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Abstract
In the last decade, the concept of trust and its dynamics has received considerable attention in robotics
research. This is particularly true in the field of human-robot interaction, where several different factors,
ranging from the user expectations of the robot capabilities to the physical appearance of the robot, has
been defined as strongly affecting trust. On the contrary, the study of trust dynamics between robotic
agents needs to be explored further. Starting from this premise, this work proposes a framework in which
different robotic agents can model the concept of trust they have in each other for the accomplishment
of a given task. Preliminary experiments performed with real robots (two Pepper robots and one NAO
by SoftBank Robotics) provides a proof-of-concept for broader utilization of the system in cooperative
robotic scenarios.
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1. Introduction

The number of robots used in everyday activities is steadily increasing and is expected to keep
growing. This will undoubtedly occur in industrial settings where the next generation of robots
will be crucial in meeting the dynamic needs of collaborative and intelligent manufacturing
that characterize the so-called Industry 4.0 and Industrial Internet of Things [1]. However,
international market analyses anticipate widespread use of robots also by the general public
[2]. In different scenarios, different types of robots with different capabilities and marketed by
different companies will need to work together, and possibly with humans, to assess the current
situation [3, 4] and achieve shared goals. Therefore, “teammates" will likely require to trust
each other for efficient teamwork. In multi-agent systems, it is possible to define trust as “the
subjective probability by which an agent (the trustor) expects that another agent (the trustee)
succeeds in performing a given action on which its welfare depends” [5].
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Robotic literature has primarily investigated trust in the context of human-robot interaction
[6, 7, 8]. However, not all situations in which trust is involved require the trustee or the trustor
to be human. Both in industrial and service scenarios, there are situations where autonomous
robots must cooperate without having perfect knowledge about each other’s capabilities. In
this context, the trust that robots have in their own abilities versus other robots’ capabilities
may affect the selection of the most suitable candidate to perform the task.

In this work, we propose a novel framework for auction-based task assignment that can
operate in a distributed open environment. The framework may handle heterogeneous robotic
agents, with different perceptual, reasoning, and actuation capabilities, that are periodically
assigned tasks to be performed to achieve a shared objective. The system takes inspiration
from popular models in the literature, adapting them to an open environment in which robots
may dynamically enter or exit, execute assigned tasks, or verify the correct execution of tasks
by other robots. The purpose of such a framework is to allow agents to model trust in each
other regarding the capability to accomplish an assigned task and use this model to evaluate
possible candidates for task assignments whenever needed. In other words, agents may use the
framework to outsource tasks they need to complete to achieve a particular goal.

2. Framework for Trust-Based Task Assignment

The general structure of the framework may be summarized as follows. First, using a portfolio
of trust-related metrics, agents dynamically gather data about the other agents’ capability to
(i) perform actions; (ii) verify the outcomes of actions performed by other agents. Then, they
will iteratively use and update these metrics to evaluate the trustworthiness of other agents,
including themselves, during auctions, thus ultimately taking trustworthiness into account
when taking a new decision for task assignment.

Given that, each agent in the framework should be able to:

• start a plan to manage one or more events;
• auction an action in its plan or bid on an action auctioned by another agent;
• execute or verify the execution of one or more actions;
• gather data from other agents about the success or failure of a given action;
• update its trust in other agents.

Concerning the latter, and considering a set of 𝑁𝑒 events ℰ = {𝐸𝑖} (which may be triggered
by an explicit command from a user, an alarm, or any other external stimulus that is processed
by a robot and whose effect is a specific plan), a set of 𝑁𝑎 actions 𝒜 = {𝐴𝑖}, and a set of 𝑁𝑔

agents 𝒢 = {𝐺𝑖}, which can communicate with other agents, auction or bid for actions, we
have defined the following context-independent metrics [7]:

• Reliability, one of the attributes of Logical Trust [6], which is the estimate, made by agent
𝐺𝑖, of the success rate of agent 𝐺𝑗 in executing action 𝐴𝑘;

• Verification Trustworthiness, which measures the degree of the trustworthiness of a veri-
fying agent depending on the consensus it has around its judgment skills. Formally, the
Verification Trustworthiness measures how much the verification made by agent 𝐺𝑗 about



the success of action 𝐴𝑘 is considered trustworthy according to an agent 𝐺𝑖 and requires
counting the number of opinions that are concordant or discordant with the judgment of
𝐺𝑗 ;

• Perceived Competence, which is computed, in its general formulation, as a function of the
Reliability of 𝐺𝑗 estimated by all agents {𝐺1 . . . 𝐺𝑛} participating to the auctions as well
as their own Verification Trustworthiness.

Regarding Reliability, it is worth noticing that it may be correctly computed only when a
reasonably large sample of observations is available. To handle the transitory, i.e., when the
agent 𝐺𝑗 has not yet executed the action 𝐴𝑘 a sufficiently large number of times, we have
identified three possible strategies:

• a Boot mode, which requires the definition of a “boot phase" length, expressed as the
number of 𝐴𝑘’s auctions to which an agent 𝐺𝑗 needs to participate before an auctioneer
𝐺𝑖 starts using its Reliability as a measure of 𝐺𝑗 ’s trustworthiness. In the boot phase,
each auctioneer 𝐺𝑖 shall trust 𝐺𝑗 ’s declared Reliability, or rely on the outcomes of the
other actions.

• a Window mode, similar to the Boot mode, but taking into account only a “memory
window", instead of considering the full sequence of observations;

• a BCI mode, where each agent computes and shares not only the average Reliability of
other agents, but also the binomial confidence interval (BCI) around such estimate that
converges to zero as the number of executions increases.

Finally, the way in which individual Reliability and Verification Trustworthiness contribute to
the Perceived Competence will depend on:

• the behaviour of agents towards the community: individualistic or collectivistic. Individu-
alistic agents compute the Perceived Competence only based on their own observations; on
the contrary, collectivistic agents take into account other agents’ opinions by calculating
a weighted average mediated by their Verification Trustworthiness (Weighted Reliability).

• the disposition of agents towards other agents: optimistic, pessimistic, realistic. The
optimistic/pessimistic/realistic disposition of an auctioneer may play a key role to evaluate
a bidder’s trustworthiness. For example, in BCI mode, an optimistic auctioneer will consider
the upper bound of the BCI to estimate the agent’s Perceived Competence, therefore being
more prone to forgive and give a second chance to an agent that failed the first attempts;
a pessimistic agent will use the lower bound, thus being very conservative and cautious
when it encounters a new bidder about which it has little data.

3. Experiments

The framework has been tested in a real-world scenario comprising two SoftBank Pepper robots
and one NAO robot, which we repeatedly explored for human-robot interaction in socially
assistive contexts [9, 10, 11, 12, 13]. In order to simplify the execution of actions and their
verifications, we have decided to associate actions 𝐴1 and 𝐴2 with sentences to be pronounced
by the robots. Please notice that, while the robot that won the auction and pronounced the



Figure 1: NAO placed on the table to direct its speakers towards the two Peppers’ microphones

sentence always considers its action as a success, the other agents may judge outcomes differently.
For instance, the distance between the speakers of a robot and the microphones of another
robot, or the fact that NAO’s and Pepper’s microphones are placed over the robots’ heads, may
lead the speech recognition systems to fail.

Based on the considerations above, we performed experiments by placing NAO (agent 𝐺3

in the following) on a table in front of the two Pepper robots (𝐺1 and 𝐺2). NAO’s speakers
point towards Pepper microphones from above (Figure 1). The speech volume of the three
robots is set to 80% of the maximum value. In this configuration, we expect that 𝐺1 and 𝐺2 can
correctly verify the actions performed by all other robots, while 𝐺3 will not be very performing
in verifying the actions of 𝐺1 and 𝐺2 (given that its microphone is not oriented toward the two
Pepper robots’ speakers).

Robots work in BCI mode, with an optimistic disposition, and tests have been performed with
robots showing both individualistic and collectivistic behaviours. Finally, please notice that
event 𝐸1 can only be handled by 𝐺1, that will then auction 𝐴1 (pronouncing the sentence “Take
the medicine"); event 𝐸2 can only be handled by 𝐺2, that will then auction 𝐴2 (pronouncing
the sentence “Drink some water"). All agents can execute and observe both actions 𝐴1 and 𝐴2.

Results are shown in Figure 2, which reports, for each agent 𝐺𝑖 how the estimated Reliability
and Verification Trustworthiness of the three agents in the framework evolve as the number of
auctions increase. In all plots, Reliability estimates are plotted with a continuous line, whereas
Verification Trustworthiness estimates are plotted with a dashed line. A small circle means that
an action has been assigned to the corresponding agent at that time.

When robots exhibit a collectivistic behaviour (Figure 2 (a)) it can be observed that 𝐺1 and
𝐺2 can correctly recognize the actions performed by all other robots (even if in some cases the
actions performed by 𝐺2 are wrongly evaluated by 𝐺1), while 𝐺3 is not capable of correctly
verifying the performance of 𝐺1 and 𝐺2. As a result, after a few iterations, the collectivistic
auctioneers 𝐺1 and 𝐺2 tend to assign all actions to 𝐺3, since it is considered the most reliable
agent in terms of Weighted Reliability (i.e., it’s the only agent whose actions are perceived as
correctly executed by 𝐺1, 𝐺2, and 𝐺3 itself).



Figure 2: Trust dynamics of the three agents with robots showing a collectivistic behaviour (a) and an
individualistic behaviour (b).

When the robots show an individualistic behaviour (Figure 2 (b)), the actions are more
uniformly distributed among all agents. Indeed, the two auctioneers 𝐺1 and 𝐺2 judge all agents
equally trustworthy, and they only rely on their Perceived Competence. It may be also observed
that, due to possible errors in speech-to-text conversion, the auctioneers may sometimes judge
that an action has not been executed correctly. See for instance the trust metrics computed by
G1: 𝐴1 performed by 𝐺2 during auction 4 is negatively evaluated by 𝐺1 therefore producing a
decrement in 𝐺2’s Reliability. When this happens, the probability that the same action will be
assigned again to a robot that has possibly failed decreases, since each auctioneer relies only
on its own opinion. For the same reason, even if other agents judge that an auctioneer has
failed an action, the auctioneer will ignore their opinions since all agents consider themselves
as perfectly capable to execute actions. As a consequence, it can be observed in Figure 2 (b) that
𝐺1 repeatedly assigns 𝐴1 to itself even if it is considered very unreliable by 𝐺2 and 𝐺3.

Finally, it is worth noticing how the Verification Trustworthiness of the three robots is much
lower in the second experiment. When robots are collectivistic, most of the auctions are won
by 𝐺3, whose actions are judged as correctly performed by all robots, but when robots are
individualistic, actions are shared among all agents, and, concerning their verification, usually
𝐺3 disagrees with 𝐺1 and 𝐺2 about the outcome of the actions.

These results, although preliminary, confirm the potentials and the functionalities of the
presented framework, and its applicability to a real scenario.
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