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Abstract
Exponential growth in digital information outlets and the race to publish has made scientific misinformation more prevalent
than ever. However, the task to fact-verify a given scientific claim is not straightforward even for researchers. Scientific
claim verification requires in-depth knowledge and great labor from domain experts to substantiate supporting and refuting
evidence from credible scientific sources. The SciFact dataset and corresponding task provide a benchmarking leaderboard
to the community to develop automatic scientific claim verification systems via extracting and assimilating relevant evidence
rationales from source abstracts. In this work, we propose amodular approach that sequentially carries out binary classification
for every prediction subtask as in the SciFact leaderboard. Our simple classifier-based approach uses reduced abstract
representations to retrieve relevant abstracts. These are further used to train the relevant rationale-selection model. Finally,
we carry out two-step stance predictions that first differentiate non-relevant rationales and then identify supporting or
refuting rationales for a given claim. Experimentally, our system RerrFact with no fine-tuning, simple design, and a fraction
of model parameters fairs competitively on the leaderboard against large-scale, modular, and joint modeling approaches. We
make our codebase available at https://github.com/ashishrana160796/RerrFact.

1. Introduction
Misinformation is a modern day societal problem that
has the potential to wreck havoc, especially with increas-
ingly many people having an online footprint without
adequate internet literacy. The problem grows intense
when science gets associated with disinformation and
provides a false sense of trustworthiness. Convincing
statements derived from general public opinions like
”Ginger consumption in food reduces the risk of getting
severely infected with COVID-19” can effectively manip-
ulate the masses. It is hard to verify such misleading
statements from extensive scientific literature with ap-
propriate reasoning even by providing relevant evidence.
Also, it is a cumbersome task for experts to search for
refuting or supporting argument rationales considering
the amount of misinformation available on a plethora
of outlets. Therefore, automatic fact-verification tools
are essential, especially for scientific knowledge where
the given system must understand scientific knowledge,
interpret numeric and statistical inferences.

The second workshop on Scientific Document Understanding at AAAI
2022

∗These authors contributed equally.
Envelope-Open asrana@mail.uni-mannheim.de (A. Rana);
dkhanna_be19@thapar.edu (D. Khanna); ghosal@ufal.mff.cuni.cz
(T. Ghosal); singh@ufal.mff.cuni.cz (M. Singh);
harpreet.s@thapar.edu (H. Singh); prashant.singh@thapar.edu
(P. S. Rana)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Previously, the veracity verification task has been ex-
tensively studied, and many datasets are available on var-
ious use-cases [1, 2, 3]. The most relevant amongst them
is the FEVER shared task [4], which evaluates the verac-
ity of human-generated claims from Wikipedia data. For
the FEVER task, there are two paradigms: one that take
a three-step modular approach and the other which is
joint prediction approach for evidence retrieval & stance
prediction [5, 6]. Similarly, for the SciFact task these
two paradigms have been used either with very large lan-
guage models like VerT5erini for modular architecture
[7] or ARSJoint, JointParagraph for merged subtask archi-
tecture [8, 9]. In contrast to these diametrically opposite
paradigms, QMUL-SDS’s [10] partial binding between
the abstract retrieval and rational selection stages offers
a promising direction, which is also the inspiration for
our current work. Our experiments demonstrate that
this partial interdependence successfully introduces a
form of regularization, providing much-needed improve-
ments over precision and recall for the evidence retrieval
component in the concerned task. Therefore, we present
a computationally and architecturally simple pipeline-
driven design for it.

We use the same partial interdependence pipeline de-
sign with reduced evidence retrieval stage representations
for modeling our system RerrFact’s subtask modules.
We also align our efforts to maximize performance from
each subtask performing binary classification instead of
opting for approaches like external data fine-tuning, uti-
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TC T[SEP]
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TC T[SEP]
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TC T[SEP]
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TC T[SEP]
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Figure 1: Architectural illustration of the RerrFact scientific claim verification pipeline.

lizing extensive language models like T5, or using the
joint learning architecture, etc. Here, we use the reduced
abstract representations after the initial TF-IDF retrieval
for the relevant abstract extraction subtask. After that,
we use these retrieved abstracts for training the ratio-
nale selection model that adds a loose coupling effect
between the two evidence retrieval subtasks. Finally, for
stance prediction, we first segregate out {NoInfo} ratio-
nale instances and then predict stance for {Supports,
Refutes} rationales. RerrFact achieves the fourth rank
in SciFact leaderboard by using language models of differ-
ent BERT-variants, choosing the best performing one for
each subtask. Our experimental results demonstrate the
importance of this loose coupling phenomenon as we only
stand after computationally expensive approaches that
require much larger language models and optimization
for various thresholding parameters for each subtask.

2. SciFact Dataset and Task
Description

The SciFact dataset consists of a corpus with 5,183 rel-
evant abstracts for 1,409 scientific claims [11]. These
abstracts can either support or refute a claim with manu-
ally annotated rationales. Each claim has a unique single
label, and no abstract has more than three rationales for
a given claim. The natural claims derived from a paper
and the papers cited in different paragraphs in it make
the language modeling subtasks challenging especially
due to added contextual scientific nuance.

For the SciFact task, one is given scientific claims
𝒞 and a relevant abstract corpus 𝒜 [11]. First, corre-
sponding to a claim c ∈ 𝒞, all unique abstracts a ∈ 𝒜
are categorized as y(c,a) 𝑖𝑛 {Supports, Refutes, NoInfo}.
Second, the sentence selection task functionally retrieves
the relevant rationales {r1(c,a), …, rm(c,a)} ∈ ℛ for the
given claim c for each abstract a. The performance of
both these tasks is evaluated with precision, recall, and
F1 metrics for abstract and sentence-level tasks. Third,
for the veracity verification task which is formulated as
a stance prediction problem, labels {Supports, Refutes}
are considered as positive labels, and {NoInfo} is taken
as the negative label.

3. Methodology
We formulate each subtask for the SciFact task as a
binary classification problem and create corresponding
BERT representations for each sequence classifier. Fig-
ure 1 depicts the summarized view of the proposed RerrFact
system.

3.1. Abstract Retrieval
Here, we retrieve relevant abstracts from corpus {a1, ...,
aj} ∈ 𝒜 for claims c ∈ 𝒞. First, we calculate the TF-IDF
similarity of each claim ci with all abstracts ao in ∈ 𝒜 and
restrict to top-K (K = 30) similar abstracts. Second, we
create reduced abstract representations (ared j) from these
abstracts which is given by aredj={title, s1, sn/2, sn}. These
are empirically the most meaningful representations for
RoBERTa large language model [12], which we use for



Abstract Classification Approach F1-score

Total Abstract (atotalj) 72.25
Diff-Size Abstracts, Five Sentences (adiff-5j) 74.41
Diff-Size Abstracts, Three Sentences (adiff-3j) 68.63

RerrFact’s Reduced Abstract (aredj) 79.67

Table 1
F1-score performances on dev set for different comparative
abstract representations.

binary classification with input sequence < ci,[SEP],ared

j> for obtaining all the relevant abstracts.
Additionally, we obtain the above-stated representa-

tion logic by permuting different combinations of ab-
stract sentences. For all retrieval approaches, we append
the title with different lengths of abstract. Keeping the
language model architecture constant, for the baseline
approach, we first feed the complete abstract atotalj with
the title into the model. But while appending the whole
abstract due to the limitation of BERT models to take
maximum 512 tokens as input on an average, our inputs
get truncated, which possibly results in some information
loss.

In the second approach, we divide our abstracts into
different groups based on their sizes {small (≤8 * sk),
medium (>8 * sk & ≤14 * sk), large (>14 * sk & ≤24 * sk),
extra-large (>24 * sk & ≤Lmax * sk)}, and for each group
of abstracts formed, we consider the top five relative in-
dex positions of the most frequently occurring sentences
for each group and sequentially append those five sen-
tences after the title (adiff-5j) as our new input sequence to
fine-tune our language model. Also, we follow the same
methodology but limit our sentences to only top-three
sentences appended after the title (adiff-3j) for observing
performance and computational trade-off variations on
smaller representations.

The results from Table 1 demonstrate our final reduced
retrieval representations outperforming other represen-
tations with its best F1-score. Our manual analysis into
workings of these representations shows that the aredj={ti-
tle, s1, sn/2, sn}method captures qualitatively best portions
of the introduction, methodology & conclusion on an av-
erage. More importantly, unlike other approaches, it
avoids the abstract’s numeric & additional bulk informa-
tion components, keeping the representations compact
& precise.

3.2. Rationale Selection
In this subtask, relevant evidence rationales ℛ̂(c,a) =
{r1(c,a), ..., rm(c,a)} are retrieved, where each r1(c,a) com-
prises of {s1(c,a), ..., sk(c,a)}. We use all sentences from
each retrieved abstract from the previous stage to fine-
tune our pre-trained BioBERT large language model [13]
with input sequence <ci,[SEP],sa k> and binary output

Sentence Selection Approach F1-score

BioBERT large Oracle Retrieval 67.63
Oracle Retrieval + No Evidence & Cited 65.47
Oracle + No Evidence Cited + (-3)*TF-IDF 62.23

RerrFact’s Loose Coupling 69.57

Table 2
F1-score performances on dev set for different comparative
sentence selection approaches.

Stance Prediction Approach F1-score

BioBERT-MNLI (Multiclass) 74.09
RoBERTA-Large-MNLI (Multiclass) 76.58

RerrFact’s NoInfo (Binary) 87.14
RerrFact’s Supports/Refutes (Binary) 82.67
RerrFact Classifier (Two-Step Binary) 85.23

Table 3
F1-score performances on dev set for different comparative
stance prediction approaches.

[T/F]. Binding the abstract retrieval module to the ra-
tionale selection module while model training helps in
improving co-reference identification performance and
gives special attention only to claim relevant data.

Also, we further analyze different trainingmechanisms
for the sentence selection subtask. First, we train our
baselines only by using oracle retrieved abstract. Further,
as a new variation, we add negative label sentences for
claims with no supporting/refuting evidence but only
respective cited_doc_id in the abstract corpus. Second, we
decide to add more negative samples by adding top-three
falsely retrieved abstracts from initial TF-IDF similarity
retrieval. Finally, we try our loose-coupling approach by
binding training to classified abstracts only. The results
from Table 3 demonstrate the importance of the binding
mechanism & emphasize that adding negative samples
does not necessarily improve results.

3.3. Stance Prediction
In this subtask, we use the predicted rationales ℛ̂(c,a) =
{r1(c,a), …, rm(c,a)} from the evidence retrieval stage to
predict the veracity ŷ(c,a) of the scientific claims c ∈ 𝒞.
We formulate this subtask as a two-stage binary classifier
problem where the first classifier separates the rationales
with ŷ(c,a)={NoInfo} with input sequence <ci,[SEP],rm>
and the second classifier predicts the stance ŷ(c,a)={Supports,
Refutes} with input representation <ci,[SEP],rn>. We
choose the pre-trained BioBERT-MNLI language model
for Enough Information detection and pre-trained RoBERTA-
Large-MNLI for predicting Claim Veracity.

Further, we explore three-way classification by train-
ing the individual models of the RerrFact veracity ver-
ification two-step module. We train our multiclass lan-
guagemodel classifiers namely, BioBERT-MNLI&RoBERTa-
Large-MNLI for directly predicting the {Supports, Re-



Sentence-level Abstract-level
Selection-only Selection+Label Label-Only Label+Rationale

Models P R F1 P R F1 P R F1 P R F1

RerrFact 93.65 64.48 76.37 78.17 53.83 63.76 79.17 54.55 64.59 78.47 54.07 64.02
ARSJoint 76.2 58.5 66.2 66.5 51.1 57.8 75.3 59.8 66.7 70.5 56.0 62.4
VerT5erini 64.81 57.37 60.87 60.8 53.83 57.1 65.07 65.07 65.07 61.72 61.72 61.72

ParagraphJoint 74.2 57.4 64.7 63.3 48.9 55.2 71.4 59.8 65.1 65.7 55.0 59.9
QMUL-SDS 80.75 58.47 67.83 72.08 52.19 60.54 79.71 52.63 63.40 76.81 50.72 61.10
VeriSci 54.3 43.4 48.3 48.5 38.8 43.1 56.4 48.3 52.1 54.2 46.4 50.0

Table 4
RerrFact’s performance on SciFact tasks on dev set.

Sentence-level Abstract-level
Selection-only Selection+Label Label-Only Label+Rationale

Models P R F1 P R F1 P R F1 P R F1

VerT5erini 63.05 69.19 65.98 60.59 66.49 63.40 64.03 72.97 68.21 62.85 71.62 66.95
ARSJoint 79.53 72.43 75.81 66.17 60.27 63.08 72.22 64.41 68.10 69.70 62.16 65.71
RerrFact 80.07 58.65 67.71 73.43 53.78 62.09 82.89 56.76 67.38 81.58 55.86 66.31

ParagraphJoint 79.86 63.24 70.59 68.94 54.59 60.94 75.81 63.51 69.12 73.66 61.71 67.16
QMUL-SDS 81.58 58.65 68.24 66.17 47.57 55.35 74.32 49.55 59.46 72.97 48.65 58.38
VeriSci 44.99 47.30 46.11 38.56 40.54 39.53 47.51 47.30 47.40 46.61 46.40 46.50

Table 5
RerrFact’s performance on SciFact tasks on test set.

futes, NoInfo} labels. The results in Table 2 demon-
strates the advantage of using the two-step binary classi-
fication process in RerrFact for the SciFact task. We
attribute this performance increase to better prediction
of Refutes class, as multiclass classification models per-
formed poorly for predicting this class due to its scarcity
in the dataset. Hence, RerrFact’s two-step classifica-
tion approach avoids false positive predictions of NoInfo
class against the Refutes class and improves on the claim
refuting rationale prediction.

4. Experiment and Results
In our experiments, we analyze the performance of var-
ious language models in a standalone manner for each
subtask and attempt multiple permutation settings for
our system RerrFact as shown in Tables 1, 2 and 3. Table
4 and Table 5 report the performance of our best language
models in RerrFact for each subtask in SciFact against
the top leaderboard systems on both dev and test sets.
For evaluation and reporting performance on the dev set,
all language models for each subtask are trained only
on the train set. Table 4 shows the evaluation results
against the dev set having 300 claims. And for evaluation
against the test set predictions, we train our models on
the train set additionally combined with 75% of the dev
set and validate our model results over the remaining 25%
of the dev set. Table 5 reports the RerrFact system’s
capabilities in terms of 𝐹1 scores against 300 claims of
the test set.

In the abstract retrieval subtask, we empirically ob-
serve that the reduced abstract representations substan-
tially increase our retrieval performance, leading to a

performance boost across all metrics in SciFact. This
model is trained with batch size one for ten epochs. We
achieve an F1-score of 79.67% against the dev set, which
is higher than reported QMUL-SDS’s F1-score of 74.15%
but lower than VerT5erini’s 89.95% F1-score. Second,
for the rationale selection subtask, the BioBERT-large lan-
guage model attains a higher recall score in the SciFact
metrics because of the loose binding between the two
subtasks for evidence retrieval as part of RerrFact’s
system design. Though our F1-score performance for
sentence selection was 69.57% which is again less than
VerT5erini’s F1-score of 76.14%, our performance on dev
set supersedes all the systems, including the T5 language
models of VerT5erini. Based on our analysis of predic-
tions from abstract and sentence selection subtasks, this
performance boost largely attributes to the regulariza-
tion effect created by loosely binding the two evidence
retrieval stages leading to highly accurate sentence pre-
dictions for the retrieved abstracts.

For the final stance prediction subtask, we train both
our models in the two-step approach for 30 epochs with
batch size 1. First, the {NoInfo} detector language model
that eliminates evidence based on their unrelatedness
to the scientific claim, achieves F1-score of 87.14%. The
second stance predictor model for evidence that either
supports or refutes the claim, achieves an F1-score of
82.67%. These two-step binary classifiers for neutral and
support/refute evidence classification helps in achieving
significant relative performance improvements on the dev
set, as shown in Table 4’s label prediction metrics. Also,
from Table 5, we observe that Rerrfact’s performance
takes a relatively large dip in terms of prediction capa-
bilities because of the relatively lower abilities to detect



Scientific Claim (Reasoning Type, Frequency %) Wrongly Labeled Evidence (Stance Gold Label)

1/2000 in UK have abnormal PrP positivity. ...indicating an overall prevalence of 493 per million population
(Numeric, 27.7%) (95% confidence interval 282 to 801 per million)... {Support}

Hypothalamic glutamate neurotransmission is ...secondary to impaired fasting-induced increases in the glucose-
crucial to energy balance. (Directionality, 37.9%) raising pancreatic hormone glucagon and... {Support}

Breast cancer development is determined ...women who developed breast cancer... established environmental
exclusively by genetic factors. (Causal Effect, 34.4%) risk factors...alcohol consumption). {Contradict}

Table 6
Reasoning categories where RerrFact fails to predict correct labels.

true negatives for each subtask and wrong predictions
on scientifically exhaustive rationales.

5. Analysis
Our manual analysis shows that RerrFact’s increase in
performance can be attributed to its ability to process
scientific background knowledge and co-references more
accurately. First, the reduced abstract representations
help in qualitatively improving the co-references inference
capabilities. Second, the dynamic biological pre-trained
embeddings in classifier models help in increasing the sci-
entific background knowledge. Additionally, by coupling
the sentence selection module’s training with retrieved
abstract sentences as input, we add a form of regulariza-
tion that increases generalization for rationale extraction
subtask while keeping our sentence selection model com-
pact. But, our system still fails to comprehend concepts
like quantitative directionality, numerical reasoning, and
causal effects. This we further demonstrate by examples
in Table 6 alongside their corresponding error-occurring
frequency in dev set over 29 misclassified claim-rationale
pairs.

6. Conclusion
In this work, our proposed system RerrFact demon-
strates that reduced evidence retrieval representations
and loosely binding the evidence retrieval stages for flex-
ible regularization lead to better and concise retrieved ra-
tionale sentences. Additionally, combinedwith RerrFact’s
two-step stance prediction approach, it outperforms all
the other veracity verification systems on the SciFact
dev set. Also, for RerrFact, the performance especially
takes a relatively high dip on the test set, which can be
attributed to a high false-positive rate on the test set &
also that SciFact metric penalizations requiring more
regularized predictions for each subtask. Our proposed
system RerrFact ranks 4th on the SciFact leaderboard,
with 62.09% F1-score for the Sentence+Label prediction
module, while the top-performing system has an F1-score
of 67.21%. As future work, we would systematically im-

prove upon these limitations and further explore novel
premise assimilation architectures to create qualitatively
improved veracity verification systems.
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