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Abstract  
We investigate the possibility of the practical use of the Kolmogorov–Wiener filter for the 

prediction of a heavy-tail stationary random process. A discrete process and a discrete filter 

are considered. Nowadays telecommunication traffic in telecommunication systems with data 

packet transfer is considered to be a heavy-tail random process, so the problem under 

consideration may be applied to the prediction of telecommunication traffic, which may be 

important, for example, for the prevention of network congestion, for the maximization of the 

network utilization rate and for cyber security, because a comparison of the actual traffic with 

the predicted one may help to detect cyber-attacks. There are a lot of different and rather 

sophisticated approaches to traffic prediction, for example, the ARIMA approach, neural 

network approaches and so on, which may be applicable to the prediction of a non-stationary 

traffic in various cases. However, in the rather simple case of a stationary telecommunication 

traffic, more simple approaches may be applied. For example, such a simple prediction 

approach as the Kolmogorov–Wiener filter is not sufficiently developed in the literature. In 

this paper it is shown that if a stationary heavy-tail random process is smooth enough, then 

the Kolmogorov–Wiener filter may be used for its practical prediction. The obtained results 

may be taken into account for practical telecommunication traffic prediction in 

telecommunication systems with data packet transfer. 
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1. Introduction and related works 

The problem of telecommunication traffic prediction is important for telecommunications. For 

example, it is important for the prevention of network congestion and for the maximization of the 

network utilization rate [1]; it is significant for understanding future market dynamics and reducing 

the decision risks [2]. The telecommunication traffic prediction is also important for cyber security [3] 

because the comparison of the actual traffic with the predicted one may help to detect cyber-attacks. 

 There are a lot of different approaches to traffic prediction. For example, the following ones can 

be indicated: Auto Regressive Integrated Moving Average (ARIMA), Markov Modulated Poisson 

Process models (MMPP), Kalman filtering, Seasonal ARIMA (SA), a neural network approach 

(including deep neural networks [4]), wavelet transforms [1], the least-squares support vector machine 

(LSSVM), gray models [2], Holt-Winters models [3]. Of course, rather complicated approaches 

should be used for non-stationary randomly fluctuating traffic prediction. But if the traffic is 

stationary and rather smooth, sophisticated approaches may not be needed. For example, in [2] some 

methods are presented for a description of rather simple cases. In [2] it is stressed that in stationary 
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cases  the ARMA approach may be used too, and in the case of a smooth monotone process the gray 

model may be applied.  

As is known [5], such a simple filter as the Kolmogorov–Wiener one may be used for the 

prediction of stationary random processes. However, as far as we know, such an approach is not 

sufficiently developed in the literature for traffic prediction even for rather simple cases. The 

Kolmogorov–Wiener filter is widely used for signal extraction in different fields of knowledge [6]. It 

is widely used in econometric analyses [7, 8] and in image restoration [9]. The theoretical 

fundamentals of the Kolmogorov–Wiener filter for continuous telecommunication traffic prediction 

are developed in our recent paper [10]. The paper [10] is dedicated to the solution of the Wiener–Hopf 

integral equation in the unknown filter weight function for two telecommunication traffic models: the 

power-law structure function model and the model of fractional Gaussian noise; the solutions based 

on the truncated polynomial expansion method and the truncated trigonometric Fourier series method 

are obtained. 

However, the possibility of using the Kolmogorov–Wiener filter for practical traffic prediction is 

still under question. The aim of this work is to show that the Kolmogorov–Wiener filter may be 

applicable to traffic prediction if the traffic is stationary and smooth enough. As is known [11, 12], the 

telecommunication traffic in systems with data packet transfer is considered to be a self-similar 

heavy-tail random process. So, if we show that the Kolmogorov–Wiener filter is applicable to the 

prediction of simulated data of a stationary random self-similar heavy-tail process, then we will be 

able to conclude that it may be applied to practical telecommunication traffic prediction. In this paper 

we restrict ourselves to the investigation of a discrete process and a discrete filter. The corresponding 

simulated data may be generated via the symmetric moving average approach [13], the generated 

process is in fact similar to the fractional Gaussian noise process, which may describe 

telecommunication traffic, see [14].    

The paper is organized as follows. In Sec. 1 the introduction and the literature review are given. In 

Sec. 2 the discrete Kolmogorov–Wiener filter and the symmetric moving average approach for 

obtaining simulated stationary heavy-tail data are described. In Sec. 3 heavy-tail simulated data are 

obtained. In Sec. 4 the prediction results are described, and in Sec. 5 conclusions are made. 

2. Description of the discrete Kolmogorov–Wiener filter and of the method 
of generation of heavy-tail simulated data 

Let the filter input 𝑥𝑡 be a stationary random process which is the sum of the signal 𝑠𝑡 and the 

noise 𝑛𝑡: 
   𝑥′𝑡 = 𝑠𝑡 + 𝑛𝑡 .  (1) 

The Kolmogorov–Wiener filter output 𝑦𝑡 should be «the closest» to the value  𝑠𝑡+𝑧 where 𝑧 is the 

number of points for which the prediction is made, so we have the following requirement: 

   〈(𝑦𝑡 − 𝑠𝑡+𝑧)
2〉 → min. (2) 

The correlation function 𝑅𝑥′(𝑡) of the filter input 𝑥′𝑡  and the cross-correlation function of the 

processes 𝑠𝑡 and 𝑥′𝑡  𝑅𝑠𝑥′(𝑡) are considered to be given. The Kolmogorov–Wiener filter is considered 

to be a linear one, so the filter output is expressed in terms of the filter input as follows: 

𝑦𝑡 =∑ℎ𝑖𝑥′𝑡−𝑖

𝑇

𝑖=0

 (3) 

where ℎ𝑖 are the unknown filter weight coefficients and the input data are given for 𝑡 = 0,1,2, . . , 𝑇.  

The coefficients ℎ𝑖 should minimize expression (2). The term 〈𝑠𝑡+𝑧
2 〉 is a constant and does not depend 

on the weight coefficients ℎ𝑖, so (2) can be rewritten as 

    〈𝑦𝑡
2〉 − 2〈𝑦𝑡𝑠𝑡+𝑧〉   → min, (4) 

which in view of (3) gives 

∑ ℎ𝑖ℎ𝑗〈𝑥′𝑡−𝑖𝑥′𝑡−𝑗〉

𝑇

𝑖,𝑗=0

− 2∑ℎ𝑖〈𝑥′𝑡−𝑖𝑠𝑡+𝑧〉 = 𝑓(ℎ0, ℎ1, … , ℎ𝑇) → min.

𝑇

𝑖=0

 (5) 

With account for the facts that 



〈𝑥′𝑡−𝑖𝑥′𝑡−𝑗〉 = 𝑅𝑥′(𝑖 − 𝑗) (6) 
and 

〈𝑥′𝑡−𝑖𝑠𝑡+𝑧〉 = 𝑅𝑠𝑥′(𝑖 + 𝑧) (7) 
one can finally write 

∑ ℎ𝑖ℎ𝑗𝑅𝑥′(𝑖 − 𝑗)

𝑇

𝑖,𝑗=0

− 2∑ℎ𝑖𝑅𝑠𝑥′(𝑖 + 𝑧) = 𝑓(ℎ0, ℎ1, … , ℎ𝑇) → min.

𝑇

𝑖=0

 (8) 

The function 𝑓(ℎ0, ℎ1, … , ℎ𝑇) is a quadratic one, and thus it has one minimum, which is described 

by the conditions 
𝜕𝑓(ℎ0, ℎ1, … , ℎ𝑇)

𝜕ℎ𝑘
= 0;   𝑘 = 0,1,2,… , 𝑇. (9) 

These conditions with account for the evenness of the correlation function and the fact that 
𝜕ℎ𝑖
𝜕ℎ𝑗

= 𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

 (10) 

lead to  

∑ℎ𝑖𝑅𝑥′(𝑖 − 𝑘)

𝑇

𝑖=0

= 𝑅𝑠𝑥′(𝑘 + 𝑧);   𝑘 = 0,1,2, … , 𝑇, (11) 

which is a set of linear equations in the unknown coefficients ℎ𝑖. In matrix form, this set may be 

presented as  

𝑅𝑥′ ∙ ℎ = 𝑅𝑠𝑥′  (12) 
where 

𝑅𝑥′ =

(

 
 

𝑅𝑥′(0)

𝑅𝑥′(1)

𝑅𝑥′(2)
⋮

𝑅𝑥′(𝑇)

𝑅𝑥′(1)

𝑅𝑥′(0)

𝑅𝑥′(1)
⋮

𝑅𝑥′(𝑇 − 1)

𝑅𝑥′(2)

𝑅𝑥′(1)

𝑅𝑥′(0)
⋮

𝑅𝑥′(𝑇 − 2)

⋯
⋯
⋯
⋱
⋯

𝑅𝑥′(𝑇)

𝑅𝑥′(𝑇 − 1)

𝑅𝑥′(𝑇 − 2)
⋮

𝑅𝑥′(0) )

 
 

 (13) 

is the correlation matrix [5], ℎ is the vector column of the unknown weight coefficients, and 𝑅𝑠𝑥 is the 

vector column of the free terms: 

ℎ =

(

 
 

ℎ0
ℎ1
ℎ2
⋮
ℎ𝑇)

 
 

,   𝑅𝑠𝑥′ =

(

 
 

𝑅𝑠𝑥′(𝑧)

𝑅𝑠𝑥′(𝑧 + 1)

𝑅𝑠𝑥′(𝑧 + 2)
⋮

𝑅𝑠𝑥′(𝑧 + 𝑇))

 
 

. (14) 

So, the vector column ℎ may be found as 

ℎ = 𝑅𝑥′
−1 ∙ 𝑅𝑠𝑥′ . (15) 

Then the filter output may be obtained by formula (3). 

It should be noticed that all the above-mentioned calculations are described in [6]. The 

Kolmogorov–Wiener filter may be used both for the extraction of a signal form the sum of a signal 

and a noise and for the signal prediction. In the case where the input signal is non-noisy, the 

Kolmogorov–Wiener filter may be used for the prediction of the stationary process given at the filter 

input. In the non-noisy case, the filter weight coefficients are given by formula (15) with account for 

the fact that  

𝑅𝑠𝑥′ = (𝑅𝑥′(𝑧) 𝑅𝑥′(𝑧 + 1) 𝑅𝑥′(𝑧 + 2) … 𝑅𝑥′(𝑧 + 𝑇))
𝑇 . (16) 

Now let us describe the method of the generation of heavy-tail simulated data, which is used in 

the paper. In this paper we use the symmetric moving average approach, which is described in detail 

in [13]. Such an approach was chosen because of its simplicity. 

Let 𝑉𝑡 be a stationary white noise process with an average value equal to zero and a variance 

equal to 1. Then a heavy-tail process 𝑋𝑖 similar to the fractional Gaussian noise may be generated as 

follows [13]: 

𝑋𝑖 = ∑ 𝑎|𝑗|𝑉𝑖+𝑗

𝑞

𝑗=−𝑞

= 𝑎𝑞𝑉𝑖−𝑞 + 𝑎𝑞−1𝑉𝑖−𝑞+1 +⋯+ 𝑎𝑞𝑉𝑖+𝑞 , (17) 



theoretically, 𝑞 should be infinite; in practical calculation it may be a rather large, but finite number; 

and the coefficients 𝑎𝑗 are as follows: 

𝑎0 =
√(2 − 2𝐻)𝛾0
1.5 − 𝐻

 (18) 

and 

𝑎𝑗 =
𝑎0
2
((𝑗 + 1)𝐻+0.5 + (𝑗 − 1)𝐻+0.5 − 2𝑗𝐻+0.5), (19) 

here, 𝛾0 is the variance and 𝐻 is the Hurst exponent of the process 𝑋𝑖. The number 𝑞 may be very 

large, it is estimated as follows [13]: 

𝑞 ≥ max(𝑚, (
𝐻2 − 0.25

2𝛽
)

1
1.5−𝐻

) (20) 

where 𝑚 is the number of correlation function points of the process 𝑋𝑖 which should be obtained and 

a small number  𝛽 is in fact the given accuracy of the coefficient 𝑎𝑗  in  (17); the values 𝑎𝑗>𝑞 should 

be less than 𝛽𝑎0. The accuracy of this method depends on 𝑞, and the method is not exact even in the 

case where 𝑞 → ∞. However, for a rather large 𝑞 the method may lead to good practical results [13]. 

3. The generation of non-smooth and smooth heavy-tail simulated data 

106 points of the white noise process 𝑉𝑡 with an average value equal to 0 and a variance equal to 1 

are generated on the basis of the generator built in the Wolfram Mathematica package. The following 

parameters were chosen: 

𝑚 = 105, 𝛽 = 10−4 ,     𝐻 = 0.8,      𝛾0 = 1.  (21) 

The corresponding number 𝑞 = 3 ∙ 105 is chosen. In fact, the inequality (21) holds even for 𝑞 = 105, 
the value 𝑞 = 3 ∙ 105 was chosen for a higher accuracy. On the basis of the idea (17)–(19), 105 points 

of the process 𝑋𝑖 were generated as follows: 

𝑋𝑖 = ∑ 𝑎|𝑗|𝑉𝑖+𝑗+𝑞

𝑞

𝑗=−𝑞

 , (22) 

in fact, the quantities 𝑉𝑖+𝑗+𝑞 and 𝑉𝑖+𝑗 are independent because 𝑉𝑡 is the white noise, no matter 

whether formula (17) or formula (22) is used; formula (22) is chosen in order to avoid indices beyond 

the array 𝑉𝑖 bounds. The coefficients 𝑎𝑗 are calculated on the basis of (19).  

The average value of  𝑋𝑖 is close to zero. We have to construct simulated data that may describe 

telecommunication traffic, which is obviously non-negative. So we build the array 𝑥𝑖 as follows: 

𝑥𝑖 = 𝑋𝑖 + |min(𝑋)| + 10
−3 , (23) 

a small summand 10-3 is added in order to avoid obtaining an infinite value of the prediction mean 

average percentage error (MAPE). The process 𝑥𝑖 is a non-negative random stationary heavy-tail 

process; its graph is given in Fig. 1. 

Let us make sure that the generated process 𝑥𝑖  is a heavy-tail one. Let us describe the 

corresponding centralized process 𝑥𝑐𝑖: 
𝑥𝑐𝑖 = 𝑥𝑖 − 〈𝑥〉 (24) 

where the average value 〈𝑥〉 is 

〈𝑥〉 =
1

105
 ∑𝑥𝑖

105

𝑗=1

 , (25) 

here we take into account the fact that the number of points of the generated array 𝑥𝑖 is equal to 105. 

The correlation function of the process 𝑥𝑐𝑖 is built as follows: 

𝑅𝑥(𝜏) = 〈𝑥𝑐𝑖 ∙ 𝑥𝑐𝑖+𝜏〉 =
1

105 − 𝜏
 ∑ (𝑥𝑐𝑖 ∙ 𝑥𝑐𝑖+𝜏)

105−𝜏

𝑖=1

. (26) 

The corresponding correlation function and its least-square fit are given in Fig.2. 

 



 
Figure 1: The values of the simulated non-smooth heavy-tail non-negative random process 
 

 
Figure 2: The correlation function of the simulated non-smooth heavy-tail random process and its 
least-square power-law fit; t≥1. 
 

The corresponding least-square fit is sought as 

𝑅fit(𝑡) = 𝑎 ∙ 𝑡
𝑏 , (27) 

The following numerical coefficients were obtained: 

𝑎 = 0.39, 𝑏 = −0.44, (28) 
here, the coefficients are rounded off to two significant digits. So, 

𝑅fit(𝑡) = 0.39 ∙ 𝑡
−0.44 , (29) 

and on the basis of formula (29) and Fig.2 one can conclude that the correlation function exhibits a 

power law decay rather than an exponential one. So, indeed, the generated process is a heavy-tail one.  

It should also be noticed that according to [13] the following property should be valid for ≥ 1 : 

 𝑅𝑥(𝑡)~𝑡
2𝐻−2, (30) 

so, according to the least-square fit  

2𝐻 − 2 = −0.44, (31) 
which leads to   

𝐻 = 0.78, (32) 
which is very close to the value 0.8, see (21). The variance of the process is equal to 

𝑅𝑥(0) = 0.93, (33) 
which is rather close to the value  𝛾0 = 1, see (21). So one can conclude that the generated process is 

close to the fractional Gaussian noise with given variance and Hurst exponent.  



The generated process is non-smooth, i.e. it is really highly fluctuating, so it is rather difficult to 

predict it. So it is reasonable to investigate smooth heavy-tail processes. In order to obtain smoother 

processes, we use a very simple smoothing algorithm [15]: 

�̃�𝑖 =
1

2𝑙 + 1
 ∑ 𝑋𝑖+𝑗

𝑙

𝑗=−𝑙

  (34) 

where �̃�𝑖 are the values of a smooth process, expression (34) is valid for every point except for the 

first 𝑙 and the last 𝑙 ones. The first 𝑙 and the last 𝑙 points of the process �̃�𝑖 may be obtained as the 

corresponding linear least-square fit of the first 𝑙 and the last 𝑙 points of the process 𝑋𝑖, respectively. 

The corresponding non-negative process may be expressed similarly to (23): 

�̃�𝑖 = �̃�𝑖 + |min(�̃�)| + 10
−3 , (35) 

and the corresponding centralized process 

𝑥�̃�𝑖 = �̃�𝑖 − 〈�̃�〉  (36) 
where the average value  

〈�̃�〉 =
1

105
 ∑ �̃�𝑖

105

𝑗=1

 .  (37) 

The simulated data for the process �̃�𝑖 for  𝑙 = 3 are given in Fig.3. 

 

 
Figure 3: The values of the simulated smooth heavy-tail non-negative random process for  𝑙 = 3 
 

 
Figure 4: The correlation function of the simulated smooth heavy-tail random process and its least-
square power-law fit; t≥1. 

 

It should be stressed that the obtained smooth process �̃�𝑖 is also a heavy-tail one. Let us consider 

the corresponding correlation function: 



𝑅�̃�(𝜏) = 〈𝑥�̃�𝑖 ∙ 𝑥�̃�𝑖+𝜏〉 =
1

105 − 𝜏
 ∑ (𝑥�̃�𝑖 ∙ 𝑥�̃�𝑖+𝜏)

105−𝜏

𝑖=1

.  (38) 

For example, for 𝑙 = 3 the following correlation function and its fit are obtained, see Fig. 4. 

The least-square fit is sought in the form (27) , the following numerical coefficients were obtained: 

𝑎 = 0.43, 𝑏 = −0.46, (39) 
here, the coefficients are rounded off to two significant digits. So, 

𝑅fit(𝑡) = 0.43 ∙ 𝑡
−0.46 . (40) 

As can be seen form Fig.4, the correlation function of a smooth process is also well described by a 

power-law function, the obtained smooth process �̃�𝑖 is also a heavy-tail one, and, in fact, this process 

may also be roughly considered as fractional Gaussian noise. 

4. Prediction on the basis of the Kolmogorov–Wiener filter 

The prediction for non-smooth data is built as follows. In fact, the prediction for the centralized 

process is used. The filter weight coefficients are built on the basis of (13)–(16); the corresponding 

correlation function is taken in the form (26).  

First of all, the points 𝑥𝑐1, 𝑥𝑐2,…, 𝑥𝑐𝑇+1 of the simulated process 𝑥𝑐 are taken as the filter input, 

and the points 𝑥𝑐𝑇+2, 𝑥𝑐𝑇+3,…, 𝑥𝑐𝑇+𝑧+1 are predicted. Then the points 𝑥𝑐2, 𝑥𝑐3, … , 𝑥𝑐𝑇+2 are taken 

from the simulated data, and the points 𝑥𝑐𝑇+3, 𝑥𝑐𝑇+4,…, 𝑥𝑐𝑇+𝑧+2 are predicted, and so on.  

At the 𝑖th iteration of the algorithm the predcition is calculated as follows. The filter input data are  

𝑥′0 = 𝑥𝑐𝑖, 𝑥′1 = 𝑥𝑐𝑖+1, … ,  𝑥′𝑇 = 𝑥𝑐𝑖+𝑇 , (41) 
so 

𝑥′𝑗 = 𝑥𝑐𝑖+𝑗. (42) 

The filter output  𝑦𝑡 is the predicted value for 𝑥′𝑡+𝑧 (the non-noisy case is investigated). According to 

(3) we have 

𝑦𝑡 =∑ℎ𝑘𝑥′𝑡−𝑘,

𝑡

𝑘=0

 (43) 

here, the upper bound of summation is changed in order to avoid obtaining indices beyond the array 

of the input data. Such a change of the bound does not lead to a significant error for the prediction 

under consideration. On the basis of (41)–(43) one can conclude that 

𝑥�̂�𝑖+𝑡+𝑧 =∑ℎ𝑘𝑥𝑐𝑡+𝑖−𝑘

𝑡

𝑘=0

 (44) 

where  𝑥�̂�𝑖+𝑡+𝑧 is the predicted value of 𝑥𝑐𝑖+𝑡+𝑧. Obviously, the prediction is made only for the values 

𝑖 + 𝑡 + 𝑧 = 𝑇 + 1 + 𝑖, 𝑇 + 2 + 𝑖,… , 𝑇 + 𝑧 + 𝑖. We should also remember that we should make the 

prediction for the non-negative simulated data. So, the predicted non-negative data may be expressed 

as 

𝑥𝑖+𝑡+𝑧 = 𝑥�̂�𝑖+𝑡+𝑧 + 〈𝑥〉 = 〈𝑥〉 +∑ℎ𝑘𝑥𝑐𝑡+𝑖−𝑘,   𝑡 = 𝑇 + 1 − 𝑧, 𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡

𝑘=0

. (45) 

The MAPE and MAE errors for the corresponding prediction are calculated as 

MAPE =
1

𝑧
∑ |

�̂�𝑖+𝑡+𝑧 − 𝑥𝑖+𝑡+𝑧
𝑥𝑖+𝑡+𝑧

|

𝑇

𝑡=𝑇+𝑧−1

∙ 100% (46) 

and 

MAE =
1

𝑧
∑ |𝑥𝑖+𝑡+𝑧 − 𝑥𝑖+𝑡+𝑧|

𝑇

𝑡=𝑇+𝑧−1

. (47) 

The corresponding prediction errors are calculated at each iteration.  

Let us tell a few words why the above-mentioned change of the upper bound of summation has no 

significant effect on the result. In order to make the prediction for  𝑥�̂�𝑇+1+𝑖, one should calculate the 

sum of 𝑇 + 2 − 𝑧 summands, in order to make the prediction for  𝑥�̂�𝑇+2+𝑖 one should calculate the 



sum of 𝑇 + 3 − 𝑧 summands, and so on. We obviously deal with the case where 𝑇 ≫ 𝑧, so the value 

𝑇 + 1 − 𝑧 is rather close to 𝑇 + 1, so the above-mentioned change of the upper bound is not 

significant for the calculations. 

Similarly, the prediction for the smooth heavy-tail process is made as follows. At the 𝑖th iteration 

of the algorithm the prediction is calculated as follows: 

�̃̂�𝑖+𝑡+𝑧 = 〈�̃�〉 +∑ℎ𝑘𝑥�̃�𝑡+𝑖−𝑘 ,   𝑡 = 𝑇 + 1 − 𝑧, 𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡

𝑘=0

 (48) 

and the corresponding MAPE and MAE errors are  

MAPE =
1

𝑧
∑ |

�̃̂�𝑖+𝑡+𝑧 − �̃�𝑖+𝑡+𝑧
�̃�𝑖+𝑡+𝑧

|

𝑇

𝑡=𝑇+𝑧−1

∙ 100% (49) 

and 

MAE =
1

𝑧
∑ |�̃̂�𝑖+𝑡+𝑧 − �̃�𝑖+𝑡+𝑧|

𝑇

𝑡=𝑇+𝑧−1

. (50) 

The MAPE and MAE are calculated for each above-mentioned iteration. The 105 − 𝑇 − 𝑧 MAPE 

and MAE values both for smooth and for non-smooth processes are obtained. The following 

parameters are chosen: 

T = 100, z = 1. (51) 
 

 
Figure 5: The MAPE and MAE histograms for the prediction of a non-smooth heavy-tail process  

 

Table 1 
The prediction results for a smooth heavy-tail process 

𝑙 〈�̃�〉 Average MAPE, % Average MAE 

1 2.98 9.11 0.235 
2 2.52 6.26 0.142 
3 2.34 4.85 0.103 
4 2.31 3.92 0.081 
5 2.22 3.37 0.067 
6 2.11 2.98 0.057 
7 2.04 2.68 0.050 

 
The following results are obtained. The MAPE and MAE histograms in the case of the non-smooth 

process are shown in Fig.5. The y-axes of the histograms indicate the number of MAPE and MAE 

values that belong to the corresponding intervals. For the non-smooth process the average MAPE is 

24.7%, and the average MAE is 0.70 (the average value of the process is 〈𝑥〉 = 3.88). It should also 

be stressed that for some points the MAPE are more than 100%. So one can conclude that the 

prediction accuracy is not high in the case of the non-smooth process. So, if the process is a highly 

fluctuating one, then the prediction based on the Kolmogorov–Wiener filter may not lead to good 

results. 



But if the process is rather smooth, the prediction results are much better. The corresponding 

results are given in Table 1. In Table 1 𝑙  is the parameter used in (34), i.e. 2𝑙 + 1 is the number of 

smoothing points.  As can be seen, the smother the process is, the better the prediction results are, and 

the prediction accuracy increases with 𝑙. The corresponding histograms for 𝑙 = 3 are given in Fig.6.  

The predictions for 𝑙 ≥ 6 have an average MAPE value less than 3%. 

 

 
Figure 6: The MAPE and MAE histograms for the prediction of a non-smooth heavy-tail process  
 

For example, for 𝑙 = 3 the average MAPE is less than 5%. As can be seen from the corresponding 

histogram, the MAPE for the overwhelming majority of points is less than 10%. For some very rare 

points the MAPE may be rather high (up to 40%), but in our opinion this may be explained as 

follows. As can be seen from Fig. 3, the values for some points of the process �̃� are rather close to 

zero, and the MAPE may not be an adequate characteristic for the prediction of points close to zero. 

So, one can conclude that the Kolmogorov–Wiener filter may give good results for the prediction of a 

stationary heavy-tail random process if the process is smooth enough. 

5. Conclusions and plans for the future 

The use of the Kolmogorov–Wiener filter for the prediction of stationary random heavy-tail 

processes is considered. The attention is paid to the discrete case. The problem under consideration 

may be connected with the telecommunication traffic prediction, which is important, for example, for 

cyber security, see [3]. There are many rather sophisticated approaches to telecommunication traffic 

prediction [1]. For rather simple cases (stationary or smooth traffic) the ARMA or gray model 

approaches may be used [2]. The traffic in telecommunication systems with data packet transfer is 

considered to be a self-similar heavy-tail process, see [11]. Such a simple filter as the Kolmogorov–

Wiener one may be used in the prediction of stationary random processes [6]. However, as far as we 

know, the corresponding approach for traffic prediction is not sufficiently developed in the literature. 

In this paper we generate data for a stationary heavy-tail process on the basis of the symmetric 

moving average approach [13]. The corresponding non-smooth and smooth data are generated. The 

prediction for 1 point forward on the basis of the previous 101 points is investigated. It is shown that 

the Kolmogorov–Wiener filter is not good for non-smooth processes, but may give a good prediction 

for a stationary random heavy-tail process if the process is rather smooth. So, if the traffic is 

stationary and rather smooth, the Kolmogorov–Wiener filter may be used for its prediction. The 

advantage of the corresponding approach is the simplicity of the method in contrast with, for example, 

neural networks or ARIMA models. 

The plans for the future are as follows. In this paper only the values T = 100 and z = 1 are 

investigated. So the prediction investigation for a wider range of parameters may be a plan for the 

future. In our recent paper [10] the theoretical approach to the Kolmogorov–Wiener filter construction 

in the continuous case is considered. In this paper we generated a large number of data points, which 

may allow one to try to investigate the continuous case, so the investigation of the applicability of the 

method [10] may be another plan for the future. This paper is based on the generation of simulated 

data, so the investigation of real experimental traffic data may be another plan for the future. It should 

also be stressed that the use of the Kolmogorov–Wiener filter for the prediction of stationary 



processes  may be useful not only in telecommunications, but also in other fields of knowledge, for 

example, in electrical engineering, see [16].  

6. References 

[1] Q. H. Do, T. T. H. Doan, T. V. A. Nguyen, N. T. Duong, V. Van Linh, Prediction of Data Traffic 

in Telecom Networks based on Deep Neural Networks, Journal of Computer Science 16  (2020) 

1268-1277. doi: 10.3844/jcssp.2020.1268.1277. 

[2] J.-X. Liu, Z.-H. Jia, Telecommunication Traffic Prediction Based on Improved LSSVM, 

International Journal of Pattern Recognition and Artificial Intelligence, 32, No. 3 (2018) 

1850007 (16 pages), doi: 10.1142/S0218001418500076. 

[3] H. Brugner, Holt-Winters Traffic Prediction on Aggregated Flow Data, Proceedings of the 

Seminars Future Internet and Innovative Internet Technologies and Mobile Communication 

Focal Topic: Advanced Persistent Threats. Summer Semester 2017 (2017), 25-32. doi: 

10.2313/NET-2017-09-1_04.d 

[4] P. Kaushik, S. Singh, P. Yadav, Traffic Prediction in Telecom Systems Using Deep Learning, 

Proceedings of 7th International Conference on Reliability, Infocom Technologies and 

Optimization (ICRITO) (Trends and Future Directions), August 29-31, 2018, Noida, India 

(2018), 302-207, doi: 10.1109/ICRITO.2018.8748386. 

[5] P. S. R. Diniz, Adaptive Filtering Algorithms and Practical Implementation, 5th ed., Springer 

Nature Switzerland AG, Cham, 2020, doi: 10.1007/978-3-030-29057-3. 

[6] T. Bao, J. Duffy, Signal extraction: experimental evidence, Theory and Decision 90 (2021), 219–

232. doi: 10.1007/s11238-020-09785-x 

[7]  S. G. Pollock, Filters, Waves and Spectra, Econometrics 6 (2018), 35 (33 pages). doi: 

10.3390/econometrics6030035 

[8] S. G. Pollock, E. Mise, A Wiener–Kolmogorov Filter for Seasonal Adjustment and the Cholesky 

Decomposition of a Toeplitz Matrix, Computational Economics 59 (2022), 913–933. doi: 

10.1007/s10614-020-10087-1 

[9] V. Pronina, F. Kokkinos, D.V. Dylov, S. Lefkimmiatis, Microscopy Image Restoration with 

Deep Wiener-Kolmogorov Filters, in: A. Vedaldi, H. Bischof, T. Brox, JM. Frahm  (Eds.), 

Lecture Notes in Computer Science, vol 12365, Springer, Cham, 2020, pp. 185–201. 

doi:10.1007/978-3-030-58565-5_12 

[10] V. Gorev, A. Gusev, V. Korniienko, M. Aleksieiev, Kolmogorov–Wiener Filter Weight Function 

for Stationary Traffic Forecasting: Polynomial and Trigonometric Solutions, in: P. Vorobiyenko, 

M. Ilchenko, I. Strelkovska (Eds.), Lecture Notes in Networks and Systems, vol 212, Springer, 

2021, pp. 111–129. doi:10.1007/978-3-030-76343-5_7 

[11] D. Zhuang, C. Li, Loss Analysis for Networks based on Heavy-Tailed and Self-Similar Traffic, 

Journal of Physics: Conference Series 1584 (2020), 012054 (8 pages). doi: 10.1088/1742-

6596/1584/1/012054. 

[12] D. Radev, I. Lokshina, Advanced models and algorithms for self-similar IP network traffic 

simulations and pefformance analysis, Journal of Electrical Engineering 61, No. 6 (2010), 341-

349. doi: 10.2478/v10187-010-0053-0. 

[13] D. Koutsoyiannis, The Hurst phenomenon and fractional Gaussian noise made easy, 

Hydrological Sciences Journal, 47 (2002), 573-595. doi: 10.1080/02626660209492961. 

[14] M. Li, Generalized fractional Gaussian noise and its application to traffic modeling, Physica A 

579 (2021), 126138 (22 pages). doi: 10.1016/j.physa.2021.126138. 

[15] K. Molugaram, G. S. Rao, Statistical Techniques for Transportation Engineering, Butterworth-

Heinemann (Elsevier), Oxford, 2017, doi: 10.1016/B978-0-12-811555-8.00012-X. 

[16] Yu. A. Papaika, O. H. Lysenko, Ye. V. Koshelenko, I. H. Olishevskyi, Mathematical modeling 

of power supply reliability at low voltage quality, Naukovyi Visnyk Natsionalnoho Hirnychoho 

Universytetu, No. 2 (2021), 97-103. doi: 10.33271/nvngu/2021-2/097. 


