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Abstract  
Nowadays the requirements for modern information security systems stability and speed 

are constantly growing. Therefore, the development of methods for parallel processing of 

multi-bit numbers in asymmetric cryptographic algorithms is an urgent task. Modern 

algorithms in most cases have strictly consistent structures based on the positional binary 

numeral system, which causes certain functional limitations. An important area is the 

usage of non-positional residue number system. It allows successfully parallelizing the 

processes of addition, multiplication and exponentiation of multi-bit numbers. These are 

basic operations in asymmetric systems for information flows protection in computer 

systems. However, there are some difficulties in recovering a decimal number from its 

residues due to the most time-consuming operation of finding a multiplicative inverse 

element by moduli. To eliminate this problem, it is advisable to use a modified perfect 

form of the residue number system. 

In the paper methods for multiplying multi-bit numbers in the residue number system 

and its modified perfect form are proposed, which, in contrast to the existing ones, allow 

reducing the bit size of operands and executing arithmetic operations in parallel. 

Analytical expressions of time complexities depending on factors bit-size and number of 

moduli are constructed for developed methods. As a result, it was determined that the 

complexity significantly increases with increasing bit size and decreasing number of 

modules. For effective software implementation of the proposed methods, a block 

diagram is designed and the appropriate algorithmic implementations are developed, also 

decision on the programming environment is substantiated. Experimental studies of the 

time characteristics of multiplication at different ratios between moduli in the residue 

number system have been carried out. Graphical dependencies of time characteristics on 

bit size of input parameters are provided. 
 

Keywords 1 
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1. Introduction 

At the current stage of societal development, the scope of large numbers usage and operations on 

them is not limited to specialized science intensive tasks.  
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In recent years, asymmetric cryptography systems [1] have become increasingly important. Their 

implementation requires calculations on multi-bit integer operands with a few thousands of decimal 

digits [2]. 

In most cases, users have to use computer systems with limited performance to execute the client 

part of crypto-protocols. This determines the importance of increasing the speed of operations on 

large numbers in their software, hardware, or software and hardware implementation [5,6].  

With regard to asymmetric cryptography (RSA cryptosystems, Rabin, El Gamal, electronic 

digital signature algorithms, encryption on elliptical curves [5, 6]), the greatest attention should be 

paid to optimizing the performance of multiplication operations and its derivatives (exponentiation, in 

particular, exponent 2) [7], as they account for 45% and 24% (in the case of 2048-bit key) of the total 

complexity of cryptocurrency operations. 

The most common among positional number systems for today is the binary system that has a 

strictly consistent structure. This limits its ability to process information in parallel.  

Usage of non-positional number systems, one of which is the residue number system (RNS) [8], 

allows eliminating this drawback. It also has some known disadvantages, for example difficulties in 

division [9] and comparison [10] operations, but it can be successfully used in asymmetric 

cryptosystems to parallelize the processing of multi-bit numbers while adding, multiplying and 

exponentiating. 

2. Related works 

2.1. Theoretical foundations of RNS 

The theoretical basis of RNS is algebra and number theory. Any integer N, written in positional, in 

particular, decimal number system, is represented as a set (b1, b2, … , bk) in the RNS. bi values are the 

smallest non-negative residues from the division of the number N by fixed numbers (or moduli) р1, р2, 

... , рk (bi=N mod pi), where k is the number of moduli.  

The moduli must be natural and pairwise coprime numbers. In addition, the inequality 0NP–1, 

where Р= 
=

k

i
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1

- a number that determines the condition of bitwise calculations overflow. 

Arithmetic operations (addition, multiplication, exponentiation) are performed separately for each 

low-bit modulo. After that, obtained results are converted into a positional number system, mainly 

using the Chinese remainder theorem (CRT) [8].  

The reverse conversion into a positional number system is usually based on the CRT: 
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2.2. Application of RNS in computer systems 

RNS usage in computer systems can significantly increase the speed of integer arithmetic 

operations implementation, which is very important for asymmetric cryptography. In particular, in 

[11] a method of applying floating-point intervals for non-modular calculations in RNS was proposed.  

In [12] this method was improved and it was experimentally demonstrated that for random 

residues and a 128 modules set with 2048-bit dynamic range, the proposed implementation reduces 

the operating time by 39 times and memory consumption by 13 times compared to the 

implementation based on mixed transformations. 

In [13] it was shown that the usage of RNS in the Montgomery method is an effective way to 

increase the speed of modular multiplication, but its time complexity still remains high for multi-bit 



numbers processing. Significant acceleration can be achieved by moving to the processor level of 

arithmetic operations or cloud technologies usage [14].  

In [5, 15] secure and effective approaches for RNS application in cryptography on elliptic curves 

are presented. They are especially effective as a response to attacks through the side channel leakage 

and during the malfunctions introduction in the computer system.  

Paper [2] present effective algorithms for implementing RSA-cryptographic system based on 

RNS, experimental studies of which have shown that they have greater speed and resistance to brute 

force attacks compared to classical ones. 

2.3. Selection of specialized RNS modules sets 

One of the ways to increase the computers operating speed in RNS is the choice of specialized 

module sets, which significantly affects the execution time of both modular and non-modular 

operations. Therefore, RNS offers many module sets of different types and quantities for certain 

applications that significantly affect all parts of the hardware implementation, including direct 

converters, modular arithmetic channels, reverse converters. 

In the vast majority of works module type 2k, 2k±1 is considered, which enables rational usage of 

bit grid registers [14, 15].  

However, the search for inverse elements by module is characterized by considerable 

computational complexity and in number theory it is realized by a complete search of possible 

options, using the Euclidean algorithm or Euler's theorem [18, 19]. 

In [20] the modified perfect form (MPF) of RNS is proposed, in which 1mod =ii pM . This 

eliminates the operation of finding the inverse element and the calculations are performed according 

to the following formula: 
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because mi=±1. 

In addition, [20] presents the theoretical basis for the construction of a three-modulo MPF RNS. 

However, currently there are no experimental studies of time characteristics for performing arithmetic 

operations, in particular, multiplication in the RNS and its MPF. This is the purpose of this work. 

3. Proposed model 

3.1. Multiplication method in the residue number system 

Let's consider the product b=ac of two numbers a and c, written in the positional decimal number 

system, using RNS with a set of modulo рі. Their product 
=

=
k

i
ipP

1

 must exceed the desired result. 

First it is needed to find the remainders from the division of multiplicands by each of the modulo: 

аі=а mod pi; сі=с mod pi. Then obtained remains are multiplied by the appropriate moduli:  

bi=aici mod pi.  

The desired product is obtained as a result of restoring the positional (in particular, decimal) 

representation of the number of its residues according to the formula (1).  

To reduce the operands on which operations are performed when using the CRT, expression (1) 

should be written as follows: 
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3.2. Algorithmic implementation of the proposed multiplication method in 
RNS 

The step-by-step implementation of this method can be presented in the following way. 

1. Start: pi , i=1…k, a, c. 

2. Residues are being searched ai= a mod pi ci = c mod pi. 

3. bi =a
i* c

i
 mod p

i
 is calculated. 

4. The value 
=

=
k

i
ipP

1

is being searched. 

5. The basic RNS parameters are searched Mi =P/pi. 

6. mi = (Mi )-1mod pi is calculated. 

7. Operations are performed using RNS ( )( ) PpbmMcab iii

k

i
i modmod

1









== 

=

. 

8. End: b . 

For the effective software implementation of the proposed multiplication method in RNS its block 

diagram is developed and presented in Figure 1. 

 

 
Figure 1: Block diagram of the algorithm for multiplying multi-bit numbers in RNS 
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3.3. Research of the multiplication method time complexity in RNS 

The main operation of n-bit numbers multiplication by modulo in RNS is residues finding [19], 

finding the inverse value by modulo [16] (in MPF RNS it is not present), product of residues by 

modulo, restoring the decimal representation of the number from its residues. 

Therefore, for determining the complexity of the proposed method the complexity of the above 

mentioned operations, which are presented in table 1, must be taken into account. 

Table 1. 
Time complexity of basic multiplication operations in RNS 

№ Basic operations Time complexity in RNS Time complexity in MPF RNS 
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Given the tabular data, the multiplication time complexity in a conventional RNS will be 
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search by modulo in the MPF RNS, the time complexity will be reduced accordingly: 
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Figure 2 shows the surface, which demonstrates the dependence of the multiplication operation 

complexity O1(n, k) on the bit-size and the number of modulo factors. It is determined that the 

complexity increases significantly with increasing n and decreasing k.  

Examples of performing a multiplication operation in RNS 

To demonstrate the proposed method, let's consider the RNS with three moduli (k=3): p1=1579, 

p2=1627, p3=1705. Their product Р=4380201265 is a 33-bit number. Let's find the product of two 16-

bit numbers а=37831 and с=43529, which will be definitely less than Р. Table 2 shows the values of 

intermediate values from formula (3), which are used to find the product b. 

Table 2.  
Intermediate values for finding the product 

i 1 2 3 
pi 1579 1627 1705 
Mi 2774035 2692195 2569033 

Mi mod pi 1311 1137 1303 
mi 1361 342 1582 

 a=37831, c=43529  
ai=a mod pi 1514 410 321 
сi=с mod pi 896 1227 904 

bi 183 327 334 



 

 
Figure 2: Dependence of the multiplication operation complexity on the factors bit-size and the 
number of module 

3.4.  

Then b = (2774035((1361183)mod1579) + 2692195((342327)mod1627) + 

+2569033((1582334)mod1705))mod4380201265=(27740351160+26921951198+  

+25690331543)mod 4380201265=1646745599. 

Therefore, instead of multiplying two 16-bit numbers, it is needed to multiply the 22-bit number 

by 11-bit number.  

The calculation can be simplified taking into account the property of congruence that mi, bi mod 

pi=( mi, bi - pi) mod pi. It is advisable for the case when the parameters mi, bi are greater than the half 

of the corresponding module.  

For our example m1=1361 mod 1579= 

=-218mod1579, m3=1582mod1705=-123mod1705.  

Hence b=(-2774035((218183)mod1579) + 2692195((342327)mod1627)- 

- 2569033((123334)mod1705))mod4380201265=(-2774035419 + 26921951198 - 

-2569033162)mod 4380201265=1646745599. 

A significant reduction in computational complexity can be achieved by using a set of moduli that 

form MPF RNS (Mi mod pi=1), for example p1=1025, p2=2049, p3=2051.  

The values of corresponding parameters are shown in table 3. 

It is shown that in this case the bulky modular operation of finding the inverse element is 

eliminated. Then b=(-420249974+21022751181-2100225250)mod 4307561475=1646745599.  

4. Results and Discussions 

4.1. Rationale for choosing the programming environment 

A high-level general-purpose programming language Python was chosen for the software 

implementation of multiplication operation in RNS and  MPF RNS [20, 25-27]. It is focused on 

improving developer productivity and code readability.  
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Python kernel syntax is simple and minimal. At the same time, the standard library includes a large 

number of useful functions.  

Python code is organized into functions and classes that can be combined into moduli (they, in 

turn, can be combined into packages).  

An example of entering input parameters is shown in Figure 3. 

 

Table 3.  
Intermediate values for finding the product in MPF RNS 

i 1 2 3 

pi 1025 2049 2051 
 

Mi 
 

4202499 
 

2102275 
 

2100225 
 
 

Mi mod pi 

 

1024 mod 1025= 
= -1 mod 1025 

 
 

1 

 
 

1 

 
 

mi 

 

1024 mod 1025= 
= -1 mod 1025 

 
 

1 

 
 

1 

 a=37831, c=43529  

ai=a mod pi 931 949 913 
сi=с mod pi 479 500 458 

 

bi 
 

74 
 

1181 
1801 mod 2051= 
= -250 mod 2051 

 
 

 
Figure 3: The main program window 

 

The results are stored in a file with *.csv extension. Its name is written in the last line of the main 

window and includes all input parameters.  

An example of the generated file with the results of two numbers multiplication and the operation 

time is shown in Figure 4. 

4.2. Experimental studies of the multiplication operation software 
implementation in a conventional RNS 

Figure 5 presents the time characteristics of the multiplication operation b=ac in the three-module 

RNS with a fixed multiplier a=65536 with two different module systems (first case - the moduli have 

a little difference: р1=1625=  3 265536 , р2=1626, р3=1627 - dotted lines, the second case - moduli 

have a big difference: р1=163, р2=1627, р3=16381 - solid lines). The product of the moduli in both 

systems exceeds 232. 

 



The second factor c varied from 67 to a with an interval of 1311. The last one determined the 

number of obtained calculations, which was equal to 50. The horizontal lines indicate the average 

time of calculations for each case.  

 

 
Figure 4: Example of the received file 

 

 
Figure 5: Time characteristics of the multiplication operation in the three-module RNS 
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As shown in Figure 5, chart 1 is oscillating. The average execution time of the multiplication 

operation (line 2) is 0.008645 ms. In the second case, the multiplication time (Figure 3) does not 

fluctuate significantly.  

The average time (line 4) is 0.005934 ms, which is 1.46 times less than in the previous case. 

Therefore, in order to increase the speed in the RNS, pairwise coprime modulo must be chosen in 

such a way that they differ as little as possible from each other.  

4.3. Experimental studies of the multiplication operation software 
implementation in the MPF RNS 

For the MPF RNS research, system of moduli with a significant difference between them (p1=651, 

p2=691, p3=11246) was chosen by the formula obtained in [25-27]: 

12

2
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13
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pp

p
pp

−


+= .      (4) 

During a three-moduli MPF RNS construction according to formula (4), the system of the same 

bit-size moduli can not be selected. The smallest difference between the moduli will be following: 

12 13,2 = pp .       (5) 

Based on this, the following moduli were selected: р1=1025, р2=2049, р3=2051. Again, the product 

of the moduli in both cases exceeds 232. 

The input parameters were the same as for conventional RNS. The calculations were performed 

according to the expression for MPF RNS: 

( ) PMbMbMbb mod332211 ++−= ,    (6) 

The obtained results are presented in Figure 6. The solid line shows the multiplication time (curve 

1) and the average time (line 2) for 50 p values when p1=651, p2=691, p3=11246, dotted line (graphs 

3, 4) shown results respectively for р1=1025, р2=2049, р3=2051. 

 

 
Figure 6: Time characteristics of multiplication in the three-moduli MPF RNS  

 

It can be seen that in both cases at small с values, the amplitude of oscillations is large, with 

increasing с it decreases except for a small segment in the second half of the range of value с changes.  

The average time for the modulo system p1=651, p2=691, p3=11246 is 0,002177 мс (line 2), and 

for р1=1025, р2=2049, р3=2051 - 0,002133 ms (line 4), which is 1.02 times less than in the previous 

case.  
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A comparison of Figures 5 and 6 shows a significant increase in performance due to the MPF RNS 

usage.  

4.4. Comparative analysis of multiplication results in conventional RNS and 
MPF RNS 

Further studies were performed for numbers whose bit-size n varied from 16 to 24 bits. Four cases 

of the modulo system construction were considered: 

1) RNS moduli significantly different from each other; 

2) moduli are three consecutive numbers, the first and third of which are odd: 









3 2
1 2 nр ,  

р2= р1+1, р3= р1+2; 

3) moduli are calculated by the following formulas: р2= р1+1, р3= р1(р1+1)-1; 

4) moduli are calculated by the following expressions: р2= 2р1-1, р3= 2р1+1. 

In all cases the product of the modulo is the smallest, but greater than 22n. In the third and fourth 

cases, the modulo systems form MPF RNS. The first factor in the product b=ac was fixed: a=2n-1, 

which corresponds to the maximum number of the specified bit-size. The second factor c changed 

from the initial value 1
1000
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. Therefore, 1000 different 

values of the number c and, accordingly, the execution time of 1000 multiplication operations b=ac 

with a fixed value a and a variable c.  

Further, for each bit-size the average operation execution time was determined by formula (3). In 

addition, for cases 3 and 4, the average time tav 1 for executing operation of two numbers 

multiplication by formula (6) was determined.  

To eliminate accidental effects, all calculations were repeated 100 times. The corresponding sets of 

modulo, as well as the average calculation time for numbers with different bit-size are presented in 

Table 4. Figure 7 shows the graphs of the average time of the multiplication by formula (3) 

dependence on the bit-size of numbers n that are used according to the table 4 (the graph number 

corresponds to the case number in Table 4.  

Figure 7 shows that the most time is spent on a conventional RNS in the case when the moduli 

significantly different from each other.  

Moreover, the graph growth is almost linear with increasing bit-size. Graphs 2 and 4 are almost 

linear at small bit-size, more intensive growth of graphs is observed at n=19 and n=21 respectively. 

And the third graph is close to linear over the entire considered range.  

Analysis of figure 7 shows that the usage of moduli that either form the MPF RNS, or differ little 

from each other, allows increasing the speed of the computing system. 

Figure 8 presents graphs that show dependence of the average multiplication time on the bit-size n 

for the third (curve 1) and fourth (curve 2) cases of table 3, the moduli in which form MPF RNS, with 

the same input parameters using formula (6).  

Analysis of Figures 7 and 8 shows that the average computation time in MPF RNS decreases by 

approximately 2.5-3 times compared to the usual integer RNS form. 

Conclusion 

The paper proposes methods for multiplying multi-bit numbers in ordinary integer-valued RNS 

and MPF RNS, which, unlike the existing ones, allow reducing the operands bit-size and parallel the 

arithmetic operations execution. Analytical expressions for the developed methods time complexity 

depending on factors bit-size and number of moduli are constructed. As a result, it was determined 

that the complexity increases significantly with increasing bit-size and decreasing number of moduli.  

For effective software implementation of the proposed methods, a block diagram is designed and 

the appropriate algorithmic implementations are developed. Experimental studies of the time 



characteristics of multiplication at different ratios between moduli in RNS have been carried out. 

Graphical dependences of time characteristics on bit size of input parameters are provided. As a result 

of numerical experiments, it is determined that the average execution time of the multiplication 

operation is 1.46 times bigger when the moduli are significantly different than when they are almost 

the same. The speed of the algorithm for multi-bit numbers multiplication in MPF RNS is 

investigated. It is shown that the average time of the multiplication operation does not depend on the 

ratio between moduli.  

A comparative analysis of time results in ordinary RNS and MPF RNS for various sets of moduli 

and numbers with different bit-size is conducted. It was found that using MPF RNS instead of the 

ordinary integer-valued RNS allows reducing multiplication operation time by approximately 3 times. 

 

Table 4.  
Sets of moduli and average computation time for numbers with different bit-size 

n 16 17 18 19 20 21 22 23 24 

Case 
1 

p1 163 235 341 501 737 1093 1627 2429 3641 

p2 1627 2587 4097 6503 10323 16387 26009 41287 65539 

p3 16381 28413 49165 84541 144523 245807 416147 701881 1179703 

tav, s 8,154 8,362 8.526 9,819 9,280 9,571 9,649 9,705 9,911 

Case 
2 

p1 1625 2581 4095 6501 10321 16385 26007 41285 65537 

p2 1626 2582 4096 6502 10322 16386 26008 41286 65538 

p3 1627 2583 4097 6503 10323 16387 26009 41287 65539 

tav, s 5,891 5,95 5,962 5,966 6,199 5,335 6,682 7,185 7,304 

Case 
3 

p1 256 362 512 724 1024 1448 2048 2896 4096 

p2 257 363 513 725 1025 1449 2049 2897 4097 

p3 65791 131405 262655 524899 1049599 2098151 4196351 8389711 16781311 

tav, s 5,461 5,680 5,618 5,689 5,650 5,684 5,673 5,732 5,693 

tav 1, s 2,152 2,215 2,255 2,285 2,292 2,287 2,293 2,297 2,310 

Case 
4 

p1 1025 1626 2581 4097 6502 10322 16385 26008 41286 

p2 2049 3251 5161 8193 13003 20643 32769 52015 82571 

p3 2051 3253 5163 8195 13005 20645 32771 52017 82573 

tav, s 5,551 5,610 5,632 5,646 5,665 5,744 5,956 5,959 6,079 

tav 1, s 2,158 2,227 2,244 2,261 2,271 2,279 2,319 2,329 2,345 

 

 
Figure 7: Graphs of the average time dependency of multiplication operation by formula (4) on the 
number bit-size 
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Figure 8: Graphs of the dependence of the average multiplication time on the bit-size while using 
the formula (7)  
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