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Abstract
Current research in robot Task Planning aims to develop solvers which quickly adapt to new assign-

ments and scenarios. To this aim, we extend an existing proto-Artificial General Intelligence system,
namely OpenCog, and give it the ability to effectively solve manipulation tasks whose domains contain
four actions: pick, place, stack, and unstack. To let OpenCog solve this class of problems, we exploit its
modules as the foundation of a Knowledge Base that describes and stores domains, problems, and the
interactions between them. Then, we equip the system with a Breadth-First Search algorithm that finds
the sequence of actions that solve the assignments. To prove the goodness of our proposal, we include
and analyze a manipulation task where a manipulator robot has to interact with a human user to assemble
some industrial components. Obtained results show that our system is complete and generic in terms of
the domain and problem under evaluation. Future work will improve the achieved computational time
and performance.
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1. Introduction

Advances in Artificial Intelligence (AI) allow robots to cope with an increasing task-to-task
variability. However, even the most advanced robots, which exploit Neural Networks (NNs)
and AI, cannot learn new tasks easily. Their architecture still has to be designed carefully.

To design a general-purpose Task Planning (TP) system, we need to choose a declarative
language for formalizing the domain. Then, we should select a suitable solver which supports
that language. Many different factors affect this selection process. For instance, not all lan-
guages support all types of reasoning, and solvers are typically tied to particular languages.
Domains may include many objects and their properties. Finally, a language can formalize a
problem in many ways. For these reasons, the selection of language and solver needs careful
consideration [1]. However, this examination tends, either voluntarily or involuntarily, to
restrict the possible domains or to force their description using only the features supported
by the solver. Our aim is to generalise the domains and problems to be solved, and obtain
a system able to solve any manipulation problem described by the actions pick, place, stack,
and unstack. The following features become essential: (i) interacting with human operators
and learning from them; (ii) exploiting existing Narrow-AI systems to guarantee a generalized
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solving process and an easy adaptability to new assignments; (iii) storing data in a Knowledge
Base (KB) to facilitate the sharing of lessons learnt.

In this context, we propose to exploit an existing proto-Artificial General Intelligence (AGI)
system: Open Cognition (OpenCog) [2]. It includes a flexible Knowledge Representation
(KR) embodied in a scalable knowledge store, a cognitive process scheduler, and a plug-in
architecture for the interaction between cognitive, perceptual, and control algorithms. Such
features let OpenCog adapt to new conditions, understand them, and create behaviors based on
the information learned. To make the system able to solve TP problems, we exploited its modules
as the foundation of a KB that describes and stores domains, problems, and the interactions
between them. Then, we equipped the system of a Breadth-First-Search (BFS) algorithm that
finds the sequence of actions that solve an assignment. Our contributions follow:

• the implementation of a BFS algorithm for TP that solves manipulation problems through
the combination of four actions: pick, place, stack, and unstack;

• the implementation of a supra-system that equippes OpenCog with such an algorithm
and all the features necessary for TP;

• a preliminary evaluation of our proposal while solving an assembly task in conjunction
with a human user. Obtained results show that our system is complete and generic in
terms of problem and domain definitions. Future developments will improve the achieved
computational time and performance.

2. State of the art

AGI is the ability of an intelligent agent to understand or learn any intellectual task that a
human being can [3]. It is a primary goal of several artificial intelligence research.

Among others, the OpenAI project [4] applies Deep NNs (DNNs) to translate natural language
into code [5], connects text to images [6], and produce human-like text [7]. Although OpenAI
achieved valuable results, the NNs approach is expensive and requires an extensive amount of
data to achieve generality. Moreover, it suffers from the adversarial example problem: adding
an imperceptibly small but carefully designed perturbation leads the model to make a wrong
prediction [8, 9, 10]. Finally, NNs are black boxes: while they can approximate any function,
studying their structure won’t give any insight on the function being approximated [11].

For these reasons, we investigated another AGI-oriented approach: OpenCog. This open-
source framework includes a comprehensive model of human-like general intelligence. It
exploits an integrative approach in which multiple AI algorithms cooperate on a common
representational substrate. Such algorithms include DNNs, Probabilistic Logic Theorem Prov-
ing, Evolutionary Learning, and Concept Blending. The system is largely scalable, given the
amount and diversity of data it can contain. Furthermore, current research is improving its
distributivity by developing a decentralized structure composed of many KR databases and their
query/reasoning engines. Agents do not need to locally solve assigned tasks. They can exploit
the available knowledge and eventually augment it with new experiences.

These features make OpenCog easily extensible to the resolution of TP problems. Indeed, our
own experience on TP has shown that most current planners are still extremely dependent on
the problem, the domain, and the language used to define them [12, 13, 14]. Examples include



the Planning Domain Definition Language (PDDL)-based approaches [15]. We aim to overcome
these limitations and give generality to the TP solvers.

3. Our proposal

To provide OpenCog [2] with TP capabilities, we added a Search Algorithm to its modules, and
we implemented a sense-plan-act framework whose sense unit includes both visual perception
and Natural Language Processing (NLP). The exploited OpenCog modules follow:

• Atom Space. It is a KR database composed of Atoms. Atoms are hypergraphs that enclose
any type of information (i.e., data, procedures, etc.) [16]. Atoms refer to both Nodes
(vertices) and Links (edges) of an hypergraph. For example, a Concept Node represents
any physical or abstract concept. Inheritance Nodes specify both intentional (is-a) and
extensional (is-an-instance-of) relationships. A Predicate Node names the predicate of
a relation, where predicates are functions that have arguments, and produce a truth
value as output. An Evaluation Link lets specify the truth value of a predicate on a set of
arguments. Finally, a Query Link specifies a search pattern that can be grounded, solved,
or satisfied. Thus, within an industrial environment, if we want to specify that a snap
ring is a movable object positioned on the top of another snap ring, and that an agent is
holding a bearing sleeve, we use the following Atoms code:

1 # Ob j e c t D e f i n i t i o n
2 ( ConceptNode ” SnapRing1 ” )
3
4 # Movable Ob j e c t D e f i n i t i o n
5 ( I n h e r i t a n c e L i n k
6 ( ConceptNode ” SnapRing1 ” )
7 ( ConceptNode ” o b j e c t ” ) ) )
8
9 # S t a ck S t a t e D e f i n i t i o n

10 ( Ev a l u a t i o nL i nk
11 ( P r ed i c a t eNode ” on ” )
12 ( L i s t L i n k
13 ( ConceptNode ” SnapRing1 ” )
14 ( ConceptNode ” SnapRing2 ” ) ) )
15
16 # In Hand S t a t e D e f i n i t i o n
17 ( Ev a l u a t i o nL i nk
18 ( P r ed i c a t eNode ” in −hand ” )
19 ( ConceptNode ” B e a r i n g S l e e v e 1 ” ) )

• Relex2Logic (R2L). R2L deduces the predicate-argument structure of natural language
sentences. It first produces a logical representation corresponding to hypergraphs of
Atoms that are associated with the words of these sentences. Then, it structures the
obtained descriptions to express the sentence logic in the form of a hypergraph. The
following example shows some English sentences stored in the form of hypergraphs:



Figure 1: Our framework architecture.

1 # Eng l i s h s en t en c e :
2 ” The workbench i s a f i x ed − o b j e c t . SnapRing1 i s on SnapRing2 . ”
3
4 # R e s u l t :
5 ( I n h e r i t a n c e L i n k
6 ( ConceptNode ”Workbench ” )
7 ( ConceptNode ” f i x ed − o b j e c t ” ) ) )
8
9 ( Ev a l u a t i o nL i nk

10 ( P r ed i c a t eNode ” on ” )
11 ( L i s t L i n k
12 ( ConceptNode ” SnapRing1 ” )
13 ( ConceptNode ” SnapRing2 ” ) ) )

• Pattern Matcher (PM). PM works with hypergraphs in the sense of fast extraction of
specific data and query engine. In detail, it searches the AtomSpace for specific patterns
of Atoms, i.e., hypergraphs with nodes and links of several types. If patterns have “holes”
(i.e., variable locations), PM will “fill in the blanks” [17].

In this context, we store four actions in the AtomSpace: pick, place, stack, and unstack. Then,
we add a Search Algorithm able to find the sequence of actions that bring a certain environment
from its initial state to a desired one. The algorithm is based on BFS: each node is an AtomSpace
that depicts the environment at a given time. Each edge out of a node represents one action
executable at that state. Thus, each branch of the tree ends up describing a different sequence
of actions, and the tree expansion takes place through the execution of actions using PM. We
encode actions as Query Links, where a Query Link type Atom is defined as follows:

1 # Act ion D e f i n i t i o n
2 ( QueryLink
3 ( V a r i a b l e _ d e c l a r a t i o n s )
4 ( Pa t t e rn_ to_be_ma t ched ) # p r e c o n d i t i o n s
5 ( New_graph ) # e f f e c t s
6 )



For example, the pick action is a Query Link that contains a pattern describing the prerequisites
needed for an object to be picked up. Executing this rule will search for all atoms that satisfy
these prerequisites within the AtomSpace at the current moment. The result is a list of Atoms
corresponding to the objects that can actually be picked up. Finally, Atoms are pasted into the
second pattern of the rule, resulting in a hypergraph each, describing the pick action performed.

We decided to encode actions as Query Links for the following reasons:

1. They allow us to specify a search pattern using Variable Nodes, which correspond to the
“holes” introduced above. When we execute a Query Link, PM fills the “holes” assigning
the Variable Nodes with the solution Atoms found by the search.

2. We can create new graphs as an effect of the Query Link execution. These graphs are new
patterns containing the Variable Nodes replaced with the solution from the first point and
inserted directly into the Atom Space.

3. Query Links are imperative: they actually perform the action, as opposed to declarative
Atoms that simply describe it (which can be used in the future to reason about the action
and eventually improve it with experience).

Based on these reasons, we can perform an action with or without parameters. In the former
case, we can execute the Query Link in two steps following motivations 1 and 2. This mode
allows to understand which objects are involved in the action. In the latter, we add a constraint
to the Query Link search, limiting it to the object passed as a parameter.

Starting from the root node, the following steps compose our BFS algorithm:

1. If the node is root:

• If the robot is holding an object in the root Atomspace, then two temporary nodes
are created as copies of the root related to the place and stack action.

• Otherwise, the same nodes are created but related to the pick and unstack actions.

2. If the node is not root:

• Consider that two of the next four actions can be excluded looking at the previous
one. Starting from either place or stack, only pick and unstack can be performed,
and vice versa. Consequently, by looking at the action assigned to the edge incident
on this node, two temporary nodes are created as copies of this node, associating
the actions following the rule just explained.

3. In each temporary node, the assigned action is executed in Without Parameters mode.
4. From the resulting Atomspace of each one, the objects on which the action is applicable

are extracted.
5. For each object found, a new copy node of the root is created. Then, the assigned action

is applied to this node in With Parameters mode.
6. These final nodes become the children of the BFS tree and the edges are labelled with the

respective performed action.
7. The algorithm starts again for each new node, following the breadth-first order of the

queue where nodes are stored.



This makes the algorithm and the entire system generic with respect to domains, problems, and
actions. To avoid loops of actions (i.e., actions that bring the environment into a state already
encountered in the same branch), we check if each new node has already been encountered
within its branch. In this case, the related sequence of actions created a loop and the expansion
of that branch ends.

To add extra generality to our proposal and always allow to define the assignment as a
Markov Decision Process (MDP), we include a learning phase, strictly connected to R2L. In
detail, human users can help the system to reconstruct the initial state of the system, from
which the search algorithm will look for a sequence of actions to reach the assigned goal. To
this aim, they can input additional information via English sentences and R2L accurately store
this data as hypergraph. In the same way, human users can request the system to bring the
environment to a certain goal. Users do not need to describe the arrangement of the whole
environment: they can focus on only the states of the objects involved in the task.

Figure 1 shows the architecture of the obtained framework. A perception module detects
the objects populating the robot’s surroundings. A human user inputs the desired goal and
the information useful to achieve it (e.g., the position of objects not visible for the robot). The
Search Algorithm exploits all available data to find a solution. If a solution exists, the robot will
perform each action of the computed sequence until achieving the assignment.

4. Experiments and Results

To prove the goodness of our proposal, we implemented a Robot Operating System (ROS) [18]-
based setup where a human operator has to perform an assembly task. Given the task, a
Franka Emika Panda manipulator robot1 helps the human user by identifying the appropriate
industrial components to be assembled, picking them in the correct order, and placing them on
a pre-defined unloading position close to the human user. The help is reciprocal since the scene
is not known beforehand: the human operator helps the robot by giving information about the
position of non-visible objects. In this way, the robot can plan the sequence of manipulation
actions optimal to achieve the task.

As shown in Figure 3, we mounted the robot on the same workbench where the human
operates. Then, a free table acts as a collector and receives both the incoming pieces and
the final assembly. Finally, a set of bins simulate a warehouse and group the incoming parts
according to their type. We have a Microsoft Kinect One on the top of the robot end-effector,
letting it detect the pieces on the table and inside the bins. To simplify both the perception and
manipulation routines, industrial components are simulated as cubes with an AprilTag2 fiducial
marker attached on their tops. Each marker associates a semantic representation to each cube,
i.e., the name of the industrial component it represents. To simplify collision avoidance, we
assume that the human operator does not move within the robot workplace.

At the beginning, we assume that all useful components are in the scene, each inside its
corresponding bin. The human helper informs the robot about the task to be performed. The
robot scans its surroundings, detects the useful visible objects, and exploits the associated

1See https://www.franka.de/
2See https://april.eecs.umich.edu/software/apriltag

https://www.franka.de/


Parameters Values

Objects 1 {SnapRing1, SnapRing2}, 2 {BearingSleeve1, BearingSleeve2}, 3 RecirculatingBallSleeve,
workbench, PurpleBin, GreenBin, RedBin, BlueBin, YellowBin

Goal SnapRing1 is on the workbench. BearingSleeve1 is on SnapRing1.
RecirculatingBallSleeve is on BearingSleeve1.
BearingSleeve2 is on RecirculatingBallSleeve. SnapRing2 is on BearingSleeve2.

Additional SnapRing1 is on SnapRing2. BearingSleeve1 is on BearingSleeve2.
Solution (unstack (ConceptNode ”SnapRing1”) (ConceptNode ”SnapRing2”))

(stack (ConceptNode ”SnapRing1”) (ConceptNode ”workbench”))
(unstack (ConceptNode ”BearingSleeve1”) (ConceptNode ”BearingSleeve2”))
(stack (ConceptNode ”BearingSleeve1”) (ConceptNode ”SnapRing1”))
(pickup (ConceptNode ”RecirculatingBallSleeve”))
(stack (ConceptNode ”RecirculatingBallSleeve”) (ConceptNode ”BearingSleeve1”))
(pickup (ConceptNode ”BearingSleeve2”))
(stack (ConceptNode ”BearingSleeve2”) (ConceptNode ”RecirculatingBallSleeve”))
(pickup (ConceptNode ”SnapRing2”))
(stack (ConceptNode ”SnapRing2”) (ConceptNode ”BearingSleeve2”))

Time 120 sec
N. Iters. 5000

Figure 2 & Table 1: (Figure 2) A component of an orthogonal torque reaction arm; (Table 1) The list of
objects to be assembled, their final configuration, the additional information give by the human helper,
the solution, the computational time, and the number of iterations needed to find the solution.

Figure 3: Full workflow. The product to be assembled is a piece of the orthogonal torque reaction
arm of Figure 2. Each of its components is simulated by a cube. The snap rings are red cubes, the
bearing sleeves are blue cubes, and the recirculating ball sleeve is a green cube. At the beginning, each
cube is inside its corresponding colored bin. The human user gives the robot some additional info:
”BearingSleeve1 is on BearingSleeve2”, ”SnapRing1 is on SnapRing2”. This information, together with
the retrieved visual data, lets the robot deduce the initial scene and compute an action plan that neatly
brings the components from their initial location to the unloading station.

semantic representations to create a description of the environment as hypergraphs within
the AtomSpace. Then, it interrogates the human operator to retrieve the missing information.
Once known the entire environment configuration, theSearch Algorithm looks for a solution
by combining the set of preconditions and effects of the considered actions. The result is a set
of actions that let the robot unload all components on the pre-defined unloading area in the
correct order. If a solution exists, the robot executes the computed actions and gives the human
user all pieces needed to compose the product.

We performed multiple tests with different assembled products and various quantities of
pieces to be assembled. For the sake of brevity, we only report the results obtained when
assembling the 5 items of Table I: two snap rings, a recirculating ball sleeve, and two bearing



sleeves. They should form the component of Figure 2: a piece of an orthogonal torque reaction
arm. Thus, the following goal configuration should be true: “SnapRing1 is on the workbench.
BearingSleeve1 is on SnapRing1. RecirculatingBallSleeve is on BearingSleeve1. BearingSleeve2 is on
RecirculatingBallSleeve. SnapRing2 is on BearingSleeve2.” As shown in the table, as additional
information, the human informs the robot that some parts are not visible because they are
behind other items: “SnapRing1 is on SnapRing2”, “BearingSleeve1 is on BearingSleeve2”. Once
the system has learned the configuration of its surroundings and the final goal, it process the
information as hypergraphs within the AtomSpace until producing a sequence of pick, place,
stack, and unstack actions that solves the human request. The solution follows (see Table I):

1. (unstack (ConceptNode ”SnapRing1”) (ConceptNode ”SnapRing2”))
2. (stack (ConceptNode ”SnapRing1”) (ConceptNode ”workbench”))
3. (unstack (ConceptNode ”BearingSleeve1”) (ConceptNode ”BearingSleeve2”))
4. (stack (ConceptNode ”BearingSleeve1”) (ConceptNode ”SnapRing1”))
5. (pickup (ConceptNode ”RecirculatingBallSleeve”))
6. (stack (ConceptNode ”RecirculatingBallSleeve”) (ConceptNode ”BearingSleeve1”))
7. (pickup (ConceptNode ”BearingSleeve2”))
8. (stack (ConceptNode ”BearingSleeve2”) (ConceptNode ”RecirculatingBallSleeve”))
9. (pickup (ConceptNode ”SnapRing2”))

10. (stack (ConceptNode ”SnapRing2”) (ConceptNode ”BearingSleeve2”))

Once the Search Algorithm has found the sequence of actions to achieve the assignment, the
robot executes the computed actions, as shown in Figure 3. To find a solution, the system takes
120 seconds on a laptop with Intel(R) Core(TM) i5-9300H CPU, NVIDIA GeForce GTX 1650
Max-Q graphics card and 8GB of RAM. The operating system is installed on an external SSD
connected with the USB 3.1 standard. The computational time decreases exponentially as the
number of objects to be assembled decreases.

We compared our proposal with Fast-Forward (FF) [19] and SMTPlan [20]. The former takes
0.006 sec to find a solution, the latter takes 18.141 sec. This result may seem discouraging.
Otherwise, we should account that both the algorithms take as input a problem and a domain
formulated using PDDL. Such formulations should faithfully represent the state of the world in
its entirety. In our case, instead, the Search Algorithm is complete, and the overall framework is
independent of the formulation of initial and final configurations. Indeed, the human operator
can inform the system about the observability of the problem and can help deduce the start
configuration of the environment while exploiting the natural language.

5. Conclusions and Future Work

In this paper, we extended OpenCog to let the system solve TP problems. Without loss of
generality, we focused on robot manipulation problems solvable through a combination of four
actions: pick, place, stack, and unstack. To let OpenCog solve these problems, we exploited
its modules as the foundation of a KB that describes and stores domains, problems, and the
interactions between them. Then, we equipped the system of a BFS algorithm that finds the
sequence of actions that solve the assignments. We included a preliminary evaluation of our



proposal that asked a manipulator robot to interaction with a human operator to solve an
assembly task. Obtained results prove that our system is complete and generic in terms of the
considered problem and domain.

Future work includes the integration of additional actions to improve our system’s generality.
Moreover, we will focus on increasing its performance via temporal reasoning. Finally, we will
test our proposal in dynamic environments populated by movable objects.
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