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Abstract

In this paper, the first successful application of the recent framework of self-supervised learning to
the problem of handwriting identification for medieval and modern manuscripts is presented. To this
end, a novel dataset consisting of both labeled and unlabeled manuscripts extracted from the Vatican
Apostolic Library was produced. Moreover, this contribution shows that pretraining a convolutional
neural network by leveraging large amounts of unlabeled manuscripts and fine-tuning this model to the
task of interest significantly outperforms other baselines, including the common setup of initializing the
network from general-domain features, or training the model from scratch, also in terms of generalization
power. Overall, these results reveal the strong potential of self-supervised techniques in the field of
digital paleography, where unlabeled data is nowadays available, while labeled data is scarcer.
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1. Introduction and related works

In recent years, the long-standing issue of automatic handwriting identification (HI) — the
subdivision of the texts into parts belonging to distinct scribes on the basis of the respective
handwriting style — has been discussed both from a theoretical perspective [1, 2, 3] and an
application point of view. Despite the increasing use of deep learning techniques to address this
problem [4, 5, 6, 7], HI continues to be carried out with traditional methods by paleographers,
due to the costs, time and expertise required for data labeling.

This work highlights the benefits of using a self-supervised learning (SSL) approach for the
HI task on medieval and modern manuscripts (more precisely, a set of 24 digitized manuscripts
selected from the Vatican Apostolic Library [8]), the vastness of which is considerable, even
if most of the manuscript pages are not annotated with the information of the copyist who
physically wrote them. SSL, indeed, is gradually taking hold to address the problem of learning
good image representations from a few labeled examples while making best use of many
unlabeled instances [9, 10], which would minimize the dependence on potentially costly corpora
of manually annotated data [11], and makes this strategy ideal for the HI task. In particular,
SSL methods try to solve a “pretext task” (which is not of genuine interest) to learn — from
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Table 1
Number of copyists and century of realization of the 24 selected manuscripts.

Manuscript ID  Number of copyists Century ‘ Manuscript ID  Number of copyists Century

Vat. lat. 12910 0 Xl Vat. lat. 4939 0 Xl
Vat. lat. 2669 0 X1 Vat. lat. 4958 0 XI
Vat. lat. 3313 0 IX Vat. lat. 4965 2 IX
Vat. lat. 3317 0 X Vat. lat. 5775 0 IX
Vat. lat. 378 3 Xl Vat. lat. 579 0 Xl
Vat. lat. 3833 0 Xl Vat. lat. 588 0 X1V
Vat. lat. 3868 0 IX Vat. lat. 5951 3 IX

Vat. lat. 42 0 Xl Vat. lat. 620 0 Xl
Vat. lat. 4217 3 Xl Vat. lat. 653 4 Xl
Vat. lat. 4220 8 XVI Vat. lat. 8487 2 XI
Vat. lat. 4221 8 XVI Vat. lat. 907 2 X

Vat. lat. 43 0 1X Vat. lat. 9882 0 IX

unlabeled data — representations that can be transferred to other tasks of actual interest (the
“downstream tasks”), which often have only a few labeled instances [12, 13, 14, 15, 16, 17].

In practice, the proposed methodology consists of two main stages. First, all the pages
contained in the manuscripts undergo the Online Bag-of-Visual-Words (OBoW) reconstruction-
based SSL approach described in [15, 18]. Then, the available copyists are split into a background
set and an evaluation set (whose samples are never seen during training nor validation), and a
linear layer is trained on top of the frozen base encoder, with the aim of minimizing a triplet
margin loss [19, 20]. The results obtained show that the visual representations learned in a
self-supervised fashion outperform the ImageNet [21] ones with respect to the HI task, as
well as the features learned after training the backbone model from scratch, also in terms of
generalization power.

2. Case study

24 high-resolution digital manuscripts, included among the tables for Latin paleography exercises
published by the Vatican Apostolic Library in 2004 [22], which collect very recognizable graphic
types [23, 24], were selected from [8], obtaining a final corpus of 8745 pages and 27 scribes
(identified in 9 manuscripts only — Vatt. latt. 4220 and 4221 share the same set of 8 copyists).
The selected manuscripts, together with the number of available copyists and the century of
realization, are recalled in Table 1.

Starting from the overall group of selected pages, two different datasets were created: as to
the pretext task, the 8745 samples — organized in 24 classes — were randomly split into training,
validation and test sets according to the ratio 0.8-0.15-0.05. For the handwriting identification
task, instead, only the annotated pages were selected. The available copyists were split into
an evaluation set (consisting of the 4 scribes from Vat. lat. 653, excluded from the training and
validation stages of this task) and a background set (including the 23 remaining scribes).
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Figure 1: Schematic representation of both the self-supervised pretraining stage (pretext task) and the
handwriting identification task (downstream task), conceived as a triplet margin loss minimization.

3. Methodology and results

The SSL strategy adopted in this work can be summarized as follows: a CNN-based feature
extractor (or student network — a ResNet18-based encoder [25]) is trained to predict, with
unlabeled data only, the BoW representation of a 380 x 380 random crop of a manuscript page
given as input a set of perturbed crops of that page [18]. The BoW representation is generated
by a momentum-updated teacher network, which receives as input the 380 x 380 random
crop. The set of perturbed crops, instead, is obtained through several augmentations, including
radiometric perturbations, Gaussian blur, random erasing, and mild geometric distortions.

Once self-supervised pretraining is completed, the frozen features of the student encoder
are involved in the HI task, based on the minimization of a triplet margin loss, which can be
seen as learning a distance function useful for discriminating instances belonging to different
classes in the embedding space. At this stage, a linear layer only, added to backbone model,
is trained to extract more powerful representations with respect to the task of interest. The
triplets are generated through an online batch-hard triplet mining strategy, which is the optimal
configuration for this kind of task [26, 27]. As to the pairwise distance function involved in the
loss computation, the L? norm was chosen. The downstream task was carried out based on
two mutually exclusive data augmentation schemes. Scheme A) is based on the extraction of
a random 380 x 380 crop from the page and the application of a similar set of perturbations
as the pretext task; scheme B), instead, extends the same set of perturbations to the whole
page: consequently, the encoder — which receives as input a page of arbitrary size — operates
as a “fully convolutional” network [28]. In Figure 1, a schematic representation of both the
self-supervised pretraining stage and the handwriting identification task is provided.

All the experiments were carried out using a Tesla V100 SXM2 32GB GPU, and involved
a ResNet18-based architecture. The source code used for the experiments is available at



Table 2
Performance obtained for the HI task for the 6 tests, with respect to the MAP metric.

Mode Scheme MAP [%] - Background set MAP [%] - Evaluation set
OBoW pretraining B) 74.8" 72.0
ImageNet pretraining B) 69.7 64.9
Training from scratch B) 60.8 58.8
OBoW pretraining A) 71.7 79.0*
ImageNet pretraining A) 63.7 67.5
Training from scratch A) 48.5 59.1

https://github.com/L9L4/HI-SSL. As to the BoW reconstruction task, the student encoder was
trained for 100 epochs; the batch size was fixed to 64; finally, Stochastic Gradient Descent (SGD)
was adopted, with learning rate set to 0.03 and progressively adjusted up to the final value of
0.00003 through a cosine scheduler with an initial warmup of 5 epochs.

As to the HI task, it was faced based on both the augmentation schemes A) and B), considering
3 different configurations (and thus ending up with 6 tests in total): a linear layer was trained on
top of the frozen backbone model pretrained with OBoW; a linear layer was trained on top of the
ImageNet frozen features (also in this case, a ResNet18 backbone encoder - but pretrained on
the ImageNet dataset — was used); a model initialized with random weights (but characterized
by the same architecture as the other two cases) was fully trained from scratch directly on the
downstream task. For all the 6 tests, the output dimension of the linear layer (embedding width)
was fixed to 1024, while the margin m of the triplet margin loss was set to 0.2 [20]. The model
was trained for 100 epochs with SGD optimization: the learning rate, starting from 0.15, was
increased up to 0.6 through a linear warmup for the first 10 epochs, and then decayed with
a cosine annealing up to 0.0015. The batch size was set to 256 for the tests carried out under
scheme A), and to 32 for scheme B). To quantitatively assess the performance of the single
tests for the HI task, the Mean Average Precision (MAP) was computed. In Table 2, the results
obtained for each test in terms of MAP are shown. It is immediately evident that the SSL-based
approach is far more effective for the task of interest than the baselines, under both the A) and
B) data augmentation schemes. This is true, indeed, both for the background scribes and for the
evaluation ones, used to test the generalization capacity of the model, achieving a MAP of 74.8%
for the background set, obtained under the B) scheme, and of 79.0% for the evaluation set — A)
scheme. In Figures 2a and 2b, it is possible to visualize the 2D projection of the embeddings of the
manuscript pages for the best results obtained among the 6 tests, both for the background and
the evaluation set (together with the respective cluster centroids), after dimensionality reduction
through the t-SNE technique [29]. Figures 2a and 2b are particularly helpful to appreciate the
capability of the proposed framework of effectively performing the HI task, even for manuscripts
excluded from training. This seems to suggest the possibility of extending the approach to
any non-annotated manuscript, which could be partitioned through zero-shot learning. Figure
2a is also useful, however, to highlight the limitations of the proposed approach, showing the
difficulties in properly clustering some scribes coming from very specific manuscripts (Vatt. latt.
4217 - scribes 5-7 in Figure 2a —, 4220 and 4221 - scribes 8-15), which constitute a particularly
complex subset, since the copyists who realized them aimed for the maximum handwriting
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(a) Best result for the background set. (b) Best result for the evaluation set.

Figure 2: Best results obtained among the 6 tests, both for the background and the evaluation set.

uniformity. Hence, the representations extracted from the model, generally sufficient for the
other manuscripts, might have been unsuitable to grasp the set of discriminating elements valid
for this subgroup.

4. Conclusion

In this paper, the task of automatic HI for ancient manuscripts was addressed in the face of the
scarcity of large and annotated datasets, and the first empirical validation of the SSL framework
in the medieval and modern manuscript domain was provided, assessing its capability to learn
effective visual representations from a large amount of raw data and then to build a solid starting
point for the task of interest, which can be performed based on just a few labeled samples, and
with higher precision. The proposed approach was compared with (and outperformed, also
from a generalization point of view) two common setups, namely the network initialization
with general-domain (ImageNet) features, and training the full model from scratch. Regarding
possible future developments, an explainability analysis of the methodology could be carried out
[30]; moreover, the subset of scribes whose identification was most difficult could be analyzed
in order to determine the necessary adjustments to the model to extract useful features even
in complex cases like this; then, a broader experimental setup could be investigated; finally, a
solution to tackle the problem of multigraphism could be included in the methodology [31].
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