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Abstract
Interactive data analysis is often conveniently done on personal computers that have limited memory. Current analytical data
management systems rely almost exclusively on main memory for computation. When the data size exceeds the memory
limit, many systems cannot complete queries or resort to an external execution strategy that assumes a high I/O cost. These
strategies are often much slower than the in-memory strategy. However, I/O cost has gone down: Most modern laptops have
fast NVMe storage. We believe that the difference between in-memory and external does not have to be this big. We implement
a parallel external sorting operator in DuckDB that demonstrates this. Experimental results with our implementation show
that even when the data size far exceeds the memory size, the performance loss is negligible. From this result, we conclude
that it is possible to have a graceful degradation from in-memory to external sorting.
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1. Introduction
It is not uncommon for database systems to have hun-
dreds or even thousands of gigabytes of RAM at their
disposal. High-performance systems such as HyPer [1],
and ClickHouse [2] fully utilize the available memory
and perform much better on analytical workloads than
their traditional disk-based counterparts. Because these
systems usually run on machines with such large mem-
ory capacities, the assumption is often that the workload
fits in memory.
While laptops have also enjoyed increased memory

capacity, their physical design has limited space. There-
fore they typically have only 16GB of memory. Laptops
are often used in interactive data analysis, with tools like
Pandas [3] and dplyr [4], showing that there is a need for
analytical data management technology that runs on a
laptop. However, these tools operate only in memory. As
a result, users cannot process datasets that are slightly
larger than memory, on their own machine.
Disk-based database systems, on the other hand,

have long solved the problem of processing larger-than-
memory datasets. These systems are generally much
slower than in-memory systems on analytical workloads.
When a user wants to process a larger-than-memory
dataset using an in-memory system, usually one of two
things happens 1) The system throws an error stating it
is out of memory, 2) The system switches to an external
strategy that is much less efficient than the in-memory
strategy, which results in a slow execution time, even
when, for example, the input is only 10% larger than
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Figure 1: DuckDB’s row layout and row heap.

memory. Fast queries may become slow or run into an
error when a table grows in size, creating a frustrating
experience for users.
We can mitigate this problem by implementing oper-

ators such that they optimally use the amount of avail-
able memory and only write data to disk when this is
necessary. I/O quickly becomes the bottleneck on ma-
chines with low-bandwidth storage devices. However,
most modern laptops have nVME storage with high write
speeds, making I/O less of a limiting factor.
We have implemented a parallel, external sorting op-

erator in DuckDB [5] that demonstrates this. Our im-
plementation seamlessly transitions from in-memory to
external sorting by storing data in buffer-managed blocks
that are offloaded to disk using a least-recently-used
queue, similar to LeanStore [6].
Transitioning from in-memory to disk is made pos-

sible by DuckDB’s unified internal row layout, shown
in Figure 1, which can be spilled to disk using pointer
swizzling [7].
We compare our implementation against four other

systems using an improvised relational sorting bench-
mark on two tables from TPC-DS [8]. Our implementa-
tion achieves excellent performance when data fits in
memory and shows a graceful degradation in perfor-
mance as we go over the limit of available memory.
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2. Sorting Relational Data
Sorting is one of the most well studied problems in com-
puting science. Research in this area forms the basis of
sorting in database systems but focuses mostly on sorting
large arrays or key/value pairs. Sorting is more complex
for relational data as many different types need to be
supported, as well as NULL values. There can also be
multiple order clauses. Besides sorting the order clause
(key) columns, all other selected (payload) columns need
to be re-ordered as well.

In 2006, Goetz Graefe surveyed sorting in database sys-
tems [9]. The most important takeaway from this survey
when it comes to performance is that the cost of sort-
ing is dominated by comparing values and re-ordering
data. Anything that makes either of these two operations
cheaper will have an impact on the overall speed.

There are two obvious ways to go about implementing
a comparator in a column-store when we have multiple
ORDER BY clauses:

1. Iterate through the clauses: Compare columns
until we find one that is not equal, or until we
have compared all columns. This comparator
jumps between columns, causing random access
in memory.

2. Sort the data entirely by the first clause, then
sort by the second clause, but only where the
first clause was equal, and so on. This approach
requires multiple passes over the data.

The binary string comparison technique [10] improves
sorting performance by simplifying the comparator. It
encodes all columns in the ORDER BY clause into a single
binary sequence that, when compared using memcmp will
yield the correct overall sorting order. This encoding
also yields the correct order with a byte-by-byte Radix
sort. Although this technique has existed since the days
of System R, not many systems use it today and opt for
one of the ways listed above.
We implement this comparator and opt for fixed-size

encodings, which can be more easily re-ordered. For
variable-size types such as strings, we can therefore only
encode a prefix. We compare the whole string only when
prefixes are equal. The encoding is shown in Figure 2.
Not shown in the figure are NULL values and colla-

tions. NULL values are handled by prefixing each value
with an additional byte denoting whether the value is
NULL. Collations are handled by evaluating the collation
function before encoding the prefix of the string.

The other high cost of sorting is re-ordering data. Sys-
tems that use columnar storage must re-order all selected
columns, which causes a random access pattern for each.
Row-based systems only have to pay the cost of this ran-
dom access pattern once. When we select many columns,
this becomes a considerable advantage.

birth country birth year
NETHERLANDS 1992
GERMANY 1924

birth country birth year
78 69 84 72 69 82 76 65 78 68 83 0 200 7 0 0
71 69 82 77 65 78 89 0 132 7 0 0

binary string
177 186 171 183 186 173 179 190 177 187 172 255 128 0 7 200
184 186 173 178 190 177 166 255 255 255 255 255 128 0 7 132

(a)

(b)

(c)

Figure 2: Binary string encoding. The original data in (a)
is represented as (b) on a little-endian machine. It is en-
coded as (c) when ordered for a query with order clauses
c_birth_country DESC, c_birth_year ASC . Descending order
flips the bits. The string “GERMANY” is padded to ensure
fixed size.

A few relational operators are inherently row-based,
such as joins and aggregations. For vectorized execution
engines, it is common practice to physically convert vec-
tors to and from a row layout for these operators using
scatter-gather. We argue that this layout should be used
for sorting, as sorting is also a row-based operator.

We show DuckDB’s row layout in Figure 1. Rows have
a fixed size that can be easily re-ordered while sorting.
We represent variable-sized columns with pointers into
a string heap where the data resides. The heap data does
not have to be re-ordered while sorting in memory. Each
fixed-size row has an additional pointer field that points
to its “heap row”. This pointer is not used for in-memory
sorting but is crucial for external sorting, which we will
explain in section 2.2.

2.1. Parallel Sorting
DuckDB uses Morsel-Driven Parallelism [11], a frame-
work for parallel query execution. For the sorting oper-
ator, this means that multiple threads collect a roughly
equal amount of data, in parallel, from the input table.
We use this parallelism by letting each thread sort its
collected data using Radix sort. After this initial sorting
phase, each thread has one or more sorted blocks of data,
which must be combined into the final sorted result using
merge sort.

There are two main ways of implementing merge sort:
K-way and Cascade merge. The K-way merge merges 𝐾
lists into one sorted list in one pass and is traditionally
used for external sorting because it minimizes I/O [12].
Cascade merge is used for in-memory sorting because it
is more efficient than K-way merge. It merges two lists of
sorted data at-a-time until only one sorted list remains.
Recent work on K-way external merge sort [13] on

devices with flash memory reduces execution time by
20% to 35% compared to standard external merge sort.
Salah et al. [14]show that K-waymerge can achieve better
performance than cascaded merge when it comes to in-
place sorting. This work on K-way merging may seem



attractive for our implementation, but cascaded merge is
still a more attractive option when it comes to in-memory
sorting. We also need to deal with variable-size data,
which complicates in-place sorting. We do not want
to compromise in-memory sorting and choose cascade
merge.

Cascade merge is embarrassingly parallel when there
are many more sorted blocks than available threads. As
the blocks get merged, there will not be enough blocks
to keep all threads busy. In the final round, when we
merge two blocks to create the final sorted result, there
is no parallelism: One thread processes all the data. We
parallelize this using Merge Path [15]. Merge path pre-
computes where blocks intersect, creating partitions that
can merge independently of each other. Binary search
efficiently computes these partitions.

2.2. External Sorting
To sort more data than fits in memory, we write blocks
of sorted data to disk. Rather than actively doing this in
our sorting implementation, DuckDB’s buffer manager
decides when to do this: When memory is full.
Writing data to disk is trivial for fixed-size types but

non-trivial for variable-size types, as the pointers in our
row layout will be invalidated. To be able to offload
variable-sized types as well, we use pointer swizzling.
When we are sorting externally, we convert the pointers
in the row layout to offsets, shown in Figure 3.
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Figure 3: DuckDB’s internal row layout (swizzled).

We replace the 8-byte pointer field with an 8-byte
offset, which denotes where the strings of this row reside
in the heap block. We also replace the pointers to the
string values within the rowwith an 8-byte relative offset.
This offset denotes how far this particular string is located
from the start of this row’s heap row. Using relative
offsets within rows rather than absolute offsets is very
useful during sorting: These relative offsets stay constant
and do not need to be updated when we copy the row.
With this dual-purpose row-wise representation, we

achieve an almost seamless transition between in-
memory and external sorting. The only difference be-
tween the two is swizzling and unswizzling each pointer
once and re-ordering the heap during sorting.

3. Evaluation
In this section, we evaluate DuckDB’s sorting implemen-
tation. We compare against ClickHouse [2], HyPer [1],
Pandas [3] and SQLite [16]. HyPer and ClickHouse are
full-blown analytical database systems that focus on par-
allel in-memory computation. Pandas is single-threaded
and in-memory, and SQLite is a more traditional (single-
threaded) disk-based system.
To demonstrate how the systems perform in an envi-

ronment with limited RAM, we run our experiments on
a 2020 MacBook Pro. It has 16GB of memory and a fast
SSD with a write speed of over 3GB/s. HyPer does not
yet run natively on ARM CPUs, so we emulate it using
Rosetta 2. See our blog [17] for an experiment on x86
CPU architecture.
Benchmarking sorting in database systems is not

straightforward. We would like to measure only the time
it takes to sort, with as little noise as possible. There-
fore, we cannot use SELECT queries, as the client-server
protocol will quickly dominate query runtime [18].
To approach a fair comparison, we measure the

end-to-end time of queries that sort the data and write
the result to a temporary table, i.e., CREATE TEMPORARY
TABLE output AS SELECT ... FROM ... ORDER BY ...; .
For Pandas we will use sort_values with inplace=False
to mimic this query. To measure stable end-to-end query
time, we run each query 5 times and report the median
run time. Scripts for our experiments are available on
GitHub1.
We have created a relational sorting benchmark on

the customer and catalog_sales tables from TPC-DS [8].
The row counts at different scale factors are shown in
Table 1.

scale factor catalog_sales customer
10 14.401.261 500.000
100 143.997.065 2.000.000
300 260.014.080 5.000.000

Table 1
TPC-DS table row count for customer and catalog_sales at
scale factor 10, 100, and 300.

TPC-DS tables are challenging for sorting implemen-
tations because they are wide (many columns, unlike the
tables in TPC-H) and have a mix of fixed- and variable-
sized types. catalog_sales has 34 columns, all fixed-size
types: integer and double. customer has 18 columns,
fixed- and variable-size: 10 integers, 8 strings.
We sort the catalog_sales table on cs_quantity and

cs_item_sk , and select an increasing number of payload
columns. This experiment tests both the system’s ability
to sort and re-order the payload. We show the results of
this experiment in Figure 4.

1https://github.com/lnkuiper/experiments/tree/master/sorting

https://github.com/lnkuiper/experiments/tree/master/sorting
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Figure 4: catalog_sales ordered by cs_quantity, cs_item_sk ,
with an increasing number of payload columns. These
columns have few unique values, creating a difficult challenge
for sorting algorithms. The grey vertical lines in the SF100
plot indicate at which points the payload columns take up
50% and 100% of the amount of available memory.

The table fits in memory at SF10, and the systems’
performances are in the same ballpark, except for SQLite,
and DuckDB is the clear winner. At SF100, around 14
selected payload columns, the input table takes up 50%
of memory. It is common for systems to not sort data
in place, but copy it to a new location, which requires
double the amount of memory. The figure clearly shows
this: All systems except DuckDB and SQLite run into an
error due to running out of memory and are unable to
complete the benchmark.
ClickHouse switches to an external sorting strategy,

which is much slower than its in-memory strategy. There-
fore, adding a few payload columns results in a runtime
that is orders of magnitude higher. Despite switching
strategy, ClickHouse runs into an out-of-memory error.
HyPer uses the mmap system call, which creates a map-
ping between a block of memory and a file, which allows
HyPer to continue for a while when the data no longer
fits in memory, before running into an error as well. As
we can see, the runtime becomes very slow before HyPer
runs out of memory: Random memory access becomes
random disk access.

Surprisingly, Pandas can load the dataset at SF100 be-
cause macOS dynamically increases swap size. Most
operating systems do not do this, and Pandas will not
load the dataset at all. Pandas relies on NumPy’s [19]
single-threaded quicksort implementation. Pandas shows
impressive performance, partly because it already has
the input data fully materialized in memory and does not
have to stream data through an execution pipeline from
the input to the output table like most DBMSes.

Meanwhile, DuckDB and SQLite do not show a visible
difference in performance when where data no longer fits
in memory. SQLite always opts for a traditional external
sorting strategy, resulting in a robust, but overall slower
performance than DuckDB.

In our next benchmark, on the customer table, we test
how well the systems can sort by strings and by integers.
Both comparing and re-ordering strings are much more
expensive than comparing and re-ordering numeric types.
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Figure 5: customer ordered by different column types: In-
teger columns (c_birth_year, c_birth_month, c_birth_day),
and string columns (c_first_name, c_last_name).

We show the result of this experiment in Figure 5.
As expected, sorting by strings is slower than sorting

by integers for most systems. In this experiment, the
payload also includes string columns. Pandas has an ad-
vantage here because it already has the strings inmemory,
and most likely only needs to re-order pointers to these
strings. The database systems need to copy strings twice:
Once when reading the input table, and again when cre-
ating the output table. Profiling in DuckDB reveals that
the actual sorting takes less than a second at SF300, and
most time is spent on (de)serializing strings. See [17]
for more details on the difference between integers and
strings.

4. Conclusion and Future Work
In this paper, we presented our parallel external sort-
ing implementation in DuckDB. We compared it against
four data management systems using a relational sorting
benchmark based on TPC-DS. Three of the four systems
perform well in memory, but crash as the data goes over
the amount of available memory. DuckDB is the only sys-
tem under benchmark that performswell both inmemory
and external. These results demonstrate that it is possi-
ble to implement a sorting operator that is efficient in
memory and has a graceful degradation in performance
as the input size exceeds the memory limit.

4.1. Future Work
It is unclear how each technique contributed to end-to-
end performance. Quantifying these contributions e.g.
through simulation is an area of future research.

Our sorting implementation uses a row layout that can
be offloaded to storage using pointer swizzling. Other
blocking operators could benefit from this layout. For in-
stance, join, aggregation and window. Incorporating this
layout would enable external computation for these op-
erators as well. Implementing these operators such that
their performance degrades gracefully as the input size
exceeds the memory limit is an area of future research.
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