
Denotation of Semantic Web Services Operations through OWL-S

Marco Luca Sbodio

Italy Innovation Center

Hewlett Packard Italiana

C.so Trapani 16, 10139 Torino, Italy

marco.sbodio@hp.com

Claude Moulin

University of Compiègne, CNRS, Heudiasyc

Centre de Recherches de Royallieu

60205 Compiègne, France

claude.moulin@utc.fr

Abstract

Emerging semantic web service description for-

malisms, such as OWL-S, allow for a definition of the

semantic of services. Describing input and output types

is not sufficient to declaratively and unambiguously de-

note the operations offered by a web service. Two ser-

vices may have the same input and output types and

have completely different semantics of their operation.

In this paper we present an approach for the spec-

ification of a web service denotation based on OWL-S

capabilities, and an algorithm for dynamic discovery

of services exploiting their denotation. We show how

preconditions and results of the OWL-S formalism can

be used to constrain the actual denotation of a service,

and we describe how an agent can perform dynamic dis-

covery of services exploiting their denotation. In our

scenario, an agent has to search for the appropriate

service, and verify that this service is able to produce

the information that the agent needs.

1. Introduction

Web services constitute the building blocks of ser-
vice oriented architectures. They offer modularity, flex-
ibility and interoperability. Web services standards en-
sure the definitions of platform and language indepen-
dent functional interfaces, and enforce the decoupling
between interfaces and implementation. Although the
WSDL description of a web service is a precise defini-
tion of its functional interface, it does not declaratively
and unambiguously denote the semantics of the oper-
ations offered by the web service.

The semantic web services vision [1] is pursued by
several emerging formalisms and frameworks, such as
WSMO [20], SWSF [21] and OWL-S [15]. The Web
Service Modeling Ontology (WSMO) defines an ex-
plicit conceptual model for Semantic Web Services [18].

It provides a framework for the description of Semantic
Web Services that enables seamless business integra-
tion through formal descriptions [16, 17]. Although the
aims of both WSMO and OWL-S are the same, they
present some differences in their approach; a detailed
comparison between OWL-S and WSMO is presented
in [19].

Our work is based on OWL-S, and it explores how
the denotation of a web service can be unambiguously
specified using OWL-S Process ontology, through the
definition of input and output types, and the declara-
tion of preconditions and results.

The paper is structured as follows. In Section 2 we
give an overview of the approach. In Section 3 we in-
troduce a simple reference scenario, which will be used
throughout the paper to illustrate our approach. Sec-
tion 4 gives an overview of the OWL-S features that
allow for a complete denotation of a service; in Section
5 we show how OWL-S features are used to describe
the services in our reference scenario, and we explain
how we use them to achieve a full denotation of the
services. In Section 6 we present an algorithm that
shows how an agent can perform dynamic discovery of
services exploiting their denotation. We conclude with
a comparison on related works in Section 7.

2. Overview

We aim at automating the dynamic discovery of web
services performed by an agent seeking to satisfy some
goal. In the discovery process it is necessary to use the
full semantic denotation of the web service operations
(input/output types, preconditions and results) in or-
der to assess if a service is appropriate to fulfill the
agent’s goal. Specifically, we use preconditions and re-
sults to declare constraints among inputs and output of
a web service in order to disambiguate its operations.

Given a set of web services, we assume that their
OWL-S descriptions are available through a semantic

service registry. We do not bind to any specific imple-
mentation of semantic service registry, but we simply
assume that the semantic service registry works as an
RDF store that can be queried using SPARQL [25] or
RDQL [26].

The discovery process is carried out by an agent,
which tries to fulfill a goal represented by an RDQL
query. The agent has its own knowledge base (an
RDF/OWL model), which is used in the following
ways:

• it contains instances of some ontology classes,
which can be used as inputs for web services

• it is augmented during the discovery process with
knowledge inferred from the OWL-S descriptions

• it is queried to check if the goal is fulfilled

Our current focus is on information production web
services, which usually generates or returns some kind
of information based on information given as input and
(possibly) the world state. This kind of web services
usually do not produce changes in the state of the
world (effects), which is a peculiarity of the world tran-

sition web services. Information production web ser-
vices are very common in the e-Government domain,
which is the domain of the TERREGOV project: Im-
pact of e-Government on Territorial Government Ser-
vice. TERREGOV addresses the issue of interoper-
ability of e-Government services for local and regional
governments (see Section 8). We show how precondi-
tions and results may be exploited to disambiguate the
denotation of the operations of information production
web services.

3. Reference Scenario

We illustrate our approach through the following ref-
erence scenario, which is a simplification of actual pro-
cesses occurring in e-Government applications. We re-
fer to a simple domain ontology (see figure 1)1, which
defines the class Person with three object properties
(hasPassport, hasSocialSecurityCard, hasMother).

Properties hasPassport and
hasSocialSecurityCard represent the link be-
tween a Person and respectively Passport and
SocialSecurityCard, which represent two identifiers
for the same person (it is often the case in public
administration processes that people have different
identifiers according to service’s domain). Prop-
erty hasMother represents the parental relationship
between two persons.

Figure 1. Ontology schema.

A Person has also a datatype property called hasName.
This domain ontology is used to define the inputs and
outputs types of three web services, which are infor-
mally described here:

• WS1: given the instance of Passport of a Person,
WS1 returns the instance of SocialSecurityCard
of the same Person.

• WS2: given the instance of SocialSecurityCard
of a Person, WS2 returns the value of hasName of
the same Person.

• WS3: given the instance of Passport of a Person,
WS3 returns the instance of SocialSecurityCard
of the Person’s mother.

WS1 and WS3 have the same input (an instance
of Passport) and the same output (an instance of So-
cialSecurityCard). However, the purpose of WS1 is
completely different from the purpose of WS3. Fur-
thermore, both WS1 and WS3 can be composed with
WS2 (output type of both WS1 and WS3 matches with
the input type of WS2), but the semantics of the com-
position is quite different.

4. Specification of Service Denotation

with OWL-S

The formal denotation of a service is expressed by
the declarative specification of all its characteristics:
input/output types, preconditions and results (and the
possible relationships among them). OWL-S ontologies
provide appropriate constructs to formally specify all
these elements. In this work we refer to the version 1.2
of OWL-S [15], which is not yet finalized. Specifically,
we use the information provided through the OWL-S
Process ontology, which in OWL-S version 1.2 has been
substantially revised and enriched.

1The figure has been built with the TopBraid Composer
(http://www.topbraid.com)

2

OWL-S Process ontology have specialized constructs
that allow the declarative definition of inputs and out-
put types (through the object properties hasInput

and hasOutput) and of preconditions and results
(through the object properties hasPrecondition and
hasResult).

Specifically, hasPrecondition defines the condi-
tions that must hold true before the service can be
invoked, and hasResult defines the results that are
produced by the service. An OWL-S Process may have
several results with corresponding outputs. Each result
can be associated to result conditions that specify when
that specific result can occur. It is assumed that such
conditions are mutually exclusive, so that only one re-
sult applies in any single situation.

The results conditions are specified through the ob-
ject property inCondition. Furthermore, the results
may also specify some effects, i.e. changes in the state
of the world. Inputs, Output, Preconditions and Re-
sults of a service are often referred to with the acronym
IOPR.

In the OWL-S Process ontology the range of
hasPrecondition and inCondition is Condition,
which is a sub-class of Expression; an Expression

is defined in some logical language (SWRL [22], DRS
[23], KIF [24], SPARQL [25], RDQL [26]). Notice that
OWL-S has introduced the use of RDQL and SPARQL
only in late release (see OWL-S 1.2 Pre-Release [15]).
This variety of logical languages offers a high degree
of flexibility, even if this may pose some issues in
terms of interoperability. Notice that we currently use
RDQL for OWL-S conditions and query over knowl-
edge bases, but everything could be easily expressed
with the emerging SPARQL standard.

The OWL-S Process ontology says that
hasPrecondition and inCondition properties
refer to conditions that are tested in specific contexts.
Preconditions are evaluated with respect to the client
environment before the process is invoked; result
conditions are effectively meant to be evaluated in the
server context after the process has executed, which is
impossible in case of service discovery.

Our interpretation of result conditions is that they
are also part of the client context, in the sense that the
client obtains the result iff the corresponding condition
is true (this interpretation is further clarified in section
5).

Finally, OWL-S provides also specialized constructs
(VariableBinding) to define a correspondence be-
tween a variable mentioned in a logical expression (used
in hasPrecondition and inCondition) and OWL in-
stances, or instances of OWL-S process:Parameter.

5. Service Denotation with IOPR

We show here how to denote web services using
OWL-S Inputs, Outputs, Preconditions and Results,
and we describe our interpretation of results’ conditions
during the service discovery phase. In our description
we refer to the web services WS1 and WS3 introduced
in our reference scenario (see Section 3).

The following is an excerpt of OWL-S definition of
WS1 (we use the more compact N3 [2] format); ns1

is the namespace of the OWL-S definition of WS1,
process is the namespace of the OWL-S Process on-
tology, and ex is the namespace of the domain ontology
illustrated in section 3).

ns1:WS1

a process:AtomicProcess ;

process:hasInput ns1:PassportIn ;

process:hasOutput ns1:SocialSecurityCardOut ;

process:hasPrecondition ns1:WS1Precondition ;

process:hasResult ns1:WS1Result .

ns1:PassportIn

a process:Input ;

process:parameterType "ex:Passport"^^xsd:anyURI .

ns1:SocialSecurityCardOut

a process:Output ;

process:parameterType

"ex:SocialSecurityCard"^^xsd:anyURI .

ns1:WS1Precondition

a expr:RDQL-Condition ;

expr:expressionData

"(?p ex:hasPassport ?pass)"^^xsd:string ;

expr:variableBinding ns1:VariableBinding_p ,

ns1:VariableBinding_pass .

ns1:WS1Result

a process:Result ;

process:inCondition ns1:WS1ResultCondition .

ns1:WS1ResultCondition

a expr:RDQL-Condition ;

expr:expressionData

"(?p ex:hasSocialSecurityCard ?ssc)"^^xsd:string ;

expr:variableBinding

ns1:VariableBinding_p , ns1:VariableBinding_ssc .

ns1:P

a process:Existential ;

process:parameterType "ex:Person"^^xsd:anyURI .

ns1:VariableBinding_p

a expr:VariableBinding ;

expr:theObject ns1:P ;

expr:theVariable "?p"^^xsd:string .

ns1:VariableBinding_pass

a expr:VariableBinding ;

expr:theObject ns1:PassportIn ;

expr:theVariable "?pass"^^xsd:string .

ns1:VariableBinding_ssc

3

a expr:VariableBinding ;

expr:theObject ns1:SocialSecurityCardOut ;

expr:theVariable "?ssc"^^xsd:string .

The definition starts with the declara-
tion of instances of process:Input and
process:Output (respectively ns1:PassportIn

and ns1:SocialSecurityCardOut).
Following is the declaration of the precondi-

tion ns1:WS1Precondition, which asserts the RDQL
clause (?p ex:hasPassport ?pass): the variable ?p

is bound to the instance ns1:P, and the variable ?pass
is bound to the instance ns1:PassportIn (i.e. the
process:Input). Notice that ns1:P is an instance of
process:Existential, a special OWL-S construct for
declaring variables with process scope, so that when
they are bound in preconditions, they can be referenced
also in results.

Finally there is the declaration of a
process:Result with the associate condition
ns1:WS1ResultCondition, which asserts the RDQL
clause (?p ex:hasSocialSecurityCard ?ssc):
the variable ?ssc is bound to the in-
stance ns1:SocialSecurityCardOut (i.e. the
process:Output), and the variable ?p is bound as
described above. The information provided through
the process:Existential instance (ns1:P) and the
bound logical expressions contribute to the denotation
of the service: WS1 returns the social security card
of a person whose passport is given as input. Notice
that an agent can infer that the instance (ns1:P) is
referring to (ex:Person) through the value of the
process:parameterType property.

ns1:WS1ResultCondition represents a result con-
ditions: our interpretation of result conditions is that
they are evaluated in the server context, but can also be
used in the agent context during the discovery process,
in the sense that the agent receives the result iff the
corresponding result condition is true.. We interpret
ns1:WS1ResultCondition in the following way:

• if the condition ns1:WS1ResultCondition is true,
then the service’s result is ns1:WS1Result (server
context)

• if the agent receives the ns1:WS1Result, then the
condition ns1:WS1ResultCondition is true (agent
context)

The agent may be unable to verify the condition
ns1:WS1ResultCondition, which possibly requires
some knowledge available only in the server context.
Nevertheless, the agent may reason over the service
OWL-S description during service discovery, while try-
ing to check if any of the possible service’s result help

in achieving its goal. This reasoning is based on the
following steps:

• The agent assumes that it receives from the service
a specific result (in our example ns1:WS1Result).

• Under this assumption, the corresponding con-
dition is assumed to be true (in our example
ns1:WS1ResultCondition).

• Using each expr:VariableBinding specified
in the condition, the agent can transform
the corresponding RDQL clause into an RDF
statement, whose subject (or object) is an
instance of the OWL class specified by the
process:parameterType property of the
process:processVar bound to the variable.
In our example the new statement would be
(:P_X ex:hasSocialSecurityCard :SSC_X),
where the subject is an instance of ex:Person,
and the object is an instance of class
ex:SocialSecurityCard.

• The new statement becomes a fact added to the
agent knowledge base, and the agent can now
check if this additional knowledge allows the ful-
fillment of its goal.

The OWL-S Process description of the other web
services in our reference scenario is similar to the one of
WS1. For comparison we provide only a small fragment
of the OWL-S process description of WS3 (ns3 is the
namespace of the definition of WS1, process is the
namespace of the OWL-S Process ontology, and ex is
the namespace of the domain ontology illustrated in
section 3):

ns3:WS3

a process:AtomicProcess ;

process:hasInput ns3:PassportIn ;

process:hasOutput ns3:SocialSecurityCardOut ;

process:hasPrecondition ns3:WS3Precondition ;

process:hasResult ns3:WS3Result .

...

ns3:WS3Precondition

a expr:RDQL-Condition ;

expr:expressionData

"(?p ex:hasPassport ?pass)"^^xsd:string ;

expr:variableBinding ns3:VariableBinding_p ,

ns3:VariableBinding_pass .

ns3:WS3ResultCondition

a expr:RDQL-Condition ;

expr:expressionData

"(?p ex:hasMother ?m),

(?m ex:hasSocialSecurityCard ?ssc)"^^xsd:string ;

expr:variableBinding ns3:VariableBinding_p ,

ns3:VariableBinding_m , ns3:VariableBinding_ssc .

4

ns3:VariableBinding_m

a expr:VariableBinding ;

expr:theObject ns3:M ;

expr:theVariable "?m"^^xsd:string .

ns3:M

a process:ResultVar ;

process:parameterType "ex:Person"^^xsd:anyURI .

The precondition ns3:WS3Precondition is the same
as ns1:WS1Precondition, but the result condi-
tion ns3:WS3ResultCondition is more complex than
ns1:WS1ResultCondition. The variable ?p is
bound to an instance of process:Existential

(whose process:parameterType refers to ex:Person),
and the variable ?ssc is bound to an instance
of process:Output (whose process:parameterType

refers to ex:SocialSecurityCard).

ns3:WS3ResultCondition uses also an additional
variable ?m, which is bound to an instance of
process:ResultVar, and which is used to tie together
the variable ?p and the variable ?ssc. The infor-
mation provided through ns3:WS3Precondition and
ns3:WS3ResultCondition contribute to the denota-
tion of the service: WS3 returns the social security
card of the mother of a person whose passport is given
as input.

6. Automated Discovery of Services

based on IOPR

We present the high level steps of an algorithm that
an agent may use to select a service based on its goal
and the service IOPR definition expressed in the OWL-
S description of the service. The basic idea underlying
the algorithm is the use of preconditions and result con-
ditions to create a connection between OWL-S bindings
and the knowledge base (an RDF/OWL model) main-
tained by the agent.

The agent dynamically checks the OWL-S descrip-
tions of the services available in the semantic service
registry; it checks if it can provide appropriate inputs,
and satisfy the service’s preconditions. For those ser-
vices that can be invoked, the agent performs case rea-
soning on the service’s results: it assumes that it re-
ceives a specific result, and therefore that the associate
conditions are true; using the conditions and the vari-
able bindings the agent infer additional knowledge as
described in Section 5.

The agent adds the additional knowledge to its
knowledge base, and checks if its goal is now satisfiable
(that is the RDQL query representing the goal returns
some answer when executed over the agent’s knowledge

base). If the goal is satisfiable, then the specific service
is potentially useful to fulfill the agent’s goal.

The following pseudo-code represents a more formal
definition of the algorithm:

KBA : agent’s knowledge base

GOAL = RDQL query expressing the required

output type and potential

constraints

CANDIDATES : list of <X,Y> where

X is an OWL-S Process and Y

is a Result of X that

potentially fulfills GOAL

GOT = output type expressed by GOAL

C = findProcessWithCompatibleOutputType(GOT)

foreach (Process P in C) {

P_PRECONDS = Preconditions of P

and corresponding Variable

bindings

P_INPUTS = Input types of P

if (canInvoke(P_PRECOND, P_INPUTS)) {

P_RESULTS = Results of Process P

foreach (Result R in P_RESULTS) {

R_COND = Result Conditions of R

and corresponding Variable

bindings

KBA_1 = augmentKB (R_COND)

S = checkGoal (KBA_1)

if (S is not empty) {

add <P,R> to CANDIDATES

}

}

}

}

In the following we discuss the algorithm providing
some examples based on the reference scenario intro-
duced in Section 3. KBA is the agent’s knowledge base;
to illustrate the algorithm we assume that KBA is the
following:

:Marco

a ex:Person ;

ex:hasPassport :MarcosPassport .

:MarcosPassport

a ex:Passport ;

ex:hasPassportValue "A33Y55"^^xsd:string .

The agent knows an instance of ex:Person and his
ex:Passpart.

GOAL is the agent’s goal. We define the goal with an
RDQL query that expresses the required output type

5

and potential constraints; to illustrate the algorithm
we assume that the agent has the following GOAL:

SELECT ?y

WHERE

(:Marco ex:hasSocialSecurityCard ?y)

(?y rdf:type ex:SocialSecurityCard)

USING

ex FOR <http://www.example.com/domainOnt#>

The goal of the agent is to find information about the
ex:SocialSecurityCard of the instance of ex:Person
contained in its knowledge base.

The first step of the algorithm invokes the procedure
findProcessWithCompatibleOutputType. This pro-
cedure queries the semantic service registry, and finds
all the services whose OWL-S Process description de-
clares an output type compatible with the one declared
in GOAL.

We say compatible output type, because we do not
restrict to exact output type match, but we also ac-
cept weaker matches obtained through subsumption
between the GOAL output type and the output type
declared in the OWL-S. A detailed discussion of such
matching between types is provided in [4]. The pro-
cedure findProcessWithCompatibleOutputType re-
turns a set (C) of matching OWL-S Processes. The
algorithm then examines each Process in C to asses
both that the agent can invoke the Process, and that
the Process is adequate to fulfill GOAL. In our refer-
ence scenario we have C = {WS1, WS3}.

For each Process P in C the algorithm assigns to
P_PRECONDS its preconditions and to P_INPUTS its
inputs. The algorithm then invokes the procedure
canInvoke, which checks if the agent can provide the
required inputs and satisfy the preconditions to in-
voke the Process P. The agent takes each preconditions
and corresponding variable bindings and use it to build
clauses of an RDQL query; this query is executed over
KBA, and if it returns results (i.e. all unbound variables
are bound by the query execution), then the agent has
enough knowledge to invoke the process P. Assuming
that P is WS1 from our reference scenario the RDQL
query built from its precondition is the following:

SELECT ?p ?pass

WHERE

(?p ex:hasPassport ?pass)

(?pass rdf:type ex:Passport)

(?p rdf:type ex:Person)

USING

ex FOR <http://www.example.com/domainOnt#>

The three clauses of the above RDQL query are ob-
tained as following: the first is the logical expression
asserted in the precondition ns1:WS1Precondition;
the second and third clauses are inferred from the

properties process:parameterType of the instances of
process:processVar bound to the variables in the
precondition. The execution of the query over KBA

binds ?p to :Marco and ?pass to :MarcosPassport:
the agent can therefore invoke WS1.

In the next steps the agent performs case reasoning
over the possible results of Process P, to check if any
of them yields to the fulfillment of GOAL. The agent as-
sumes that it receives a result R, and therfore that the
corresponding conditions R_COND are true. Assuming
that P is WS1 from our reference scenario, then R_COND

is (?p ex:hasSocialSecurityCard ?ssc). The pro-
cedure augmentKB uses the result’s conditions and their
variable bindings to infer additional knowledge as de-
scribed in Section 5. Notice that if a variable ap-
pear both in preconditions and result’s condition with
the same expr:VariableBinding, then the agent can
reuse the binding obtained when checking precondi-
tions over KBA. In our example the agent can infer the
following statements:

:Marco ex:hasSocialSecurityCard :SSC_X .

:SSC_X a ex:SocialSecurityCard .

The variable ?p is bound to :Marco because it retain
the same binding obtained while checking precondi-
tions; the variable ?ssc is bound to a dynamically
generated instance of ex:SocialSecurityCard. The
above two statements are added to KBA; the augmented
knowledge base KBA_1 represents what the agent knows
when it receives the result R. The last step of the algo-
rithm consists in checkering if in this case (P is invoked
and it returns result R) the agent’s goal is fulfilled.

The procedure checkGoal executes the RDQL query
GOAL over KBA_1; if the result set S is not empty, then
GOAL can be fulfilled. In our example it is straightfor-
ward to see that the agent can use WS1 to fulfill its
goal, but not WS3: although KBA contains appropriate
knowledge to invoke WS3, the Process’s result do not
bring the information required to fulfill GOAL. For com-
parison we show below the statements inferred from
OWL-S description of WS3, and specifically from its
result condition ns3:WS3ResultCondition:

:Marco ex:hasMother :P_M .

:P_M ex:hasSocialSecurityCard :SSC_X .

:SSC_X a ex:SocialSecurityCard .

:P_M a ex:Person .

The knowledge base KBA_1 (obtained from KBA

adding the above statements) do not allow answering
the GOAL.

Notice that after executing the above algorithm the
list CANDIDATES contains pairs of <X,Y>, where each
X is an identifier of an OWL-S Process that the agent
can potentially invoke to fulfill its goal, and Y is the

6

corresponding result. Nevertheless it must be checked
at run-time that the actual Result obtained by invoca-
tion of X corresponds to Y. If actual invocation of X
produces at run-time a result Z different from Y, then
the goal is not fulfilled.

7. Related Works and Conclusions

The selection of web service based on OWL-S
(previously DAML-S) description has also been ex-
plored by M. Paolucci et al. in [4]. This work ex-
plores an approach to evaluate similarity among ser-
vice advertisements (OWL-S descriptions) and ser-
vices requests based on the semantic match among in-
puts/outputs types of a service advertisement and the
inputs/outputs types of a service request.

According to the algorithm presented in [4], an ad-
vertisement matches a request when all the outputs of
the request are matched by the outputs of the adver-
tisement, and all the inputs of the advertisement are
matched by the inputs of the request.

Our approach is built on the same idea, but expands
it with the use of preconditions and result condition,
which allows for a more precise denotation of the ser-
vice, and allows an agent to discriminate among ser-
vices having the same inputs/outputs types (possibly
matching the ones in its goal), but with (very) different
semantics associated to their operations.

Our approach is based on the interpretation of re-
sults’ condition in the agent context, and the use of
preconditions and results’ conditions to create a con-
nection between OWL-S bindings and the knowledge
base maintained by the agent; this connection allows
the agent to augment its knowledge base, and perform
case reasoning over the possible results.

The automation of services selection based on their
semantic is often the first step while performing ser-
vices composition: [3] describes an approach for build-
ing a system used for an interactive composition of web
services. Another interesting approach to web services
composition has been presented by [5]. This work fo-
cuses on the use of Hierarchical Task Networks (HTN)
and planning techniques for service composition. It is
based on previous works presented in [6] and [7]. It
also present the notion of query, which is close to our
approach of expressing the agent goal with an RDQL
query, and the notion of information sources, which are
a kind of abstraction for information production web
services (that are the ones we currently work with).

Among the various works on automated web service
compositions ([8, 9, 10]) an interesting one is discussed
in [10], where the authors present the design and im-
plementation concepts of Plængine, a software system

that support composition and enactment of services
(a research worked supported by the Adaptive Service
Grid [11]). Among the challenges related to service’s
composition, the authors of [10] report the fact that
it is not sufficient to specify the elements of composi-
tion by their names and inputs/outputs, but it’s also
necessary to specify the functionalities through seman-
tic annotations, which can be accomplished through
preconditions and effects. This is the same idea under-
pinning our approach.

In this paper we have shown how OWL-S provides
sufficient expressiveness to specify a declarative and
unambiguous denotation of a service. We have de-
scribed how result conditions can be interred also in
the agent context while performing case reasoning over
the possible service results. Finally we have presented
an algorithm that the agent can use to dynamically
select services that can be used to fulfill its goal.

8. Acknowledgments

This work has been developed within the TERRE-
GOV project, an integrated project cofunded by the
European Commission2 under the IST (Information
Society Technologies) Program, e-Government unit,
under the reference IST-2002-507749.

References

[1] S. McIlraith, T.Son and H. Zeng Semantic Web Ser-
vices. IEEE Intelligent Systems, Special Issue on the
Semantic Web. 16(2):46–53, March/April, 2001.

[2] T. Berners-Lee. A readable language
for data on the Web. N3 formalism
http://www.w3.org/DesignIssues/Notation3.html

[3] E. Sirin, B. Parsia, and J. Hendler. Filtering and se-
lecting semantic web services with interactive composi-
tion techniques. IEEE Intelligent Systems, 19(4):42–49,
2004.

[4] M. Paolucci et al. Semantic Matching of Web Ser-
vices Capabilities The Semantic Web-ISWC 2003: 1st
International Semantic Web Conference, LNCS 2342,
Springer-Verlag, 2003.

[5] U. Kuter, E. Sirin, D. Nau, B. Parsia, and J. Hendler
Information gathering during planning for web ser-
vice composition Proceedings of the Third Internatonal
Semantic Web Conference (ISWC2004), Hiroshima,
Japan, November 2004.

[6] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau
Automating DAML-S web services composition using
SHOP2 Proceedings of 2nd International Semantic Web

2The content of this paper is the sole responsibility of the
authors and in no way represents the views of the European
Commission or its services.

7

Conference (ISWC2003), Sanibel Island, Florida, Octo-
ber 2003.

[7] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau HTN
planning for web service composition using SHOP2
Journal of Web Semantics, 1(4):377-396, 2004.

[8] M. Pistore and P. Bertoli and F. Barbon and D. Shapa-
rau and P. Traverso Planning and Monitoring Web Ser-
vice Composition Proceedings of ICAPS’04 Workshop
on Planning and Scheduling for Web and Grid Services,
2004.

[9] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic
Composition of Web Services using Semantic Descrip-
tions Proc. of Web Services: Modeling, Architec-
ture and Infrastructure, Workshop in Conjunction with
ICEIS2003, Angers, France, 2003.

[10] H. Overdick, H. Meyer, and M. Weske. Plaengine: A
System for Automated Service Composition and Pro-
cess Enactment Proc. of WWW Service Composi-
tion with Semantic Web Services, Compiegne, France,
September 19, 2005.

[11] Adaptive Services Grid (ASG) An Integrated Project
supported by the Sixth Framework Programme of the
European Commission http://asg-platform.org/

[12] K. Sycara, S. Widoff, M. Klusch, J. Lu. Larks:
Dynamic matchmaking among heterogeneous software
agents in cyberspace Autonomous Agents and Multi-
Agent Systems, 5, pp. 173-203, 2002.

[13] D. Trastour, C. Bartolini, and J. Gonzalez-Castillo.
A semantic web approach to service description for
matchmaking of services Proc. of the Intl. Seman-
tic Web Working Symposium (SWWS), Stanford, CA,
USA, 2001.

[14] J. Domingue, L. Cabral, and F. Hakimpour. IRS-III: a
Platform and Infrastructure for Creating WSMO-based
Semantic Web Services WIW workshop on WSMO im-
plementation, Frankfurt, September 29-30th, 2004.

[15] OWL-S 1.2 Pre-Release
http://www.ai.sri.com/daml/services/owl-s/1.2/

[16] J. Domingue, D. Fensel, and D. Roman. Semantic
Web Services with the Web Services Modeling Ontology
(WSMO), AgentLink News 19, 2005.

[17] J. de Bruijn, D. Fensel, U. Keller, and R. Lara. Using
the Web Service Modeling Ontology To Enable Seman-
tic e-Business, Communications of the ACM 48(12),
2005.

[18] Christoph Bussler, Dieter Fensel, Dumitru Roman, et
al. Web service modeling ontology. Applied Ontology
Journal, 1(1), 2005.

[19] R. Lara, A. Polleres, H. Lausen, D. Roman,
J. de Bruijn, and D. Fensel. A conceptual
comparison between WSMO and OWL-S, 2005.
www.wsmo.org/TR/d4/d4.1/v0.1/.

[20] Web service modeling ontology
http://www.wsmo.org/

[21] Semantic Web Services Framework (SWSF)
http://www.w3.org/Submission/SWSF/

[22] I. Horrocks, P. F. Patel-Schneider, H. Boley, S.
Tabet, B. Grosof, and M. Dean. SWRL: A seman-
tic web rule language combining owl and ruleml, 2003.
http://www.daml.org/2003/11/swrl/.

[23] Drew McDermott DRS: A Set of Conventions for Rep-
resenting Logical Languages in RDF. January 12, 2004.
http://www.cs.yale.edu/homes/dvm/daml/DRSguide.pdf

[24] KIF. Knowledge Interchange Format: Draft pro-
posed American National Standard (dpans). Tech-
nical Report 2/98-004, ANS, 1998. Also at
http://logic.stanford.edu/kif/dpans.html.

[25] Eric Prud’hommeaux, Andy Seaborne. SPARQL
Query Language for RDF. W3C Working Draft 4 Oc-
tober 2006. http://www.w3.org/TR/rdf-sparql-query/

[26] Andy Seaborne. RDQL - A Query Language for
RDF. W3C Member Submission 9 January 2004.
http://www.w3.org/Submission/RDQL/

8

