) ∙ 𝑤(𝑚, 𝑛)

𝑁𝑤−1

𝑛=0

𝑀𝑤−1

𝑚=0

 
(2) 

where  fw = (fw (iw, kw)) is filtered image; iw = 0, ..., Miw-1, kw = 0, ..., Nkw-1; 

mc = (Mw2 + 1) is the center of the filter kernel in height; 

nc = (Nw2 + 1) is the center of the filter kernel in width; 

Mw2, Nw2 – whole parts of half the size of the filter kernel. 

The operation of convolution the image cn with the kernel w is simply written in the form 

fw = cn * w. The two-dimensional Gaussian function with standard deviation (SD) σw was used as the 

kernel of the filter w. 

2.2. Mathematical model of an artificial neural network 

A three-layer perceptron with back propagation training method was used as ANN [7-9]. A 

mathematical model of ANN has been developed, which describes the structure of the neural network 

and its functioning in the modes of training, testing and forecasting. 

The structure of the ANN is as follows (Fig. 1): 

1. The input layer X; the states of its elements are written in the vector X = (Xi), where i = 0,..., QX. 

The size of the training set (number of vectors) at the inputs X is equal to QN, the vector number 

ni = 0,..., QN-1. The inputs of layer X are fed to the values of the corresponding pixels of the filtered 

image of the contours fw (2), normalized in the range from 0 to 1. Layer X does not contain a matrix of 

weights, so it is not taken into account in the total number of layers. 

2. Hidden layers 

Layer V1 (level L = 1); the states of its elements are written in the vector V1 = (V1
k1), where 

k1 = 0,..., QV1; the weights of the layer are written in the matrix W1 = (W1
i, k1); the difference of the 

layer vectors (during training) is written in the vector D1 = (D1
k1), where k1 = 0,..., QV1. 

Layer V2 (L = 2): the states of its elements are written in the vector V2 = (V2
k2), where 

k2 = 0,..., QV2; the weights of the layer are written in the matrix W2 = (W2
k1, k2); the difference of the 

layer vectors (during training) is written in the vector D2 = (D2
k2), where k2 = 0 ... QV2. 

3. Source layer Y (L = 3): the states of its elements are written in the vector Y = (Yj), where 

j = 0,..., QY; the weights of the layer are written in the matrix W3 = (W3
k2, j); the difference of the layer 

vectors (during training) is written in the vector D3 = (D3
j). True output (true) is described by the 

vector YT = (YT
j), where j = 0,..., QY, which is recorded normalized in the range from 0 to 1 values of 

forces Pn, where n = 0,..., N-1 (QY = N-1). 

 

 
Figure 1: Structure of a multilayer perceptron with input and output signals 
 

The normalization of the values of the vector YT is performed by the formula 

𝑌𝑗
𝑇 = 𝑃𝑗 𝑃𝑛𝑀𝑎𝑥⁄  (3) 

where  PnMax is the maximum value of the set of forces Pn; j = 0 ... QY. 

Accordingly, to calculate the predicted values of forces PnN at the outputs of the ANN, the values 

of the vector Y are multiplied by the coefficient PnMax. 

ANN is studied according to the algorithm of back propagation in this sequence (Fig. 2). 



 
Figure 2: Scheme of ANN training algorithm 

 

1. Initialization.  The initial weights W  for all layers are set equal to small random values in the range  

[-ΔW, .. ΔW] (for example, ΔW = 0.1) using a uniformly distributed random variable. For example, for the 

hidden layer V1, the initial values of the weights are calculated by the formula: 

𝑊𝑖,𝑘1
1 = 2(𝑅𝑛𝑑 − 0.5) ∙ ∆𝑊, (4) 

where Rnd is uniformly distributed in the range from 0 to 1 random variable, i = 0,..., QX; k1 = 0,..., QV1. 

In weight matrices W, rows correspond to the elements from which the connections come, and 

columns correspond to the elements to which the connections go. 

2. Normalization (scaling) of the values of all X and YT vectors in the range from 0 to 1. 

Normalization of vector values is due to the fact that the ANN uses sigmoid activation functions of 

neurons whose output signals are in the range from 0 to 1. 

3. Direct propagation is to find the output vector Y based on the input X by the following formulas: 

Layer 1: 

𝑁𝑒𝑡𝑘1 = ∑ 𝑋𝑖
𝑄𝑋
𝑖=0 ∙ 𝑊𝑖,𝑘1

1 , 𝑉𝑘1
1 =

1

1+exp⁡(−𝑁𝑒𝑡𝑘1)
, (5) 

where k1 = 0,..., QV1. 

Layer 2: 

𝑁𝑒𝑡𝑘2 = ∑ 𝑉𝑘1
1𝑄𝑉1

𝑘1=0 ∙ 𝑊𝑘1,𝑘2
2 , 𝑉𝑘2

2 =
1

1+exp⁡(−𝑁𝑒𝑡𝑘2)
, (6) 

where k2 = 0,..., QV2. 

Layer 3: 

𝑁𝑒𝑡𝑗 = ∑ 𝑉𝑘2
2𝑄𝑌

𝑗=0 ∙ 𝑊𝑘2,𝑗
3 , 𝑌𝑗 =

1

1+exp⁡(−𝑁𝑒𝑡𝑗)
, (7) 

where j = 0,..., QY. 



As a result of direct propagation, the mean squared error (mse) is calculated (for all vectors of the 

training set) by the formula: 

𝜀𝐾 =
1

𝑄𝑁 ∙ (𝑄𝑌 + 1)
∑ ∑(𝑌𝑗,𝑛 − 𝑌𝑗,𝑛

𝑇 )
2

𝑄𝑌

𝑗=0

𝑄𝑁−1

𝑛=0

 

(8) 

If the value of the mean square error εK is less than the specified value, the network training 

process ends. 

4. Back propagation is the correction of weights through the difference signals D. 

Layer 3: 

𝐷𝑗
3 = 𝑌𝑗(1 − 𝑌𝑗)(𝑌𝑗

𝑇 − 𝑌𝑗), 𝑊𝑘2,𝑗
3(𝑒)

= 𝑊𝑘2,𝑗
3(𝑒−1)

+ 𝜂𝑌𝐷𝑗
3𝑉𝑘2

2 , (9) 

where  j = 0,..., QY; e is epoch number; because the sigmoid activation function of neurons is used, 

the difference of vectors (YT - Y) is multiplied by the derivative of the sigmoid function: Y (1 - Y). 

Layer 2: 

𝐷𝑘2
2 = ∑ 𝑉𝑘2

2 (1 − 𝑉𝑘2
2 )(𝐷𝑗

3 ∙ 𝑊𝑘2,𝑗
3 )

𝑄𝑌
𝑗=0 , 𝑊𝑘1,𝑘2

2(𝑒)
= 𝑊𝑘1,𝑘2

2(𝑒−1)
+ 𝜂𝐿2𝐷𝑘2

2 𝑉𝑘1
1 , (10) 

where k2 = 0,..., QV2. 

Layer 1: 

𝐷𝑘1
1 = ∑ 𝑉𝑘1

1 (1 − 𝑉𝑘1
1 )(𝐷𝑘2

2 ∙ 𝑊𝑘1,𝑘2
2 )

𝑄𝑉2
𝑘2=0 , 𝑊𝑖,𝑘1

1(𝑒)
= 𝑊𝑖,𝑘1

1(𝑒−1)
+ 𝜂𝐿1𝐷𝑘1

1 𝑋𝑖, (11) 

where k1 = 0,..., QV1; ηY, ηL2, ηL1 – training standards (norms) (e.g. 0.1). 

The mode of ANN testing consists in direct signal propagation, i.e. in calculation by means of 

formulas (5-7) on the basis of input moiré images of input signals X and output Y, as well as predicted 

values of forces PnN at ANN outputs. In the test mode, the predicted values of forces PnN are compared 

with the exact (pre-known) values of forces Pn. 

The prediction mode is similar to the test mode, but in this mode only the predicted values of 

forces PnN are calculated, and their exact values Pn are unknown. 

2.3. Software implementation of moiré image analysis using artificial 
neural networks 

The program "p_Moire_Neuro" for the analysis of X-ray moiré images was created on the basis of 

an algorithm (Fig. 2) in Python [13-15] using the cloud platform Google Colab in a web shell Jupyter 

Notebook [16]. The program provides reading of initial images f in various graphic formats (in 

particular in tiff and jpg formats). The values of the correct output signals of the ANN, namely the set 

of forces Pn for the training set are read from text files. The values of the forces predicted by means of 

ANN are displayed in text and graphic formats. 

The program imported a number of libraries, including the "numpy" library for mathematical 

calculations, the "matplotlib" library for graphing and image visualization, the "pandas" library for 

processing text file data, the "scipy" and "cv2" libraries for contouring and image scaling. Low-pass 

filtering is performed by the function "gaussian_filter" of the submodule "ndimage" of the "scipy" 

library. Uniformly distributed random variables were generated by the "random.uniform" function of 

the "numpy" library. 

The "tensorflow" library for working with neural networks was not used to create the ANN model, 

and the functions of the "numpy" library were mainly used to process signals in the ANN. This 

solution partially reduces the speed of the program when training ANN, but provides more flexibility 

in choosing the structure and modes of operation of the neural network. 

3. Results of neural network analysis of X-ray moiré images 

ANN training was performed by the program "p_Moire_Neuro" on the basis of a training set, 

which contained 15 calculated moiré images f with known values of forces Pn [4-5], which caused 

their formation (Fig. 3). In the image file name, the first digit means the form of force distribution (S1 

– with a minimum in the center, S2 – uniform distribution, S3 – with a maximum in the center), the 

next number means the sum of forces, and the set of numbers after "PL" means forces Pn (Fig. 4). 



 
Figure 3: Image of the training set 
 

 
        а)                b) 

Figure 4: The calculated image f of the training set, which is formed by the action of the forces 
Pn = (5, 3, 2, 1, 2, 3, 5) (a) and the three main shapes (S1, S2, S3) of the distribution of forces (b) 
 

In this work, the values of Pn forces were measured in relative units, but it is possible to convert 

them into absolute (N) [4-5]. On the basis of the initial images f their contours are calculated, 

logarithmization, zooming and filtering are performed (Fig. 5 – Fig. 7). The contours of the images 

were calculated by the Sobel method in terms of height and width, and the image size f was reduced 

from the initial (Mi × Nk pixels) to the size of the filtered image of the contours fw (Miw × Nkw pixels). 

To prevent retraining in addition to training set (Fig. 3) also formed a test set of images with 

known values of forces (Fig. 8). Distributions of test set forces have shapes similar to the distributions 

of training set forces, but quantitatively different from them. 



   
a)    b)    c) 

Figure 5: Calculated image f of the training set, which is formed by the action of the forces 
Pn = (3, 3, 3, 3, 3, 3, 3) (a); calculated on the basis of image f the contours cnA after logarithm (b); 
calculated on the basis of cnA the filtered image fw on a reduced scale (c) 
 

    
a)    b)    c) 

Figure 6: Calculated image f of the training set, which is formed by the action of the forces 
Pn = (1, 3, 4, 5, 4, 3, 1) (a); calculated on the basis of image f the contours cnA after logarithm (b); 
calculated on the basis of cnA the filtered image fw on a reduced scale (c) 
 

   
a)    b)    c) 

Figure 7: Calculated image f of the training set, which is formed by the action of the forces 
Pn = (35, 21, 14, 7, 14, 21, 35) (a); calculated on the basis of image f the contours cnA after logarithm 
(b); calculated on the basis of cnA the filtered image fw on a reduced scale (c) 
 

The peculiarity of the test sample is that it was not taken into account in the training process to change 

the weight of the ANN, and was used only to calculate the training error for the test set (error was 

calculated similarly to the error for the training set). ANN training was performed for a specified 

number of epochs, but was interrupted with increasing error for the test set (Fig. 9). 



 
a)     b)    c) 

Figure 8: Calculated images f of the test set, which are formed by the action of the forces: 
a) Pn = (42, 21, 7, 7, 7, 21, 42); b) Pn = (6, 3, 1, 1, 1, 3, 6); c) Pn = (24, 12, 4, 4, 4, 12, 24) 
 

Training of ANN was carried out during QE = 5000 epochs. For moiré images f with size Mi × Nk = 

= 640 × 640 pixels, filtered images of contours fw with dimensions Miw × Nkw = 78 × 78 pixels are 

calculated, so the number of ANN inputs is equal to (QX + 1) = 6084. The number of neurons in the 

first hidden layer is set equal to (QV1 + 1) = 64, the number of neurons in the second hidden layer is 

(QV2 + 1) = 32. This number of neurons (QV1, QV2) was used, because with more neurons in the hidden 

layers the value of the training error εK (8) does not decrease, but significantly increases the training 

time; at the same time, with fewer neurons (QV1, QV2), the training error εK increases. 

The values of training norms are set equal to ηY = 0.09, ηL2 = 0.09, ηL1 = 0.09, because at lower 

values of norms the training time increases significantly without changing the training error εK, and at 

higher values of norms the error εK increases. 

 

 
Figure 9: Dependence of training error on the number of epoch e; εK (epsK) is training error for the 
training set, εT (epsT) is training error for the test set; the minimum error for the training set 
εKM =  6.9 ∙ 10-5; training time tTR = 1391.9 s. 
 

As a result of ANN training, the values of the predicted PnN forces compared to the correct Pn for 

all images of the training set were almost identical, as evidenced by the small values of the mean 

square error eps (Fig. 10). For images of the test set, the distribution of forces for which differs from 

the distribution of forces of the training set, a satisfactory agreement of the calculated forces PnN with 

the theoretical Pn is obtained (Fig. 11). 

This can be explained by the fact that, thanks to the training of ANN, it became able to establish 

the relationship between the intensity distribution of moiré images and the distribution of forces that 

led to their formation. After training, ANN was used to calculate the values of forces on the basis of 

both calculated (Fig. 12) and experimental moiré images (Fig. 13). 

 



   
  a)    b)               c)  

 
  d)    e)               f) 

    
g)    h)             k) 

Figure 10: Examples of calculated PnN and theoretical Pn forces for the training set: 
a) Pn = (5, 3, 2, 1, 2, 3, 5); b) Pn = (3, 3, 3, 3, 3, 3, 3); c) Pn = (1, 3, 4, 5, 4, 3, 1); 

d) Pn = (25, 12, 4, 2, 4, 12, 25); e) Pn = (12, 12, 12, 12, 12, 12, 12); f) Pn = (4, 12, 16, 20, 16, 12, 4); 
g) Pn = (35, 21, 14, 7, 14, 21, 35); h) Pn = (21, 21, 21, 21, 21, 21, 21); k) Pn = (7, 21, 28, 35, 28, 21, 7) 

 

 
  a)    b)         c)  

Figure 11: Examples of calculated PnN and theoretical Pn forces for the test set: 
a) Pn = (42, 21, 7, 7, 7, 21, 42); b) Pn = (6, 3, 1, 1, 1, 3, 6); c) Pn = (24, 12, 4, 4, 4, 12, 24) 



     
      a)           b) 

Figure 12: Calculated moiré image (a) and the results of the calculation of PnN forces using ANN in 
comparison with the theoretical values of Pn = (35, 15, 5, 5, 5, 15, 35) (b) 
 

   
         a)                                                              b) 
Figure 13: Experimental moiré image [5] (a) and the results of the calculation of forces 
PnN = (1.98, 6.22, 8.96, 11.31, 8.94, 6.35, 2.01) using ANN (b) 
 

In the case of experimental moiré images, the obtained values of forces are consistent with the data 

of other research methods [2-5]. 

4. Conclusion 

A method for analyzing digital X-ray moiré images using artificial neural networks has been 

developed. Image analysis consisted in solving the inverse problem, namely in calculating the values 

of forces whose action on the surface of the studied crystal led to the formation of a moiré image. A 

multilayer perceptron was used as an ANN, the input signals of which were the contours of the moiré 

image after logarithmization, scaling and filtering. Due to this image processing, the training time of 

the ANN is reduced and the training error remains low. The output signals of the ANN were the 

values of the set of forces, the action of which generated a moiré image. ANN training was performed 

by the back propagation method. The training set consisted of a series of calculated moiré images 

with known values of forces. The artificial neural network was developed in Python in the cloud 

platform Google Colab. The results of testing the developed program showed high accuracy of 

restoring the values of the forces in the analysis of calculated and experimental moiré images. 

The scientific novelty of the work is the use as input signals of the artificial neural network not 

directly the pixel intensities of the moiré image, but the values of reduced, logarithmic and filtered 

image contours, which reduces training time and prevents retraining of the artificial neural network.  



An important advantage of the developed method of analysis of moiré images using artificial 

neural networks is the ability to restore forces with their arbitrary geometric placement on the surface 

of the studied crystal. To analyze new types of moiré images, it is enough to train the developed 

artificial neural network on the basis of data from a new training set. 
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