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Abstract
The amount and impact of hate speech on social media is already alarming, causing harm for individuals
and societies, yet it still keeps increasing. It has been reported that hate speech is strongly related to
hate crimes and suicide rates. To stop hate speech on social media, online automatic approaches for hate
speech detection in text have thus been drawing wide attention in the last decade.

In this work, we take up the HASOC-21 shared tasks, which focus on hate speech and offensive
content identification in English. Two subtasks are addressed—one to identify the presence of any form
of hate, offensive and profane content in a post, the other to discriminate between these three types of
problematic content. We propose a hybrid representation fusion (HRF) structure, using both TF-IDF
and BERTweet-based representations. Specifically, a Convolutional-BiLSTM (CBLSTM) network is used
to extract semantic information from the BERTweet embeddings. Finally, we use the cosine similarity
between different types of features as a reliability measure. We compare the performance between the
proposed model with and without cosine similarity as an additional reliability measure. The former
could reduce the standard deviation of the macro f1 score in a 10-fold cross-validation by over 27.27% for
subtask A and 22.22% for subtask B, respectively. In the HASOC-21 ranking, our approach achieved an
80.13% macro F1 score for subtask A and 64.82% for subtask B on the official HASOC-21 test set.
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1. Introduction

In recent years, digital services like social media platforms or instant messaging systems
have been struggling with hateful comments and abusive content, where users—typically
anonymous—justify or instigate violence and discrimination against a person or a group. Hate
speech permeates the vast majority of social media platforms and instant messaging systems,
and has been increasing in volume and severity [1].

Nowadays, the impact of online hate speech (and misinformation) has entered all protagonists’
consciousness, as hate speech strongly affects violent crimes in the real world. Research studies
show a strong connection between the increased amount of shared and distributed hate speech
messages and a higher occurrence of hate-related offenses against minorities [2]. And even
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Table 1
Class distribution of HASOC-21 dataset

HOF
NOT

HATE OFFN PRFN
total

training 1342 683 622 1196 3843
test 483 224 195 379 1281

though not all cases of criminal acts directly follow from abusive online messages, its impact on,
e.g., individual votes during democratic elections is vast [3, 4]. Additionally, victims are often
strongly affected by the floods of hateful comments, and suffer from feelings of hopelessness or
isolation, eating or sleep disorders, depression, and thoughts of suicide[5, 6, 7].

Consequently, there is an urgent need to find suitable tools and instruments to at least reduce
the prevalence and impact of hate speech. However, due to the rising amount of shared and
distributed poisonous content on social media platforms or instant messaging systems, it is
infeasible to identify all, or even a significant part, manually.

The HASOC-21 shared task [8] encourages the participants working on automated solutions
to counter this negative trend. The shared task offers annotated messages to develop machine
learning methods for identifying hate speech and differentiating between different types of hate
speech. More precisely, the dataset contains Twitter posts for both, English and Indo-Aryan
languages [9]. In this work, we decided to work only with the annotated English tweets.

The paper is organized as follows: The dataset and our feature extraction are described in
Section 2. Section 3 gives an overview of the proposed models, followed by the experimental
setup, which is presented in Section 4. Finally, the results are discussed in Section 5 and
conclusion are drawn in Section 6.

2. Dataset

The HASOC-21 dataset consists of annotated Twitter posts, with training and test set comprising
3843 and 1281 tweets, respectively. Each tweet has been sorted into the binary categories NOT
(Non-Hate-Offensive) or HOF (Hate-Offensive). The HOF tweets are further discriminated into
the three classes HATE (Hate speech), OFFN (Offensive), or PRFN (Profane). Table 1 shows the
class distribution of the dataset.

2.1. Feature Extraction

In this work, we employ two types of features, the statistical term frequency-inverse document
frequency (TF-IDF) features, and semantic text embeddings extracted from the pre-trained
BERTweet model [10].

2.1.1. Text Preprocessing

Before extracting the TF-IDF features, we perform text normalization on the raw tweets to
remove redundant and noisy information. Concretely, we decided to conduct the following
steps:



1. Replacing all user names and hashtags with USER and HASH.
2. Removing all URLs.
3. Converting all Emojis into corresponding text representations1.

To see the effect of this normalization, consider this raw tweet:

@maiysha Death threats to Actor siddharth and his family for exposing BJP What can
we expect from the party which files FIR for asking Oxygen #IStandWithSiddharth
https://t.co/4Fwpw4y8Bf #ModiKaVaccineJumla.

After text normalization, we obtain:

USER Death threats to Actor siddharth and his family for exposing BJP What can we
expect from the party which files FIR for asking Oxygen :pouting_face: HASH HASH.

Apart from these steps, we also tested the effect of converting all upper-case tokens into
lower case. However, results on the PAN18 English dataset [11], did not show any notable
improvement.
The BERTweet model also provides a built-in text normalization stage, resulting in the following
text-normalized tweet:

@USER Death threats to Actor siddharth and his family for exposing BJP What can we
expect from the party which files FIR for asking Oxygen :pouting_face: #IStandWithSid-
dharth HTTPURL #ModiKaVaccineJumla .

2.1.2. TF-IDF Features

TF-IDF features are based purely on term frequencies in collections of documents. Similar
to [12], the TF-IDF features are based on n-gram models, where we perform Latent Semantic
Analysis (LSA) [13] to reduce the dimension of the features. We use both, token-based 1-
to 3-gram and character-based 3- to 5-gram models to extract the TF-IDF features, by the
implementation provided in the scikit-learn library [14]. The TF-IDF features are extracted
by the TfidfVectorizer function, which transforms each tweet into a vector2. The minimum
document frequency is set to 2. The maximum document frequency is set to 1.0 (100%), which
means terms occurring in all documents are ignored. Then, LSA is applied through the truncated
singular value decomposition (SVD) [15]. The truncated SVD transforms the TF-IDF features to
a 500-dimensional vector, which is done separately for the token- and character-based n-gram
features 3. Finally, the token- and the character-based transformed n-gram TF-IDF features are
concatenated to obtain a 1000-dimensional feature vector.

2.1.3. BERTweet Features

In addition, we also extract semantic text embeddings from the pre-trained contextualized
BERTweet language model 4. As described in [10], this model was pre-trained on a large corpus

1https://github.com/carpedm20/emoji
2https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
3https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
4https://github.com/VinAIResearch/BERTweet.git

https://github.com/carpedm20/emoji
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://github.com/VinAIResearch/BERTweet.git


of English tweets.
Specifically, we chose the BERTweet-large model, where the embedding dimension for a

single token is 1024, so that we obtain a sequence of 1024-dimensional token embeddings for
each tweet.

3. System Overview

In this section, we present the model architecture of our final submission.
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Figure 1: The hybrid representation fusion (HRF) model. B indicates the batch size, while n defines the
maximum text length of the current batch.

Figure 1 shows the overall topology of our two-stage approach. In the first stage, the TF-IDF
and BERTweet feature vectors are fed into two separate neural networks. In the second stage,
we combine the outputs of both networks, also measuring the similarity between both network
outputs. The similarity of two representations are considered as a reliability measure, which
helps the TF-IDF model and BERTweet models make the same decision.

To reduce the computational complexity, a feed-forward network (FF) maps the features into



a lower dimension.
̃𝑡= FF (𝑡) , (1)

where 𝑡 represents the TF-IDF features.
The pre-trained BERTweet model maps each token onto a 1024-dimensional vector. As

described in [16], the input text of the BERTweet model is started with a special classification
token [CLS] and ended with [SEP], e.g. “[CLS] @dxnprivv Stop being a twat then. [SEP]”. After
the BERTweet embedding, the first token [CLS] representation 𝑠 is always used as a special
classification token for text classification tasks.

Hence, we use the representation vector of the first token 𝑠 (i.e. [B, 0, 1024]) as BERTweet
classification feature. A feed-forward network is used to map 𝑠 into a lower dimension.

̃𝑠= FF (𝑠) . (2)

Additionally, the complete embedding sequence is fed into a Convolutional-BiLSTM (CBLSTM)
network [17] to extract semantic information. We denote the input embedding sequence for a
tweet as x = [x1, x2, ⋯ x𝑛], where x 𝑖, 𝑖 ∈ {1, … , 𝑛} is a 1024-dimensional embedding vector of
the 𝑖-th token. In the CBLSTM network, the sequence x is first fed into 4 BiLSTM layers,

ℎ(1)𝑖 = BiLSTM(𝑥𝑖) (3)

ℎ(2)𝑖 = BiLSTM(ℎ(1)𝑖 ) (4)

⋮ (5)

ℎ(4)𝑖 = BiLSTM(ℎ(3)𝑖 ) (6)

where the cell dimension of each layer is 𝑑 = 768, and h(4) = [h(4)
1 ,h(4)

2 , ⋯ ,h(4)
𝑛 ] with

h(4) ∈ R𝑛 × 2𝑑 represents the stacked matrix of all hidden layer states.
The CBLSTM now calculates a tweet representation, 𝑟, using the attention mechanism. Firstly,

we compute the dot product,

ℎ̃𝑖 = (ℎ(4)𝑖 )𝑇 ⋅ ℎ(4)𝑛 , 𝑖 ∈ {1, … , 𝑛} (7)

where the last hidden layer state, h(4)
𝑛 , is used as a query and h(4)

𝑖 is the current hidden layer
state. Secondly, a convolutional layer is incorporated to extract relevant semantic information,
yielding

c𝑚𝑖 = ReLU (w ⋅ h(4)
𝑖∶𝑖−𝑚+1 + b) . (8)

Here,w ∈ R1 ×𝑚⋅2𝑑 represents the convolution filter and b is the corresponding bias. The window
size is chosen as 𝑚 ∈ {3, 4, 5}. The convolution is performed on each possible window of the
matrix h(4) to produce a feature map c𝑚 = [c𝑚1 , c𝑚2 , ⋯ c𝑚𝑛−𝑚+1]. It is obvious that not all tokens
contribute equally to the final decision. Consequently, a maximum-pooling layer is used to find
the most informative features in the document for the task,

v𝑚 = max{c𝑚1 , c𝑚2 , ⋯ , c𝑚𝑛−𝑚+1}. (9)



After concatenating the pooling results, v = [v3, v4, v5], the attention weights are obtained by

𝛼𝑖 = softmax (ℎ̃𝑖 ⋅W 𝑇
𝛼 ⋅ v) , (10)

where W 𝛼 ∈ R3 × 1 is the trainable parameter vector. The final hidden state representation is
given by:

s =
𝑛
∑
𝑖=1

𝛼𝑖 ⋅ h
(4)
𝑖 . (11)

Now, the hidden state representation is concatenated with the last state of the last hidden layer,
h(4)
𝑛 , and fed into a feed-forward network to obtain the final tweet representation r ∈ R1 × 𝑑.

r = FF ([h(4)
𝑛 , s]) . (12)

Subsequently, the BERTweet classification vector ̃𝑠 in Eq (2) and the hidden state representa-
tion 𝑟 in Eq. (13) are concatenated. Again, a feed-forward network projects the obtained vector
into a lower dimension.

̃𝑟= FF ([r , ̃𝑠]) . (13)

Now, we can use the TF-IDF- and the BERTweet-based representations to make the decision.
If the representations for these two feature types are similar, the TF-IDF model and the BERT
model are tending towards the same outcome and vice versa. To help the model towards unified
decisions, we calculate the cosine similarity of these two representations. Finally, the two
feature representations and the cosine similarity are concatenated, and a feed-forward classifier
makes the final decision based on this vector.

4. Experimental Setup

We evaluated our proposed model on two subtasks. subtask A is a binary task, to identify each
tweet as ’NOT’ (non-offensive) or as ’HOF’ (hate/offensive speech). For this task, the network
output dimension is thus 1 andwe used a sigmoid function as the output layer activation function.
The network was trained with the binary cross-entropy as the loss function. subtask B is to
classify tweets into four different categories, namely ’HATE’ (Hate speech), ’OFFN’ (Offensive),
’PRFN’ (Profane) or ’None’ (No hate speech). The output dimension was thus set to 4, with
a softmax function as the output layer activation function and the cross-entropy loss. Each
feed-forward network contains two hidden layers of 768 units each, with ReLU activation
functions.

To compare the model performance in different setups, we applied 10-fold cross-validation
on the training set. Five different model versions are implemented:

• TF-IDF : the TF-IDF stream in the HRF model (Figure 1) only uses TF-IDF 𝑡 as features.
• BERT-C : the BERTweet classification stream in the HRF model, based solely on the
BERTweet classification features ̃𝑠.

• BERT-E: the BERTweet embedding stream in HRF model, based on the BERTweet embed-
ding features r .



Table 2
Cross-validation results on the validation set. Bold print indicates the maximum mean value and the
minimum standard deviation.

subtask model Macro F1 Macro Precision Macro Recall Accuracy
TF-IDF 0.739±0.051 0.730±0.047 0.778±0.033 0.784±0.028
BERT-C 0.816±0.015 0.808±0.016 0.827±0.019 0.837±0.015
BERT-E 0.807±0.015 0.796±0.016 0.827±0.012 0.833±0.012
HRF-NC 0.808±0.019 0.798±0.023 0.825±0.013 0.833±0.012subtask A
HRF 0.809±0.012 0.799±0.017 0.830±0.012 0.834±0.007

TF-IDF 0.441±0.075 0.490±0.045 0.458±0.151 0.607±0.036
BERT-C 0.653±0.028 0.657±0.026 0.673±0.017 0.699±0.014
BERT-E 0.656±0.015 0.656±0.015 0.676±0.017 0.700±0.014
HRF-NC 0.651±0.019 0.653±0.018 0.673±0.013 0.700±0.015subtask B
HRF 0.660±0.017 0.660±0.014 0.672±0.020 0.701±0.016

• HRF : our proposed model combining both feature streams as shown in Figure 1.
• HRF-NC : our proposed model, without the cosine similarity as a reliability measure.

All models were implemented using the PyTorch library [18]. We trained the models for 50
epochs, choosing a batch size of 48, and using the AdamW optimizer [19]. To avoid overfitting,
we incorporated early stopping to monitor the degradation on the held-out set. More precisely,
the training was stopped when the accuracy on the validation set did not increase over 9 epochs.
We set the initial learning rate to 2 ⋅ 10−5 and we further installed a linear learning rate scheduler
with warm-up to change the learning rate during the first four epochs of the training stage.

During training, all trainable parameters of the pre-trained BERTweet models were also
fine-tuned. Inspired by [20], we finally averaged the weights of those two epoch-wise models,
which returned the highest validation accuracy during the training stage.

All models were trained using NVIDIA’s Volta-based DGX-1 multi-GPU system, using 2 Tesla
V100 GPUs with 32 GB memory each.

5. Results

The two box plots in Figure 2 provide the cross-validation results of the baseline models with
our proposed hybrid model on the training set. The validation set is used for early stopping. As
it can be seen, the F1 score of the TF-IDF -based model that only relies on traditional features
is significantly lower than that of the other models. We use the Mann-Whitney-U test [21] to
indicate statistically significant differences in the F1 score between the proposed HRF model
and other baselines. However, from Plots 2a and 2b, we do not notice an improvement from the
combination of both, traditional and neural features.

Table 2 shows all obtained F1 scores in greater detail. Starting with subtask A, the BERT -based
models again significantly outperform the TF-IDF system, while BERT-C is on par with HRF.
For subtask B, the proposed hybrid model slightly outperforms the BERT-C model. However,
overall, for both subtask A and subtask B, there is no statistically significant difference between
the different BERT -based models.
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Figure 2: Macro F1 scores for 10-fold cross-validation on the validation set. Asterisks indicate a
statistically significant difference, where *** denotes 1e-04 < p <= 1e-03, ns denotes p > 5e-02.

Table 3
Results on the official test set

subtask model Macro F1 Macro Precision Macro Recall Accuracy
TF-IDF 0.703±0.106 0.706±0.069 0.773±0.016 0.755±0.044
BERT-C 0.801±0.011 0.792±0.013 0.820±0.009 0.821±0.009
BERT-E 0.798±0.009 0.787±0.011 0.827±0.005 0.821±0.006
HRF-NC 0.806±0.011 0.795±0.012 0.831±0.008 0.826±0.009subtask A
HRF 0.795±0.008 0.784±0.010 0.822±0.006 0.817±0.005

TF-IDF 0.438±0.072 0.482±0.041 0.442±0.129 0.603±0.018
BERT-C 0.630±0.012 0.639±0.010 0.640±0.012 0.674±0.013
BERT-E 0.652±0.008 0.658±0.007 0.661±0.008 0.693±0.008
HRF-NC 0.638±0.009 0.646±0.007 0.654±0.012 0.685±0.008subtask B
HRF 0.644±0.007 0.650±0.010 0.655±0.012 0.686±0.008

After getting access to the official groundtruth labels, we repeated the cross-validation
procedure on the HASOC-21 test set. The results are shown in Figure 3 and Table 3. Altogether,
we do not observe significant differences between the training and the test sets, which shows
the robustness of our approaches. Having a closer look at Table 3, the HRF model reduces
the standard deviation of the macro F1 score by over 27.27% for subtask A and 22.22% for
subtask B compared to the HRF-NC model. However, on subtask B, the BERT-E model has the
better performance. Figure 3a still shows no statistically significant difference between the
BERT -based models, while we can see a slight difference between BERT-C and the proposed
HRF model in Figure 3b.
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Figure 3: Macro F1 scores for 10-fold cross-validation on the official test set. Asterisks indicate a
statistically significant difference, where *** denotes 1e-04 < p <= 1e-03, * denotes 1e-02 < p <= 5e-02, ns
denotes p > 5e-02.

Finally we submitted different versions of the HRF model to participate in the HASOC-21
ranking. We randomly selected 128 Twitter posts from the training set as the validation set.
The model performance is tested on the HASOC-21 official test set.

For the final raking, all participants were allowed a maximum of five submissions. Firstly, we
submitted two different versions of the HRF system, with and without fine-tuned BERTweet
parameters. The first two rows in Table 4 show these results for subtask A and emphasise the
advantage of task-specific fine-tuning of the standard BERTweet model. Next, we submitted
differentHRF versions (for both tasks) which are based on the standard or large BERTweet version.
It is observable that the large BERTweet model tends towards a slightly better performance,
especially for subtask B.

In summary, our best models in Table 4 achieved rank 11 out of 56 participants for subtask A
and placed 3rd out of 37 participants for subtask B in the HASOC-21 ranking [8].

6. Conclusion

We are presenting our approach for the HASOC-21 shared tasks of hate speech identification
and classification, detailing its stages from the pre-processing steps, via the design of the neural
model architecture, to the training procedure. The core of our approach is a novel neural
fusion strategy to combine classical TF-IDF features with fine-tuned contextualized BERTweet
embeddings. We incorporated the cosine similarity between the final TF-IDF- and BERT-based
representations to learn a suitable fusion network. The results of our 10-fold cross-validation



Table 4
Performance of all versions of the proposed HRF model that participate in the HASOC-21 ranking. type
indicates which BERTweet model is used in the HRF network; finetuning shows if the HRF network
updates the BERTweet parameters during the training stage.

subtask type finetuning Macro F1 Macro Precision Macro Recall Acc. (%)
without 0.747 0.762 0.740 77.127%

BERTweet
with 0.795 0.817 0.784 81.577%subtask A

BERTweet-large with 0.801 0.817 0.793 81.967%
BERTweet with 0.625 0.639 0.625 68.384%

subtask B
BERTweet-large with 0.648 0.651 0.652 68.931%

are consistent with the test set results. In the challenge, our submissions ranked 11th out of 56
participants for subtask A and 3rd out of 37 participants for subtask B.

The vast amounts of information on social media cannot realistically be monitored for hate
speech by linguists. To address the demand of this situation, we would like to design a model
that focuses not only on accuracy but also on delivering reliable confidence values. In this
context, and moving one step towards responsible AI, future work will focus on calibration
methods such as Dirichlet calibration [22]. These are important for obtaining reliable output
predictions, in which confidence is well-matched with accuracy, so that the system output
provides a sound basis for real-world decision-making.
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