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The information related to the movement of vehicles can be enriched with data beyond latitude, 

longitude, and timestamp, enhanced with complementary segmentations, constituting what is 

called a semantic trajectory. Semantic Web (SW) technologies have already been used for the 

modeling and enrichment of semantic trajectories. Our work-in-progress focuses on the 

engineering of semantic trajectories of drones as knowledge graphs (KG). Particularly, the 

work is motivated by a use case that focuses on UAV (Unmanned Aerial Vehicles) drones with 

a mission to document specific regions/points of interest (a petrified forest in a GeoPark).  This 

research work aims to develop a) a methodology for the engineering of semantic trajectories 

as KGs (STaKG), b) a toolset for the management of KG-based semantic trajectories and c) a 

repository of semantically annotated GIS recording missions and the corresponding produced 

documentation records. In this paper, we present work-in-progress related to a) the STaKG 

engineering methodology, b) the STaKG management toolset for supporting the methodology, 

and c) the semantic model for representing knowledge related to drones’ semantic trajectories 

and the related documentation recordings. 
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Today, Geospatial Linked Data (GLD) is vital for emerging research and development areas such as 

autonomous/unmanned aerial vehicles and (UAV) related services, e.g., delivery, surveillance, and 

documentation. The next generation of spatial knowledge graphs (KGs) will integrate numerous spatial 

and general datasets, such as weather data, points and regions of interest (POI/ROI). GLD and KGs 

principles and tools could contribute to the building of next-generation spatial data applications, 

facilitating the processing and management of data related to moving objects’ trajectories. 

The segments of an object’s movement track, which have been defined based on the interest that 

they present for some application (e.g., a drone’s movement in an area for a given recording mission), 

are called trajectories of the moving object [1]. A trajectory can be enriched with additional data 

(beyond latitude, longitude, and timestamp information), and/or enhanced with several complementary 

segmentations, constituting a semantic trajectory (ST) [2]. In terms of deployment, a ST may be useful 

for applications that require the interpretation of the trajectory of a moving object (e.g., points or regions 

of interest that a drone has documented). 
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Semantic Web (SW) technologies have been used for the modeling and enrichment of STs, since 

they facilitate the modeling and interlinking of data that could enhance a trajectory of raw movement 

data, as well as the segmentation of the trajectories themselves, based on semantic data, in a 

standardized and meaningful way [2, 3]. In this direction, Santipatakis et al. [2] proposed the datAcron 

ontology for representing STs at varying levels of spatiotemporal analysis. Mobility analysis tasks are 

based on a wealth of disparate and heterogeneous sources of information that need to be integrated. 

Additionally, Gao et al. [3] proposed a representation of STs that considers domain knowledge, in 

addition to spatiotemporal data, to achieve improved retrieval of STs. The proposed approach measures 

similarities among vectors and emphasizes on the context of trajectories to extract semantic relations 

among target objects. 

KGs incorporate semantic models (in many cases they can be considered as populated ontologies in 

the form of directed graphs) utilized for the structured and formal representation of heterogeneous data, 

as well as for reasoning with multiple integrated views of it [4, 5]. Therefore, they could be exploited 

for the representation and processing of STs. 

Our research is motivated by use cases related to drones’ mission of documenting (with photos 

recording events) specific POIs and ROIs, such as the GeoPark of petrified forest in Lesvos Island. 

Particularly, we aim to develop a KG-based approach for transforming trajectories of drones (usually 

operating in a swarm) - and particularly, UAV drones - into STs that can be effectively managed, 

visualized, and analyzed. The main objectives of the approach are to facilitate a) the modeling of STs 

of drones and swarm of drones, their flights and recordings per mission (e.g., volume and frequency of 

recording episodes), b) the visualization and analysis of STs, c) the retrieval of semantic information of 

flights/missions (e.g., drone position, recording position, episodes’ date/time, weather data), and, d) the 

retrieval of records (e.g., photos) which have been produced during different recording events of 

trajectories related to a flight/mission, based on parameters such as the type or location of recording 

events (e.g., nearby recording positions, photograph recording, the object of interest that has been 

recorded, etc.).  

Based on the aforementioned objectives, this research aims to contribute a) a methodology for the 

engineering of drones’ STs as KGs (STaKG), b) an integrated toolset for the management of KG-based 

drones’ STs, and c) a repository of semantically annotated GIS recording missions and the 

corresponding produced documentation records. Specifically, in this paper, we present work-in-

progress related to a) the proposed STaKG methodology, b) the under-development STaKG 

management toolset for supporting the methodology, and c) the developed semantic model for 

representing knowledge related to drones’ STs and the related documentation recordings. 

The remainder of the paper is structured as follows: Section 2 presents the proposed methodology 

for engineering drones’ STs as KGs. In Section 3 the architecture and technological choices for the 

toolset that supports the proposed methodology are presented. In Section 4, the developed semantic 

model and the expected results of the work-in-progress implementations are discussed. The paper 

concludes with a discussion summarizing the research work conducted so far. 

 

Ontologies constitute the backbone of KGs since they provide the formal and explicit semantics that 

KGs need for the effective modeling of Linked Data (LD) on the Web of Data. Ontology engineering 

methodologies (OEMs) define specific methodological phases, processes, and tasks for the engineering 

of ontologies, including feasibility analysis, identification of goals, requirements specification, 

implementation, evaluation, and maintenance. Those steps present - to some extent - an analogy to KG 

building steps. As suggested in related work [6], the ontology and the KG that is built on top of it, can 

both be developed following the general principles and similar/analogous tasks and steps of an OEM 

(e.g., DILIGENT [7], HCOME [8]). In this direction, the proposed hybrid (human-center/top-down and 

data-driven/bottom-up) methodology, namely Semantic Trajectories as Knowledge Graphs (STaKG) 

methodology, borrows and adapts principles and tasks of the collaborative and iterative OEM HCOME 

[8], and merges with principles from KG engineering approaches [9, 10]. 

 



 

 

The three phases of the STaKG methodology are briefly described below (and depicted in Figure 1): 

• The first phase, namely Specification, includes the specification of the involved 

stakeholders of the engineering team (who is doing what), as well as the aim, scope, and 

requirements in terms of data, semantic annotations, segmentations of the trajectories, and 

the model that will capture the required knowledge. 

• The second phase, namely Development, includes the creation of the explicit knowledge 

related to the STaKGs, i.e., the extension and specialization of reused ST models (e.g., an 

extension of existing ST ontology) based on the requirements of the first phase. It also 

includes the creation of instance data, i.e., spatiotemporal, and contextual data about the 

recorded trajectories. In the same phase, storage, publishing, retrieval, and visualization of 

the STaKGs are included. 

• The third phase, namely Evaluation and exploitation, includes a) the evaluation of the 

quality of the modeled STaKGs, in terms of correctness, completeness, and bias, b) the 

cleaning and enrichment of the STaKGs. Enrichment refers to the discovery and linking to 

additional/external knowledge sources (e.g., from the Web). In the same phase, deployment 

and maintenance procedures are included. 

 

To support STaKG methodology with an engineering environment, we have designed a management 

toolset based on state-of-the-art technology for LD and KGs. Its interconnected components exchange 

data through a pipeline process (see Figure 2) that involves a) preprocessing of position/movement data 

(data cleaning, data compression), b) the enrichment of raw trajectories for the engineering of STs 

(semantic segmentation, semantic annotation, utilization of application domain and geographical data, 

linking to external data sources), c) conversion of ST to KGs (ST management, retrieval), d) analysis 

of STaKG (classification, clustering, aggregation, comparison of STaKGs). The analysis may result in 

the discovery of previously unknown behaviors of moving entities where there is no a priori knowledge 

for them, or behavior detection/reasoning, which refers to the recognition of an already known moving 

behavior of a moving entity. 



 

 

 

The high-level architecture of the designed toolset includes: a) a tool for raw trajectory data cleaning 

and RDFization based on automated/semi-automated mapping to related semantic models, utilizing 

specialized tools (OpenRefine [11], Karma [12]), b) a tool for trajectory data summarization, 

trajectories’ enrichment with Linked Open Data by performing linking tasks to external data sources, 

recording metadata, weather data, and structured data of POI/ROI shapefiles, c) a tool for ST 

management (split, merge, combine, analyze), and d) a web-based tool for ST browsing and 

visualization. The tools described in (b), (c), and (d) will be developed using the GRAND [13] 

technology stack which includes GraphQL, React.js, Apollo, Node.js, and Neo4j. Furthermore, a graph 

database, namely Neo4j [14], supports the web-based tool, and stores the managed data (STs, GIS 

recording missions, and produced records). Especially for RDF store technology, although noteworthy 

alternatives exist, specialized in spatiotemporal RDF data storing, such as Strabon RDF store [15], 

Neo4j was selected due to its integration in the GRAND technological stack, and due to the integrated 

graph analytics solutions, that it provides. Although Neo4j is not a native spatial database, it includes 

data types for geospatial and temporal values and provides spatial and temporal functions as well as 

spatial indexing and complex polygon representations. 

A high-level architectural design of the interconnected tools of the STaKG toolset, and the related 

exchanged data, is depicted in Figure 3. 

 



 

The data and knowledge that the STaKG model aims to integrate, considering the motivation use-

cases, includes a) flight data, derived from flight log files which are the records of a flight, automatically 

generated by a drone (usually in CSV format), b) equipment data, reported by the flight operator, 

describing the characteristics of a drone (e.g., model, serial number), c) recording/mission data, reported 

by the flight operator in the context of the mission planning procedure (e.g., the purpose of the mission), 

d) records data (aerial and terrestrial), provided either by exif (Exchangeable Image File Format) files 

of the records  (photos, videos, lidar data) or directly from the acquired or processed records, e) 

geographic names and elements, about the POI/ROIs (e.g., location of the recorded object), f) weather 

data, data (e.g., temperature) recorded by weather monitoring devices or services. 

For the development of the semantic model that is required to represent knowledge related to 

StaKGs, existing related ontologies have been studied. The datAcron ontology has been selected for 

reusing the main conceptualization of a ST in the aviation domain. At this stage, a first version of the 

semantic model (Onto4drone [16]) has been developed (version 1.0.0) and it is available in OWL. It is 

directly based on the datAcron ontology, and indirectly on the DUL [17], SKOS [18], SOSA/SSN [19], 

SF [20, 21], GML [22], and GeoSPARQL [23] ontologies. The model was developed following the 

HCOME collaborative engineering methodology, supported by Protégé 5.5 (for personal space 

engineering), and WebProtégé (for shared space engineering) tools respectively. In addition, Google 

Docs and Meet have been used for further collaborative engineering tasks. The ontology has been 

populated by individuals in order to be evaluated at this initial stage, while SPARQL queries have been 

executed for evaluation purposes [16] (aligned to the competency questions specified in the 

Specification phase of the STaKG methodology). 

 

This paper presents a KG-based approach for transforming trajectories of drones into STs managed 

by an integrated toolset. Particularly, it presents STaKG engineering methodology, a semantic model 

for representing STaKGs, and the architecture and implementation choices of a management toolset (its 

implementation is a work-in-progress) based on state-of-the-art technology for LD and KGs. The 

engineered STaKGs using the proposed methodology, model, and toolset, are expected to constitute a 

Geospatial LD knowledge-base available for a) utilization by drone-related applications, and b) the 

deployment of related services which will facilitate the work of experts/stakeholders in the 

Geoinformatics domain. First and foremost, the STaKG knowledge-base will be exploited for advanced 

map-based visualization of trajectories, flights, missions, recording events, timelines, and records, e.g., 

a geographic map that visualizes different flights and individual photographic records of a drone in the 

form of a ST, along with the related data-recording episodes recorded during a specific mission. 

Additionally, the STaKG knowledge-base will be exploited for management and analytics tasks. Such 

tasks include the merging of two or more STaKGs that are related to the same recording mission, the 

splitting, and the refinement of a STaKG to specific episodes e.g., splitting the recording episodes of 

the moving trajectory of a drone to sub-episodes of camera-shooting position set at up-shooting-

departure for the next shooting position. 
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