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Abstract

We introduce a family of deep-learning architectures for inter-sentence relation extraction, i.e., relations where the participants
are not necessarily in the same sentence. We apply these architectures to an important use case in the biomedical domain:
assigning biological context to biochemical events. In this work, biological context is defined as the type of biological system
within which the biochemical event is observed. The neural architectures encode and aggregate multiple occurrences of
the same candidate context mentions to determine whether it is the correct context for a particular event mention. We
propose two broad types of architectures: the first type aggregates multiple instances that correspond to the same candidate
context with respect to event mention before emitting a classification; the second type independently classifies each instance
and uses the results to vote for the final class, akin to an ensemble approach. Our experiments show that the proposed
neural classifiers are competitive and some achieve better performance than previous state of the art traditional machine
learning methods without the need for feature engineering. Our analysis shows that the neural methods particularly improve
precision compared to traditional machine learning classifiers and also demonstrates how the difficulty of inter-sentence

relation extraction increases as the distance between the event and context mentions increase.

Keywords

Inter-sentence relation extraction, biological context, natural language processing, neural networks

1. Introduction

Extracting biochemical interactions that describe mecha-
nistic information from scientific literature is a task that
has been well studied by the NLP community [1, 2, 3].
Automated event detection systems such as [4, 5, 6, 7,
8,9, 10, 11] are able to detect and extract biochemical
events with high throughput and good recall. The infor-
mation extracted with such tools enables scientists and
researchers to analyze, study and discover mechanistic
pathways and their characteristics by aggregating the
interactions and biological processes described in the
scientific literature.

However, when dealing with such mechanistic pro-
cesses it is important to identify the biological context
in which they hold. Here, biological context means the
type of biological system, described at different levels
of granularity, such as species, organ, tissue, cellular
component, and/or cell-line within which the extracted
biochemical interactions are observed. Knowing the bi-
ological context is important to correctly interpret the
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Quantity Count
# of inter-sent. relations 1936
Mean sent. distance 22
Median sent. distance 5
Max sent. distance 225

Table 1
Statistics about the inter-sentence distances of biological con-
text annotations.

mechanistic pathways described by the literature. For
example, some tumors associated with oncogenic Ras
in humans are different from those in mice, suggesting
that the Ras pathway differs in both species [12]. Ignor-
ing the biological context information, specifically the
species in the prior example, can mislead the reader to
draw incorrect conclusions.

Biological context is often not explicitly stated in the
same clause that contains the biochemical event men-
tion. Instead, the context is often established explicitly
somewhere else in the text, such as the previous sentence
or paragraph. In other words, there is a long distance
relation between the event mention and its context. In
these cases, the context is implicitly propagated through
the discourse that leads up to that particular biochem-
ical event mention, as illustrated in figure 1. Table 1
and figure 2 contain summary statistics about the sen-
tence distances for the relations in the corpus used in this
work. These statistics indicate that, while most of the
inter-sentence relations are close to the event mention
they are associated with, there is a long tail of biological
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Transfection of the R-Ras siRNA effectively reduced the expression of endogenous R-Ras protein in | PC12 cells .

These results demonstrate that activation of endogenous R-Ras protein is essential for the ECM mediated cell migration and that regulation of R-Ras activity plays a key

role in ECM mediated cell migration. Sema4D and Plexin-B 1-Rnd1 inhibits PI3-K activity through its R-Ras GAP activity.

Figure 1: Example of an inter-sentence relation annotated by a domain expert. The biological context, highlighted in blue, is
established two sentences prior to the event mention, highlighted in pink.
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Figure 2: Distribution of inter-sentence distances of biologi-
cal context annotations.

context mentions that are further than five sentences
away from the corresponding event mentions.

We frame the problem of associating event mentions
with their biological context as an inter-sentence relation
extraction task and propose a family of deep-learning
architectures to identify context. The approach inspects
an event mention, a candidate context mention, and the
text between them to determine whether the candidate
context mention is context of the event mention. Our
work makes the following contributions:

« Proposes a family of neural architectures that
leverages large pre-trained language models for
multi-sentence relation extraction.

» Extends a corpus of cancer-related open access
papers with biochemical event extractions anno-
tated with biological context. Unlike the original
corpus, this extended data set includes the full
text of each article, tokenized and aligned to its
annotations.

« Analyzes multiple methods to aggregate different
pieces of evidence that correspond to the same
input event and context, and assesses the overall
performance and reliability of the networks under
these different aggregation schemes.

2. Related Work

The problem of relation extraction (RE) has received exten-
sive attention [13, 14], including within the biomedical
domain [15, 16], with recent promising results incorporat-
ing distant supervision [17]. However, most of the work
focuses on identifying relations among entities within
the same sentence. In the biological context association

problem, the entities are potentially located in differ-
ent sentences, making the context association task an
instance of an inter-sentence relation extraction problem.

Previous work in inter-sentence relation extraction
includes [18], which combined within-sentence syntactic
features with an introduced dependency link between
the root nodes of parse trees from different sentences
that contain a given pair of entities. [19] proposes an
inter-sentence relation extraction model that builds a la-
beled edge graph convolutional neural network model
on a document-level graph. There have also been efforts
to create language resources to foster the development
of inter-sentence relation extraction methods. [20] pro-
pose an open domain data set generated from Wikipedia
to Wikidata. [21] propose an inter-sentence relation ex-
traction data set constructed using distance supervision.
Modeling inter-sentence relation extraction using trans-
former architectures require processing potentially long
sequences. Long input sequences are problematic be-
cause computing the self-attention matrix has quadratic
runtime and space complexity relative to the its length.
This observation has motivated research efforts to gener-
ate efficient approximations of self-attention. [22] pro-
poses a sparse, drop-in replacement for the self-attention
mechanism with linear complexity that relies on slid-
ing windows and selects domain-dependent global atten-
tion tokens from the input sequence. [23] proposes a
lower-rank approximation of the self-attention matrix to
linearize the complexity. [24] ommits the pair-wise de-
pendencies between the input tokens and then factorizes
the attention matrix to reduce its rank. Other approaches
[25] rely on kernel functions to compute approximations
with linear time and space complexity. [26] takes this
approach further by using relative position encodings,
instead of absolute ones.

Prior work has specifically studied the contextualiza-
tion of information extraction in the biomedical domain.
[27] associates anatomical contextual containers with
event mentions that appear in the same sentence via a
set of rules that considers lexical patterns in the case
of ambiguity and falls back to token distance if no pat-
tern is matched. [28] elaborates on the same idea by
incorporating dependency trees into the rules instead of
lexical patterns, as well as introducing a method to detect
negations and speculative statements.

[29] previously studied the task of context association
for the biomedical domain and framed it as a problem of
inter-sentence relation extraction. This work presents



Phospholipase C delta-4 overexpression upregulates <EVI> ErbB1/2 expression </EVI> , Erk signaling pathway , and proliferation in | <CON>  MCF-7 | </CON>

Phospholipase C delta-4 overexpression upregulates <EVT> ErbB1/2 expression </EVT> , Erk signaling pathway , ...have linked the upregulation of = [EVENT]

label=()
cells .
Ibbel=()
with rapid proliferation in certain = [CONTEXT] ... <CON> MCF-7 | </CON> cells .
Icbel=() ... <CON> | macrophages | </CON> , and | [CONTEXT] , where it is a trimeric complex consisting of one alpha-chain ... [SEP]

that increases <EVI> FcepsilonRI expression </EVT>

...FcRbeta also acts as a chaperone

Figure 3: Example input text spans. (a) Single-sentence segment with markers; (b) multi-sentence segment with markers and
masked secondary event and context mentions; and (c) truncated long multi-sentence segment.

set of linguistic and lexical features that describe the
neighborhood of the participant entities and proposes an
aggregation mechanism that results in improved context
association.

Previous work relied upon feature engineering to en-
code the participants and their potential interactions.
State-of-the-art NLP research leverages large language
models to exploit transfer learning. Models such as [30],
and similar transformer based architectures [31] better
capture the semantics of text based on its surrounding
context with unsupervised pre-training over extremely
large corpora. Specialized models, such as [32, 33, 34]
refine language models by continuing pre-training with
in-domain corpora.

To the best of our knowledge, the work presented
here is the first to propose and analyze deep-learning
aggregation and ensemble architectures for many-to-one,
long-distance relation extraction.

3. Neural Architectures for
Context Association

We propose a family of neural architectures designed to
determine whether a candidate context class is relevant to
a given biochemical event mention. A biochemical event
mention (event mention for short) describes the interac-
tion between proteins, genes, and other gene products
through biochemical reactions such as regulation, inhi-
bition, phosphorylation, etc. In particular, we focus on
the 12 interactions detected by REACH [35]. A biological
container context mention (context mention for short)
represents an instance from any of the following biolog-
ical container types: species (e.g., human, mice), organ
(e.g., liver, lung), tissue type (e.g., endothelium, muscle
tissue), cell type (e.g., macrophages, neurons), or cell line
(e.g., HeLa, MCF-7).

In this work, we use an existing information extraction
system [36] to detect and extract event mentions and can-
didate context mentions. Candidate context mentions are
grounded to ontology concepts with unique identifiers
to accommodate different spellings and synonyms that
refer to the same biological container type. The specific

ontology depends on the type of entity: UniProt! for
proteins, PubChem? for chemical entities, etc.
Importantly, a context biological container type is
likely mentioned multiple times in the document. Ap-
proximately half of the context container types in the
context-event relation corpus are detected two or more
times, as illustrated in figure 5. Every candidate con-
text mention that refers to the same container type is
paired with the relevant event mention to generate a
text segment for each pair. Each segment is represented
as the concatenation of the sentences that include the
event mention, one mention of the candidate context
container type, and all the sentences in between. These
text segments are used as input to the network to make
predictions. If an article contains n; context mentions of
container type i, then for each event mention the network
will take up to n; input text segments to determine if type
i is a context of the event. The task of the network is to
learn whether context type i is a context of the specific
event mention by looking at a subset of the n; inputs. An
article with j context types and m event mentions will
see a total of j x m classification problems and a total of

Y x m input text segments. Figure 4 shows a block
diagram of the family of architectures.

Each input segment is preprocessed as follows. The
boundaries of the relevant event and candidate con-
text mentions are marked with the special tokens:
<EVT>...</EVT> for the event mention and <CTX>...
</CTX> for the context mention. Other event or context
mentions present in the segment are masked with special
[EVENT] or [CONTEXT] tokens, respectively, to avoid con-
fusing the classifier with other event mentions that aren’t
the focus of the current prediction. Figure 3 shows ex-
ample text spans where the event and context mentions
are surrounded by their boundary tokens. Next, each
preprocessed text segment is tokenized using the tok-
enizer specific to the pre-trained transformer used as the
encoder. If a tokenized sequence exceeds the maximum
length allowed by the transformer, it is truncated before
the encoding step by selecting the prefix of the sequence
up to half the length, the suffix up to half the length minus

'https://www.uniprot.org/
%https://pubchem.ncbinlm.nih.gov/
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Figure 4: Context association neural architecture. The left-most box represents the input text segments after pre-processing.
The blocks inside the encoded segments box represent BioMed RoBERTa’s hidden states for the input segments. The
classification embeddings box contains averages of the hidden states corresponding to the <EVT> and <CON> tokens of each input
segment. Depending on the choice of architecture, classification embeddings either flow through (a) the aggregation block,
which combines them to then generate the final classification; or (b) the voting block, where each embedding is classified,

then the final result is generated through a voting function.
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Figure 5: Distribution of the number of context class detec-
tions per article (n;).

one token, and inserting a special <SEP> token between
them. Any truncated input segment is guaranteed to re-
tain both mentions and their local lexical context. Figure
3 shows an example of a segment truncated using this
procedure. After tokenization, the segments are encoded
using BioMed RoBERTa-base [37] %, based on [32].

The output hidden states of the <EVT> and <CON> tokens
are averaged to create a classification embedding.

Each classification task emits a single binary predic-
tion, but has up to n; classification embeddings to account
for the multiple (potential) context mentions that origi-

*We used the available public checkpoint for both the BPE
and BioMed RoBERTa models from https://huggingface.co/allenai/
biomed_roberta_base

nate from the previously discussed process. To generate
a single prediction, the network must combine the infor-
mation carried forward by the classification embeddings.
We propose two general approaches to combine the clas-
sification embeddings and generate the final prediction
by combining the information before classification and
after classification, respectively:

« Aggregation: Classification embeddings are
combined together using an aggregation func-
tion. The aggregated embedding is then passed
through a multi-layer perceptron (MLP) to emit
a binary classification.

«» Voting: Each classification embedding is passed
individually through the MLP, which emits a lo-
cal decision based only on the individual input
text segment. The individual decisions are com-
bined using a voting function to emit the final
classification.

Intuitively, aggregation functions consider multiple
information points to make an informed decision based
on the “bigger picture” presented by the article. Voting
functions, on the other hand, make isolated decisions
solely based on information local to each input text seg-
ment, then use those individual predictions to vote for
the final classification, akin to an ensemble approach.

There are multiple ways to implement aggregation and
voting functions. We propose four implementations of
each kind, each following a intuitive principle.
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Figure 8: Precision/recall/F1 scores of the relation classifier as the number of context mention considered for each individual
relation classification is varied.



Documents

Event mentions

Context mentions Annotations

Validation 6 685 713 1,192

Cross validation 20 1,169 1,926 1,543

Total 26 1,854 2,639 2,735
Cross-validation split

Training 17 975.83 (58.32) 1,654.83 (52.83)  1,288.33 (95.89)

Testing 193.16 (58.32) 271.16 (52.83) 254.66 (95.89)

Table 2

Statistics of the context association dataset. The upper part shows statistics from the overall dataset, both in total and split by
the two partitions: (a) validation set, and (b) partition used for the formal cross-validation experiments. The lower part shows
the average and standard deviations used for train/test for the different folds in cross-validation.

Aggregation Functions

Nearest Context Mention: Following the intuition that
textual proximity should be a strong indicator of associ-
ation, this approach selects the context mention of the
relevant context type that is closest to the event mention.
The closest context mention can appear either before
or after event mention. In this setting, all other context
mentions are ignored. The approach results in only one,
unaltered classification embedding. It is equivalent to
the case where only one mention of the relevant context
type appears in a document (n; = 1).

Average Context Embedding: Conversely, all mentions
of the candidate context type can bear a degree of re-
sponsibility to determine whether it is context of the
event mention. Without making a statement about the
importance of each context mention, we consider the
text segments of the k nearest context mentions of the
relevant context type, to either side. The upper bound is
enforced for efficiency and is left as a hyper parameter.
If there are less than k context mentions, all the text seg-
ments are considered. The segments are encoded, then
the resulting classification embeddings are averaged.

Inverse Distance aggregation: It can be argued that the
influence of each context mention in the final decision
decreases when it is farther apart from the event mention.
We propose this aggregation approach, where instead of
averaging the k nearest classification embeddings, they
are combined as a weighted sum, where each classifica-
tion embedding’s weight is defined as w; = d; 1/ Zj( dj_l,
the normalized inverse sentence distance between the
event mention and the context mention. The resulting
aggregated embedding still carries information from the
nearest k context mentions, but their contributions di-
minish inversely proportionally to their distance from
the event mention.

Parameterized aggregation: Instead of relying upon a
heuristic approach to calculate the weights that deter-
mine the contributions of each classification embedding,
we let the network learn the interactions between them
using an attention mechanism. The parameterized ag-

gregation approach concatenates k nearest classification
embeddings and uses a MLP to reduce the concatenated
embeddings to a new vector with the same number of
components as an individual classification embedding.
The MLP works as map that combines the original k
classification embeddings whose parameters are learned
during training. If the number of input text segments
is < k, the concatenated classification embeddings are
padded with zeros before being mapped to the new vector
space.

Voting Functions

One hit: This voting approach requires the minimum
amount of evidence to trigger a positive classification.
The context type is classified as is context of the event
mention if at least one classification embedding is classi-
fied as positive. Intuitively, this voting function favors
recall.

Majority vote: Conversely, it can be argued that there
should be consensus in the vote. The majority vote func-
tion triggers a positive classification if at least half of the
classification embeddings are classified as positive. In
contrast to one hit, this voting function favors precision.

Post-inverse distance vote: Analogous to the inverse
distance aggregation approach, this approach takes the
vote of each classification embedding as weighted by the

normalized inverse sentence distance: w; = d; 1/ Zf dj-*l.
The final classification is emitted in favor of the class with
the highest weight. As opposed to the inverse distance
aggregation approach, the combination happens after
passing the embeddings through the MLP.

Confidence vote: We can weight each vote proportion-
ally to the confidence of the classifier. In this approach,
the vote of each individual classification is weighted by
the classifier’s confidence. The weights are given by
the normalized logits of the vote of each classification

embedding: w; =/ 351,



4. Full-Text Context-Event
Relation Corpus

We used a corpus of biochemical events annotated with
biological context to test the neural architectures for
context assignment. Our version of the corpus is an
extension of the corpus published by [29].

The corpus consists of automated extractions of 26
open-access articles from the PubMed Central repository,
all related to the domain of cancer biology. The first type
of extractions are events mentions. An event mention
is a relation between one or more entities participating
in a biochemical reaction or its regulation. These men-
tions can be phosphorylation, ubiquitination, expression,
etc. The second type of extractions are candidate context
mentions. These consist of named entity extractions of
different biological container types: species, tissue types
and cell lines.

Each event extracted was annotated by up to three
biologists who assigned the event’s relevant biological
context from a pool of candidate context extractions avail-
able in the paper. Context annotations are not exclu-
sive, meaning that every event mention can be annotated
with one or more context classes. The result is a set of
annotated events, where each event can have zero or
more biological context associations, and there is at least
one explicit mention for each biological context in the
same article. The specifics of the automated event extrac-
tion procedure, annotation tool, annotations protocols
and inter-annotator agreements are thoroughly detailed
in [29]. Table 2 contains summary statistics of the data
set’s documents.

The original corpus release lacked the full text of the
articles. Our proposed methodology requires the raw
text to be used as input to the neural architectures. Our
contribution here is an extension this corpus, where we
identified, processed and tokenized the full text of the
articles using the same information extraction tool [35]
used by the authors of the original corpus in such way
that the tokens align correctly with the annotations and
extractions published previously. The full-text context-
event relation corpus, along with the code for the experi-
ments presented in this document, is publicly available
for reproducibility and further research.*

5. Experiments and Results

In this section, we evaluate all proposed variants of the
context association architecture and discuss the results.

“https://clulab.github.io/neuralbiocontext/

Method Precision Recall F1
Majority (3 votes) 0.580" 0.498 0.536"
Parameterized agg. 0.537* 0.494 0.514*
One-hit 0.409 0.668* 0.507
Post inv. distance 0.571% 0.446 0.501
Nearest mention 0.541% 0.464 0.499
Average (5 segs) 0.527 0.469 0.497
Inverse distance 0.544* 0.454 0.495
Confidence vote 0.394 0.443 0.417
Baselines

Random forest 0.439 0.541 0.485
Logistic regression 0.361 0.699 0.476
Heuristic 0.421 0.548 0.476
Decision tree 0.311 0.389 0.345

Table 3

Cross-validation results for the is context of class. * denotes
statistically significant improvement w.r.t. the random forest
classifier.

5.1. Automatic Negative Examples

The context-event relation corpus only contains positive
context annotations of event mentions. We automatically
generate negative examples for event mentions in each
document by enumerating the cartesian product of all
event and context mentions followed by subtracting the
annotated pairs. One consequence of generating negative
examples using this exhaustive strategy is that it results
in most of the event/context pairs being negative exam-
ples, with 60,367 (95.68%) negative pairs and 2,703 (4.32%)
positive pairs. This results in a severe class imbalance,
which makes the classification task harder.

5.2. Results and Discussion

We use a cross validation evaluation framework similar
to the evaluation methodology used by [29]. Each fold
contains all of the event-context pairs that belong to
three different articles. However, we held out six papers
as a development set. During cross validation, one fold
is used for testing and training is performed using the
remaining k — 1 folds plus the data from the development
set. This way, we take advantage of more training data
and avoid leaking the information from development into
testing.

To better understand the impact of considering multi-
ple context mentions at the time of aggregation or voting,
we tuned this hyper parameter on the development set.
Figure 8 shows the effect of increasing the number of con-
text mentions used for relation classification. The num-
ber of context mentions considered ranged from three to
ten. Both architectures reach a peak F1 score between
3 to 5 context mentions. Performance quickly decays
almost asymptotically, as the number of considered con-
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text mentions increases. This observation suggestions
that increasing the number of input text segments de-
rived from context mentions that are further apart from
the event introduces too much noise into the decision
process.

After the above tuning, we ran cross-validation exper-
iments for all aggregation and voting methods. Based
on the tuning results, we used the closest five mentions
of each context class for the average aggregation archi-
tecture, and the closest three for all of the other archi-
tectures. Table 3 summarizes the cross validation per-
formance scores for all the architecture variants. The
precision, recall, and F1 scores reported are computed
just for the positive class (i.e., is context of) to avoid arti-
ficially inflating the scores with the dominating negative
class.

The top performing architecture is the majority vote.
It achieves an F1 score slightly above 0.53. The major-
ity vote architecture trades off recall for precision. The
reason for this is that the architecture needs to see at
least half of the individual input segments classified as
positive in order to make that prediction. As a result, a
positive classification using this architecture comes with
a relatively high confidence. As expected, the one-hit
architecture achieves the opposite: it trades precision for
recall. One-hit only needs to see one individual positive
classification in order to emit a positive final classifica-
tion. As a result, one-hit attains the highest recall within
the neural architectures but is more prone to false posi-
tives.

We include several baseline algorithms to compare
the performance of the neural architectures. The first
baseline is a “heuristic” method that associates all the
context types within a constant number of sentences to
an event mention. We also include our implementation
of three classifiers using the feature engineering method
of [29]. The top three performing neural architectures
have statistically significantly higher F1 score than the
random forest classifier, which is the strongest baseline
algorithm.

Note that the methods proposed by [29] that are in-
cluded in the table aggregate multiple feature vectors from
the different context mentions into a new feature vector
composed of multiple statistics from the original feature
space. Examples of these feature aggregations include
the minimum, maximum and average values of the distri-
bution of sentence distances, the frequency of the context
type, and the proportion of times the context mention
is part of a noun phrase. Their aggregation approach is
analogous to the one presented here (although here we
operate in embedding space), which is why the compari-
son between these two approaches is fair.

Table 4 lists the classification scores of the top per-
forming method, stratifying the data by the sentence
distance to the closest context mention of the relevant

Distance  Precision  Recall F1 Support
0 0.796 0.818 0.807 573
1 0.490 0.450 0.469 262
2 0.398 0.336 0.364 146
3 0.531 0.402 0.457 107
4 0.569 0.393 0.465 84
5+ 0.214 0.131 0.163 351
Table 4

Cross-validation scores for the positive class of the Majority
(3 votes) architecture stratified by sentence distance to the
closet context mention of the same class.

class. Performance, along with the frequency of such in-
stances, quickly degrades as the distance between event
and context mention increases.

6. Conclusions

We propose a family of neural architectures to detect bi-
ological context of biochemical events. We approach the
problem as an inter-sentence relation extraction that uses
multiple pieces of document-level evidence to classify
whether a specific context label is the correct context
type of an event extraction.

We provide an analysis of different methods to com-
bine evidence to generate a final decision. The ap-
proaches work either before classification, by aggregating
embeddings in order to emit a decision, or after classifica-
tion, creating ensembles that vote for multiple individual
decisions.

Using an expert-annotated corpus that associates bio-
chemical events with relevant biological context, our re-
sults show that in spite of the severe class imbalance, sev-
eral the neural architectures are competitive and achieve
higher classification performance than a deterministic
heuristic and other machine learning approaches.

The neural architectures particularly favor precision,
which makes them more appealing for applications where
higher precision is desirable.

Inter-sentence relation extraction continues to be a
challenge. An ablation study of the degree of aggrega-
tion of evidence shows how considering mentions that
are further apart from the event degrades performance.
An error analysis by sentence distance shows how the
difficulty of inter-sentence relation extraction correlates
with the distance between the participants. The result of
these analyses suggest that understanding how to filter
out noisy event-context mention pairs and how to better
weight the contribution of long-spanning mention pairs
are important directions for future research.
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