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Abstract 
Areas of entropy application and structural analysis for solving a wide range of information 

problems in the field of states monitoring for control objects are identified. Mathematical 

bases of existing algorithms for entropy estimation of stationary random processes are 

presented. Criteria of structural complexity are systematized for microelectronic tools, which 

allow to compare the system characteristics of different structures for operating devices and 

specialized processors in the computer architecture. The most priority modern architectures 

of interactive CPS i nterms of the emergence and parallelization coefficient for data flows are 

defined. The principle of data encryption based on the entropy method of signals 

manipulation method is proposed.  On its basis, the priority structures of crypto protection of 

data are offered. These structures are used for the reception and decoding of crypto-protected 

entropy-manipulated signals. The proposed structures are characterized by the limit 

characteristics of maximum speed and minimum time and structural complexity. 

Keywords 
Entropy, structures, Specialized processor for entropy estimation, cryptographic protection, 

entropy-manipulated signals. 1 

1. Introduction 

In modern cyberphysical systems, the volume of digital data streams is growing significantly and 

algorithms for their processing are being developed. One of the effective ways of data processing for a 

wide range, such as digital data research, encoding and encrypting data, transmitting information, etc. 

became entropic analysis. Hartley and Shannon formulas are most often used to estimate the entropy of 

digitized processes [1-2]. However, entropy analysis needs further development in terms of improving the 

theoretical foundations, practical implementation algorithms and specialized processors for their 

calculation [3-5]. In addition, it is necessary to improve the criteria for determining the complexity of 

cyberphysical systems using certain algorithms and technical means. 

2. Justification of the relevance of entropy and structural analysis 

There are a number of approaches and algorithms for entropy characteristics estimation of data flows. 

Based on them, appropriate specialized processors have been developed to calculate entropy estimates [6]. 
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These specialized processors have different parameters of hardware complexity of their implementation, 

the time of calculating the final result, the accuracy of entropy estimation and others. 

1. The method of estimating entropy using a centred autocorrelation function, takes into account 

statistical relationships between data. It is described by the expression as follows: 
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where, n  is the sample volume;  •

E is the integer function with rounding to a larger whole; mj ,1=  are 

shifting parameters of time counts; m  is a number of autocorrelation reference points; xD  is a dispersion; 

)( jxxR - is an autocorrelation function. 

The centred autocorrelation function )( jRxx  is bounded by asymptotics given by expressions (2) [6]. 
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a dispersion, the graph of which is shown in the Fig.1 [6]. 

The probability entropy function )(RxI , which is calculated on the basis of the autocorrelation 

function )( jxxR , is shown in Fig.2. 

 
Figure 1: Asymptotes of autocorrelation function )( jxxR  
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Figure 2: Estimate  of correlation entropy )(RxI , where )(222
j

jxxRxDС −= . 

 

Based on the described approach of entropy estimation using the correlation function )( jRxx , the 

structure of the special processor is developed. This structure is shown in Fig. 3 [6]. 

The specialized entropy estimation processor shown in Figure 3 consists of: )(tx  – input analog 

signal; 1 – synchronizer; 2 – ADC; 3 – digital data centring module, xMixix −=


; 4 – multiplication and 
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squaring module )1(2

−−= ixixjС ; 5 – multi-bit shift register; 6 – generator of adjugate squares 

2
jC ; 7 – 

a group of adders; 8 – pyramid adder; 9 – binary logarithmic function encoder; )(RxI – output code. 
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Figure 3: The structure of the special processor for determining entropy, taking into account 

statistical relationships using a correlation function 

 

This approach to entropy estimation using the autocorrelation function )( jRxx has the following 

disadvantages: 

і) the need to perform a data centring operation, which leads to an increase in computational time;  

іі) the presence of the operation of accumulation of the products sum for squares of the centred values. 

The consequence of these shortcomings is the considerable hardware complexity structure of the 

specialized processor for entropy estimation and significant time costs, which lead to low performance. 

As a result, such structural implementation of specialized processor for entropy estimation is 

characterized by and low performance. 

2. The next way for entropy estimation uses the equivalence correlation function )( jxxF . This formula 

of entropy estimation has next form (3): 
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where,  •

E  is integer function with rounding to a larger integer number; )( jxxF  – autocorrelation 

equivalence function. 

Asymptotic characteristics of the equivalence function )( jxxF  are described by expressions (4) [6]. 
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Its graph is presented in Fig. 4. 
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Figure 4: Graph of equivalence function )( jxxF  and its asymptotes 

The entropy estimation )(FI x  based on the correlation equivalence function is displayed in 

Fig. 5. 

Developed structure of the specialized processor based on the entropy estimation (3) using the 

equivalence function )( jFxx  is presented in Fig. 6 [6]. 
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Figure 6: Structure of a specialized processor for entropy estimation based on function )( jxxF  

 

The following notations are used in Figure 6: )(tx  – input analog signal; 1– synchronizer; 2 – ADC; 3 

– multi-bit shift register; 4 – a group of logical elements "AND"; 5 – counters; 6 – square generators; 7 – 

encoder; 8 – a group of adders; 9  – pyramid encoder; 10 – a binary logarithmic encoder; )(FxI  – output 

code for  entropy estimation. 

The advantages of this method of entropy estimation and the corresponding specialized processor are: 

i) a lack of centring and multiplication operations; 

ii) Using the operation of comparing ),( jixixZ −  of values ix  and  jix − ; 

iii) As a result of points i) and ii) the simpler algorithm and higher performance of the specialized 

processor of entropy estimation; 

iiii) 4 times reduced the required sample volume 128n  of input digital data with calculating the m-

points of autocorrelation function. 

The analysis of entropy estimation algorithms [6-8] and corresponding structural solutions allows to 

develop single-crystal specialized processor and widely use them in telecommunication systems and 

networks [9], as digital receivers of entropy-manipulated signals. It is also advisable to extend the 

functionality of such specialized processors by parallel outputting of entropy estimation codes and 

intermediate results of centred values calculations ix , mathematical expectation xM , dispersion xD  and 

estimated values of autocorrelation functions )( jRxx , )( jFxx , which are integral characteristics of 

entropy as it shown in Fig.7. 

 
Figure 7: Entropy and her integral characteristics 

Determination of entropy estimation )(HI x  is carried out according to the formula of C. Shannon [1], 

which is based on the probability distribution of events: 
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where 

0N

N
p i

i =  – probability of appearance of i -event; m  – a number of statistically independent 

events, 0N – the total number of options.  
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It is more practically convenient to calculate the probability entropy according to the algorithm [6]. 

Since the iNN 0 calculation of the logarithmic function is performed according to formula (6):  
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Thus, the calculation of probabilistic entropy when 256=N  will be performed according to the 

expression: 
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The graph of the entropy calculation results according to Shannon's formula in the decimal number 

system with the sample volume  256=n  and the total number of random messages  256=m  are shown 

in Fig.8. 
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Figure 8: The graph of the probabilistic entropy estimation in decimal number system 

 

You can see the following properties of estimating the probability entropy according to Shannon's 

formula as a result of computer modelling of the corresponding calculations and from the graph shown in 

Figure 8: 

i). The entropy value 5.0)( =HI x  corresponding to the equal probability of independent events is 

observed in two cases when, for the given experimental conditions, the probabilities 64=ip  and 

128=ip ; 

ii). The maximum value of the entropy estimate 530737.0)( =HI x  is observed when  94=ip ;  

iii). The characteristic of the estimated entropy )(HI x  in the range of 2551  ip  is asymmetric in 

contrast to the known traditional graphs of entropy estimates, which are symmetric in relation to the point 

of maximum entropy estimate. 

For iN  values that correspond to the whole binary digits, there is symmetry of the same values of 

entropy estimates.  

Thus, when 16=iN  and 192=iN  25.0)( =HI x ;  

when 32=iN  and 175=iN  375.0)( =HI x ;  

when 64=iN  and 128=iN  5.0)( =HI x . 

It is obvious that the form of the graph of entropy estimation values according to Shannon's formula is 

conditioned by the graphical representation of the logarithmic function, with the argument defined in the 

range from 1 to 255. 
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Since modern digital electronics is based on binary codes, for convenience, Table 1 shows the results of 

calculating the logarithmic function in decimal and binary number system. 

Table 1 shows the results of calculations of the logarithmic function of the products ipip 2log  with 

the number of registered random events iN  corresponding to integers 
k

iN 2= , 8,0=k . 

 

Table 1 

Value of entropy ( )ii NNN 202 loglog −  for all Ni 1N =  

02log N
 iN  iN2log  

( )ii NNN 202 loglog −  
8 1 0 1 (8- 0 ) = 8 

8 2 1 2  (8- 1 ) = 14 

8 4 2 4 ( 8 – 2 ) = 24 

8 8 3 8 ( 8 - 3 ) =40 

8 16 4 16 ( 8 – 4 ) = 64 

8 32 5 32  (8 - 5) = 96 

8 64 6 64 ( 8 – 6 ) = 128 

8 128 7 128 ( 8 – 7 ) = 128 

8 256 8 256 ( 8 – 8 ) = 0 

As a result of the entropy calculation )(HxI  in the decimal and binary number systems, the numerical 

values of estimation )(HxI   are obtained, which are presented by the informative fragments in Table 2. 

 

Table 2 

Value of entropy in binary and decimal system for all 2561=iN  

Ni(10) Ix(H)(10) Ni(2) Ix(2) 

1 8,0 00000001 1000,000000000 

2 14,0 00000010 1110,000000000 

3 19,2451125 00000011 10011,011000000 

4 24,0 00000100 11000,000000000 

5 28,39035953 00000101 11100,011000000 

6 32,490225 00000110 10000,011000000 

7 36,348555 00000111 100100,010000000 

8 40,0 00001000 101000,000000000 

9 43,47067499 00001001 101011,011000000 

… … … … 

12 52,98044999 00001100 110100,1110000000 

15 61,39664107 00001111 111101,011000000 

16 64,0 00010000 1000000,00000000 

… … … … 

31 94,41991438 00011111 1011110,01000000 

32 96,0 00100000 1100000,00000000 

… … … … 

63 127,4313648 00111111 00111111,01000000 

64 128,0 01000000 10000000,00000000 

… … … … 

88 135,5700176 01011000 10000111,10000000 

… … … … 

94 135,8637172 01011110 10000111,10000000 
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Continue of table  2 

… … … … 

100 135,6143810 01100100 10000111,10000000 

101 135,520602 01100101 10000111,10000000 

128 128,0 10000000 1000000,00000000 

… … … … 

192  11000000 1001110.10000000 

… … … … 

224 43,15249746 11100000 101011.00100000 

225 41,89923198 11100001 101001.11100000 

… … … … 

234 30,33465562 11101010 11110,01010000 

235 29,01851756 11101011 11101,00000000 

… … … … 

240 22,34623705 11110000 10110,01010000 

241 20,99366997 11110001 10100,11110000 

… … … … 

248 11,35931502 11111000 1011,01011000 

249 9,959518915 11111001 1001,11110000 

250 8,553928834 11111010 1000,10001000 

251 7,142567958 11111011 111,00100100 

252 5,725459278 11111100 101,10111000 

253 4,302625602 11111101 100,010011000 

254 2,87408956 11111110 100,010011000 

255 1,439 11111111 1,01110000000 

256 1,0 100000000 1,00000000 

 

Since the logarithmic function is irrational, it is clear that with a limited number of digits, its value can 

be calculated only with a certain accuracy, which is limited by the number of decimal places. Accordingly, 

in the decimal number system its value will be displayed more accurately than in binary with the same 

number of digits. Limiting the accuracy of only the integer part of number of the logarithmic function in 

the binary number system is quite sufficient, given the method of entropy estimation. 

3. Theory and structural characteristics of wireless bus and 2D topologies 
cyber-physical systems 

Estimates of hardware and time complexity are traditionally used to assess the system characteristics of 

cyber-physical systems (CPSs) components [10-12]. At the same time, these estimates do not take into 

account the current level of micro- and nano-electronics technologies in the crystal environment. The 

structural and technological complexity of such crystals, which contain transistors and the connections 

between them, is almost the same. There are many other estimates of the complexity of microelectronic 

computing modules in the CPS design process [11-15]. It is advisable to use the following more extensive 

estimates of the system characteristics of CPS components, among which the most important is the 

structural complexity [10]. Table 3 shows the criteria of structural and functional-informational complexity 

of microelectronic components and structures of CPS [10]. 

 

Table 3 
Criteria for structural and functional-informational complexity of microelectronic components and 
structures of CPS 
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№ Analytical expression 
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mnk ,,  is number of vertices, unidirectional and bidirectional edges 

2. Quine. 
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mn, is the number of inputs and outputs of the structure respectively

 3. M. Kartsev . 

single-level 
1

n

C i

i

A А
=
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CA  is general assessment of hardware complexity; kji ,,  are types of components or levels 

of device structure. 

4. S. Mayorov.  

two-level 
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lnm ,,  is the appropriate number of different components types or levels of the structure of 

the device 

5. M. Cherkaskyi. Logarithmic structural complexity 

2log
( 1)

E
S E

n n
= −

−
 

where E is the number of elements of the adjacency matrix of the system; n is the number of 

vertices of the graph 

6. M. Cherkaskyi. Software complexity 

2log
F

P F
n m

= −
  

F ; n, m  is the corresponding number of control signals, control inputs and time samples of 

the time chart; 

7. V. Glukhov. 
1

2

0

( ) (1/ 2...3 / 4)
m

i i

i

L g v m
−

=

= +  ; 1i ig x= + , 1j iv m d= + +
 

ig are lengths of horizontal, iv  are the lengths of the vertical connections on the conditional 

FPGA. 

8. J. Martin. Structural complexity of the network structure 

0
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N
= ; d

S
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iN are numbers of connections, 0N  is number of components; S  is  number of readings or 

requests, G is number of records or data updates 

9. Y. Nykolaychuk, I. Pitukh. Advanced assessment of network complexity 

0

0

i
ed

i

S G
K

S G


=


 

0 0, , ,i iS S G G are the actual number of requests, the maximum possible number of requests, the 

actual number of records or updates, the maximum possible number of records or updates in 

the node of the matrix model, respectively 
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№ Analytical expression 

10. N. Vozna. Criterion of complexity of multifunctional structure 

1
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k P
=

= ( , , , , , , , , , , , , )iP l P x d r h z b c i n a f
 

iP  are informative parameters of structures attributes, i  are weights of expert assessments 

of structural complexity, n is the number of microelectronic structure components. 

11. Y. Nykolaychuk, N. Vozna. Information and structural complexity 

maxC
e

C

F
K K

k
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1
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C j

j

F f
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K is data level identifier;
CF is information complexity of microelectronic structure. 

12. N. Vozna. Information and functional complexity of inputs and outputs 

1 1

n m

j i input i output

i i

f f f 
= =

=  +  
 

jf are functional and informational characteristics; ,j j  are coefficients of informativeness 

of input-output functions; m, n is number of inputs and outputs. 

13. Y. Nykolaychuk, V. Hryga. Additive criterion for estimating the complexity of the data 

ordering structure. 

;vK A = +

1

;
n

iA A= ;i МA A=

 

,i iA  - respectively hardware and time complexity of the i-th microelectronic component; 

14. A. Melnyk. Multiplicative normalized criterion of operating device complexity 
1 max;M k kK W T=    

kW  are total equipment costs; 
kT is duration of data processing; 

 

It should be noted that the multiplicative normalized criterion of complexity of the operating device 

proposed by Professor A. Melnyk [16] is the most informative assessment of maximizing the efficiency of 

system characteristics of ADC components, vector, scalar and quantum supercomputers. 

Systematized criteria (Table 3) for assessing the structural complexity of microelectronic components 

CPS can increase the efficiency of comparing the system characteristics of different structures of operating 

devices and specialized processors in the architecture of computing facilities.  

This is especially true of the criteria presented (Table 3, No.11&14), which are the minimum 

characteristics of the efficiency of the equipment use for processor operating devices and computer 

memory. 

An important criterion for the structural complexity of network 2D architectures CPS is the criterion of 

emergence proposed by J. Martin (Table 3, No.8). 

2D network architectures CPS are classified: monopoly, hierarchical multilevel, ring, star-bus, 

interactive hierarchical, star-ring with open atmospheric optical channels communication, hierarchical one-

level, bus, systolic, interactive monopoly, interactive multilevel hierarchical, ring-star, problem-oriented 

dialog. 

The multilevel hierarchical, ring, systolic, star-bus and star-ring structures are the most perfect in the 

structure of CPS, which belong to the DCS [17, 18], in terms of functional and structural priority 

characteristics. The system characteristics of complexity for the specified network architectures CPS are 

calculated, according to the criterion of emergence of J. Martin [10] (Table 4-5). 

Note that the most priority modern architectures of interactive CPS are structures (Table 5, No.3,4), 

which are characterized by the highest level of emergence and parallelization of data streams and 

processing.  

Such 2D CPS structures are used as information systems for background monitoring of natural 

protection areas. 

The concept of the theory of formation and processing of interactive and dialog data in 2D architectures 
of DCS is shown on Fig.9. 
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Table 4 
Emergence of 2D network non-interactive CPS architectures 

Modifications of DCS architectures 

Multilevel hierarchical Star-bus 

  
0,8ek =  

 
0,95ek =  

 
8,3ek =  

 
8,3ek =  

 

Table 5 
Emergence of 2D network interactive CPS architectures 

Modifications of DCS architectures 
1. Multilevel hierarchical  

  
7,1=ek  

 
8,1=ek  

2. Problem-oriented dialog system 

2,8ek =  

3. Star-bus 

 
4,2ek =  
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Continue of table  5 

3. Star-bus 

 
4,2ek =  

4. Star-ring with open atmospheric optical communication channels 

1 2 3

654

7 8 9
 

2,7ek =  
 

 
Figure 9: Structure and information functions of the formation and processing theory concept for 

interactive data 

The main result of the using such concept in practice is the substantiation of methods of traffic 

organization and processing of information monitoring and dialog data in 2D structures of the CPS.  

The developed concept is a basic tool for designing and improving the system characteristics of the 

components of monitoring, dialog, cyber-physical and interactive computer systems. 
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4. Crypto-protected transmission of information in cyber-physical systems 
based on entropy-manipulated signals 

An important problem in the design of CPS for use in various industries, environmental and regime 

areas is the effective cryptographic protection of information data flows from unauthorized access. 

There are known fundamental limitations of Shannon, which relate to the reliable receiving of 

manipulated signals against the background of noise [1, 3]. The essence of such restrictions is that the ratio 

of the sign of the manipulated signal (amplitude, frequency, phase, energy, etc.) must exceed the 

corresponding noise characteristic by 2 times according to the following statements: 
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H
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 where: sP , sjxxR )( , sH , csH  – corresponding powers of amplitude, frequency, phase, 

autocorrelation, noise, entropy and crypto-protected entropy, nP , njxxR )( , nH , cnH  – corresponding 

powers of noise characteristics. 

It is shown the characteristics (Fig. 10) of reliable signal extraction against the background of noise and 

interference depending on the distance of propagation according to the fundamental limitations of 

C.Shannon. 

 

Figure 10: Methods of signal manipulation in conditions of intense interference 

 
It is shown (Fig. 10) that the most promising methods of signal manipulation in modern CPS are CEM 

– crypto-protected multilevel entropic manipulation. 

The structure of the device for determination of entropy according to the formula of probabilistic 

estimation of entropy of C. Shannon [1, 3] is offered in a work [9]. 

0

log
S

S

j j

j

H k p p 

=

= −  ,     (9) 

where k is a positive coefficient that takes into account the basis of the logarithm; pj is the probability 

of the sj's state of information source; S is a number of independent states of information source. 

The device is characterized by a high level of parallelization of information processing, has a regular 

microelectronic structure and contains: 1 – ADC; 2 – information input of the device, 1.1 – group of model 

resistors, 1.2 – comparators with paraphrase outputs (direct and inverse), 1.3 – logic elements AND-NOT, 

3 – binary counters, 4 – synchronizer; 5 – encoders, 6 – pyramidal adder, 7 – device output. 

In each channel of the device the counter (3) accumulates the sum of identical values of digital samples 

pj, and at the output of the tabular encoder (5) the product code pjlog2(pj) is formed. At the end of the 

cycle of sampling n-digital samples at the output of the pyramidal adder (6) the source code of the 

estimated entropy of the information source is formed. 

The functional limitation of such device is the delay of the calculation process in the encoders (5) and 

the adder (6), which reduces the speed of the device. Therefore, the structure of the entropy estimation 

device (Fig. 11) is proposed [19], which is characterized by increased speed by parallelizing the processes 

of accumulation of the sum of probabilities pj and parallel encryption and estimating the initial sum of 

entropy according to the expression: 
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- respectively delays of the comparator, counter, trigger, encoder and adder. 

 

 
Figure 11: Device for entropy estimation 

 
Structure of such a specialized processor [19] for receiving entropy-manipulated signals is proposed, 

which is shown in Fig.12. 

Each channel of such device uses an n-bit jk-counter (3), the calculation results of which are registered 

by the memory register (5) on D-flip-flops. At the same time, in the process of calculating the product 

pjlog2(pj) and determining their sum by the pyramidal adder (7), the accumulation of new probability 

estimates pj in synchronous jk-counters (3) is carried out. 

Patent [19] presents the results of comparing the hardware and time complexity of the two devices for 

entropy estimation at a sample size of m = 256, bit counts k = 8 and bit encoder codes h = 11. 

Probability entropy detection devices are important components of telecommunication systems in the 

CPS structure, which provide an appropriate level of encryption of information data flows. The principle of 

data encryption based on the entropic method of signal manipulation, which provides noise-like formation 

of bit “0” and “1” bits is proposed. This modifies the structure of the entropy estimation device, which can 

receive and decode a bit-oriented stream of crypto-protected data with protection against unauthorized 

access. 

It is shown an example (Fig. 13) of such a modified probability entropy determination structure [19], 

which is used to receive and decode crypto-protected entropy-manipulated signals. 

The proposed method of crypto-protected entropy-manipulated is characterized by wide possibilities 

that require fundamental theoretical and experimental research, as well as a large amount of computer 

modelling. 

Wide range of possibilities of methods of cryptographic protection of entropy-manipulated signals by 

hashing of streams {pi} and the possibility of their logical processing with logical elements "OR", delays 

and logical elements "AND". 

In addition, multiplication by log2pi, log2pj, log2piz provides additional opportunities to increase 

cryptographic protection. 

Then we can selectively summarize the individual jSiS 2log to generate individual bits or quasi-

ternary bits 
SH . 
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Figure 12: The structure of the specialized processor for entropy estimation 

 
Figure 13: The structure of the modified device for entropy estimation 

 

5. Acknowledgements 

Thus, the analysis of existing entropy estimates is carried out and a new theoretically substantiated 

approach is proposed, taking into account correlation relationships. The results of entropy characteristics 

and properties of digital components of cyber physical systems are investigated and given. The prospects 

of entropy analysis and its use for the analysis of digital data flows are shown. High-performance 

structures of specialized processors for determining probability and correlation entropy are proposed. 

Improved structures of data cryptographic algorithms based on entropic signal manipulation. The 

generalizations of approaches of complexity estimations definition of cyber physical systems components 
are generalized and own criterion of structural estimation is offered and the mathematical apparatus of its 

definition is formalized. 
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