
When to Use Which Neural Network?
Finding the Right Neural Network Architecture for a
Research Problem
Michael Färber1, Nicolas Weber2

1Karlsruhe Institute of Technology (KIT), Web Science Group, Kaiserstr. 89, 76133 Karlsruhe, Germany
2Heidelberg University, Natural Language Processing Group, Im Neuenheimer Feld 325, 69120 Heidelberg, Germany

Abstract
Considering the increasing rate of scientific papers published in recent years, for researchers throughout all disciplines it
has become a challenge to keep track of which latest scientific methods are suitable for which applications. In particular, an
unmanageable amount of neural network architectures has been published. In this paper, we propose the task of recommending
neural network architectures based on textual problem descriptions. We frame the recommendation as a text classification
task and develop appropriate text classification models for this task. In experiments based on three data sets, we find that an
SVM classifier outperforms a more complex model based on BERT. Overall, we give evidence that neural network architecture
recommendation is a nontrivial but gainful research topic.

Keywords
recommender systems, machine learning, neural network architectures, open science

1. Introduction
A multitude of neural network architectures has been
proposed, with many more to come. The knowledge
graph Wikidata,1 for instance, models 66 variants of neu-
ral network architectures. Machine learning researchers
and practitioners, such as data scientists and software de-
velopers, are increasingly confronted with the question:
When to use which neural network architecture?2

So far, approaches to neural architecture search and
search engines for research data management have been
proposed. Neural architecture search [1] is concerned
with the task of automatically finding the optimal neural
network architecture design for a specific task. However,
neural architecture search approaches usually restrict
themselves to a specific architecture type (e.g., RNN or
CNN) and target finding the optimal architecture, such
as the number of network layers or hyperparameters.
Instead, the focus of this paper is on a different level of
granularity. The idea is to create a model that finds the
most suitable neural network architecture for a research
problem described in natural language. Furthermore,
neural network search engines and ontologies, such as
FAIRnets [2, 3], differ from us because they allow only

SDU’22: The AAAI-22 Workshop on Scientific Document
Understanding, March 01, 2022, Virtual Event
Envelope-Open michael.faerber@kit.edu (M. Färber)
GLOBE https://aifb.kit.edu/web/Michael_Färber (M. Färber)
Orcid 0000-0001-5458-8645 (M. Färber)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)
1See https://www.wikidata.org/.
2See https://datascience.stackexchange.com/questions/20222/

how-to-decide-neural-network-architecture.

keyword queries. Chen et al. [4] found that real informa-
tion needs are most often formulated as phrases and not
as keywords. The latter case constitutes only 32% of the
investigated queries. In addition, such search systems re-
trieve specific neural network instances instead of neural
network architectures.

In this paper, we propose the task of neural network ar-
chitecture recommendation. It differs from other domain-
specific text classification tasks in the fact that research
problem descriptions as input are largely not available
and first need to be created. To this end, we propose two
methods that extract the problem descriptions from pa-
pers’ abstracts. In addition, the usage of neural network
architectures is highly imbalanced in the literature, mak-
ing the recommendation task a nontrivial challenge. We
train and evaluate two state-of-the-art machine learning-
based approaches for neural network architecture rec-
ommendation, using the extracted research problem de-
scriptions and neural network architectures derived from
Wikidata. Our proposed approach can benefit students as
well as researchers of various domains. For researchers
with little expertise in the field of machine learning in
particular, our approach simplifies the process of select-
ing a suitable neural network model and presumably
yields a reduction in time spent on preliminary research
on appropriate neural architectures.

To summarize, we make the following contributions:

1. We create evaluation data sets for neural network
architecture recommendation, consisting of 66
unique architectures and 284,337 textual problem
descriptions.

2. We train and evaluate several classifiers capable

mailto:michael.faerber@kit.edu
https://aifb.kit.edu/web/Michael_Färber
https://orcid.org/0000-0001-5458-8645
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.wikidata.org/
https://datascience.stackexchange.com/questions/20222/how-to-decide-neural-network-architecture
https://datascience.stackexchange.com/questions/20222/how-to-decide-neural-network-architecture


Kernel Perceptron RNTN RoBERTa GCN
Multilayer Perceptron TDNN Neocognitron CNN
Restricted Boltzmann Machine Bcpnn Cresceptron GRU
winner-take-all MCDNN Modular NN SNN
Hopfield N HONN Deep NN DNC
Neural Abstraction Pyramid Elman N Feedforward NN PNN
Shift Invariant NN RecCC perceptron DBN
Spatial Transformer Network Jordan N Highway N GAN
Neural History Compressor ADALINE Transformer ESN
Kohonen NN LSTM AlexNet ELM
Radial Basis Function N CPPN Text-CNN VAE
Connectionist Expert System CMAC EntNet HTM
Boltzmann machine PCNN Hamming NN LSM
Bidirectional Associative Memory DRPNN LeNet-5 RNN
Neural Turing Machine NNPDA Stochastic NN DQN
Self-organizing Map MANN CapsNet
ResNet RecNN 3D-CNN

Table 1
Neural network architectures in Wikidata.

of predicting neural network architectures based
on textual problem descriptions.3

The paper is structured as follows: In Section 2, we
describe the creation of the neural network architecture
set, as well as two data sets with scientific problem de-
scriptions. Section 3 discusses the methods to predict
the neural network architectures based on textual de-
scriptions. In Section 4, we present our experiments. We
conclude in Section 5 with a summary.

2. Data

2.1. Neural Network Architectures
Our approach utilizes the knowledge graph Wikidata to
obtain a list of neural network architectures. The follow-
ing aspects are taken into consideration: (1) all subclasses
of artificial neural networks; (2) the hierarchical struc-
ture of these subclasses; (3) aliases and abbreviations.
Our query returns 67 results, of which 66 (see Table 1)
are appropriate for the task at hand (the additional item
returned is the “artificial neural network” item itself).

2.2. Problem Descriptions
Our aim is to recommend neural network architectures
based on problem descriptions. However, problem de-
scriptions are, to the best of our knowledge, not available
to a large degree. However, we argue that parts of papers’
abstracts are a good approximation of textual research
problems. Thus, we use the paper abstracts and metadata
from the Microsoft Academic Graph (MAG; [5]).

3All data and source code is available online at https://
github.com/michaelfaerber/NNARec.

We only consider English abstracts in which neural
network architecture names are mentioned. After care-
fully analyzing the resulting abstracts, an issue related to
the neural network architecture “transformer” is found.
Because the word “transformer” is polysemic, the bulk of
abstracts mentioning transformers are mostly concerned
with (electrical) engineering. To circumvent this prob-
lem, these abstracts are filtered by a keyword list.4 After
this, 284,337 abstracts remain.

The abstracts usually include both problem descrip-
tions and names of associated neural network architec-
tures. To extract these items, we propose the following
methods.

2.2.1. Extraction by Abstract Splitting

The first approach of creating a data set is based on the
observation of Jiang et al. [6]. The main idea is that
abstracts can often be conceptually split into an introduc-
tion and a solution part. After manually checking 500
randomly selected papers from four conferences (SIGIR,
SIGKDD, RecSys, and CIKM), the result indicates that
71% of the abstracts adhere to this structure [6].

We observe that the key phrases “in this paper” and
“this paper” play an important role in the transition be-
tween the problem statement and solution parts (see Ta-
ble 2). We therefore check for each sentence in the ab-
stracts whether these key phrases occur. If there is a
match, we mark the sentence as the beginning of the
solution part and all prior sentences as the problem de-
scription part. Table 2 provides an illustration of our
abstract-splitting approach.

4[BERT, GPT-2, GPT-3, natural language, self-attention]

https://github.com/michaelfaerber/NNARec
https://github.com/michaelfaerber/NNARec


Example Problem Description: The prediction of fail-
ures in rotating machines is an important issue in indus-
tries to improve safety, to reduce the cost of maintenance
and to prevent accidents.

Example Solution: In this paper a predictivemaintenance
algorithm, based on the analysis of the orbits shape of the
rotor shaft is proposed. It is based on an autonomous image
pattern recognition algorithm, implemented by using a
Convolutional Neural Network (CNN).[...]
Example Target Label: CNN

Table 2
Example of extraction by abstract splitting (abstract from
Caponetto et al. [7]).

To evaluate the effectiveness of this method, we let two
experienced researchers classify 500 randomly selected
splits into the following categories: (1) the split is correct,
(2) the split is incorrect, but a correct split is possible,
and (3) the abstract cannot be split into an introduction
part and a solution part. The differences between the
annotators lie mostly in the annotators’ conceptions of
where to set a split, rather than whether a split is possible.
Inter annotator agreement can be reported by Cohen’s
kappa of 0.7538, which indicates a good agreement for
this task. Overall, based on our analysis, 88.6% of the
randomly sampled splits are evaluated as being correct.

Once the abstracts have been split, only parts of the ab-
stracts with mentions of neural network architectures in
their respective solution part are included in the data set,
with the introduction parts as problem descriptions and
the neural network architectures as the labels. We will
refer to the resulting data set as the Abstract Splitting
(AS) data set.

2.2.2. Extraction by Key Phrase Templates

The aforementioned method has the drawback that the
neural network mentioned in the solution part of an
abstract is directly related to the problem description out-
lined in the first part of this abstract. However, problem
descriptions in other parts of the abstract are ignored.
To combat this issue, we create a method of identifying
problem descriptions more precisely.

In a first step, we analyze the abstracts that contain
neural network architecture mentions to obtain an un-
derstanding of recurring phrases in problem descriptions.
From these phrases, we then create templates to extract
problem descriptions in all abstracts. Table 3 illustrates
an example of a template and a match. Overall, we came
up with 44 templates that are based on regular expres-
sions.

As we can see in Table 3, this method generally results
in shorter problem descriptions than the plain abstract
splitting method proposed above. As only the problem

Example
Template:

we use(d) <METHOD> for/to
<PROBLEM>

Example
Match:

Specifically, we use a simple yet powerful ar-
chitecture, consisting of only one CNN and
a single resolution input, combined with
a new loss function for pixel-wise fixation
prediction during free viewing of natural
scenes.

Table 3
Example for problem extraction by keyphrase templates.

descriptions and the neural network architecture names
are of interest and not the long method descriptions,
we additionally identify the neural network architecture
names mentioned in METHOD (in the example in Table 3:
CNN) given our list of neural network architecture names.
Tominimize redundancy for extractionsmade in the same
abstract, if one string is a substring of the other, the longer
one is chosen and the other one is dismissed.

A last step to reduce noise is to filter out common
phrases in the texts that carry no information (e.g., “solve
this problem” given the template “we use METHOD to
solve this PROBLEM”). While the quality of the extracted
problem descriptions is overall satisfying, from 284,337
abstracts mentioning neural network architectures, only
35,829 problem descriptions remain based on this method.
The resulting data set is designated the Key Phrase Ex-
traction (KE) data set.

2.3. Neural Network Architecture
Mentions

Due to the differences in the data set creation, the dis-
tribution of neural network architectures differs in our
AS and KE data sets. To make them comparable, we
take two steps. First, to avoid losing all instances of
sparse classes, the hierarchical structure of some neural
network architectures allows for the inclusion of some
sparse classes into their parent classes (e.g., GRU is in-
tegrated into RNN). We perform this step for all classes
with less than 200 instances, given there is a hierarchy
to exploit. Second, because some architectures are rarely
mentioned, only classes with at least 200 instances in
both data sets are considered. This leads to both data sets
containing the same classes. From the initial 66 neural
network architectures retrieved from Wikidata, only 15,
which are listed in Figure 1, remain.

2.4. Preparing AGENDA as Test Set
The Abstract GENeration data set (AGENDA; Koncel-
Kedziorski et al. [8]) has been used for automatic text
generation based on knowledge graphs and consists of



0 50 100 150 200 250 300
CNN

Deep NN
RNN

LSTM
MLP

Perceptron
Autoencoder

Deep Belief N
Feedforward NN

SOM
GAN
PNN

Spiking NN
RBF
ELM

Figure 1: Neural network architecture counts in the modified AGENDA data set.

knowledge graphs paired with paper titles and paper ab-
stracts from the AI domain. As mentions of tasks and
methods are also labeled in these paper abstracts, we
can use this data set for an additional, complementary
evaluation, particularly as an additional test data set con-
sidering its size.

It is important to note that the text spans labeled as
problem descriptions in this data set are rather short to
be more compatible with knowledge graph entities. We
therefore increased the context by considering whole sen-
tences as problem descriptions. The resulting, modified
data set, designatedmod-AGENDA, has 1,327 instances,
distributed over 15 classes, as Figure 1 shows.

3. Methods
The task in this paper falls into the realm of supervised
classification. The overwhelming majority of instances
in each of our our data sets has only a single label. Thus,
in the following evaluation, we consider the task as a
multiclass, single-label classification task. For this paper,
we consider the following widely used text classification
approaches.

TF-IDF + SVM. One approach is based on SVM, using
TF-IDF for representing the text as vectors. As this can
lead to very high dimensional sparse vectors, it makes
sense to filter out stopwords for the vector representation.

BERT + Classification Layer. As our second ap-
proach, we use a fine-tuned BERT-model with an ad-
ditional classification layer.

4. Experiments

4.1. Evaluation Settings
We use a train-test split of 80:20 for the AS and KE data
sets. Each of the methods is trained and tested on ei-
ther the AS data set or the KE data set. In addition, the
models trained on the KE and AS data sets are evalu-
ated on the modified AGENDA data set to evaluate the
generalizability of the approaches.

We consider the following methods: (1) SVM. We use
scikit-learn’s TfidfVectorizer for numeric representations
and an SVM implemented via a one-vs-rest classification
scheme. (2) Fine-tuned SciBERT. We use SciBERT [9], a
scientific domain-specific, pretrained BERT-model, and
fine-tune it on the classification task with Adam opti-
mizer [10]. (3) Most frequent class (MFC). We consider
the MFC as a baseline.

4.2. Evaluation Results
Precision, recall, F1-score5 (all macro-averaged), and ac-
curacy for the MFC baseline, SVM, and fine-tuned Sci-
BERT are reported in Table 4. The results show that the
SVM classifier trained and tested on the KE data set is
most successful with respect to recall, F1 score, and ac-
curacy. It beats the more complex SciBERT classifier by
more than 100% in accuracy (0.5908 vs 0.2576) and F1-
score (0.4629 vs 0.1793). However, we note that accuracy
is not an excellent metric for unbalanced data sets.

Regarding the classifiers trained and tested on the AS
data set, the SVM also beats the SciBERT model with
respect to precision, F1 score, and accuracy, but with less
significance. Here, the accuracy of the SVM is 0.17, and

5The F1-score is calculated as the arithmetic mean over the
individual F1 scores [11].



Training
Data

Test Data Method Precision
(Macro)

Recall
(Macro)

F1
(Macro)

Accuracy

– KE MFC 0.0246 0.0667 0.0359 0.3688
KE KE SVM 0.5280 0.4242 0.4629 0.5908
KE KE SciBERT 0.2198 0.2404 0.1793 0.2576

– AS MFC 0.0219 0.0667 0.0330 0.3284
AS AS SVM 0.5973 0.3893 0.4355 0.5711
AS AS SciBERT 0.3423 0.4178 0.3391 0.4009

– mod-AGENDA MFC 0.0034 0.0667 0.0064 0.0505
KE mod-AGENDA SVM 0.1304 0.1030 0.0694 0.0980
KE mod-AGENDA SciBERT 0.0812 0.0757 0.0481 0.0663
AS mod-AGENDA SVM 0.1186 0.0880 0.0755 0.1017
AS mod-AGENDA SciBERT 0.0569 0.0850 0.0576 0.0950

Table 4
Results of most frequent class (MFC), SVM, and fine-tuned SciBERT.

the F1-score is 0.1 higher than that of SciBERT.
SVM and SciBERT trained on the AS and KE data sets

perform superior in most cases compared to the MFC
baseline. Notably, MFC achieves a higher accuracy than
SciBERT on the KE data set.

When evaluating the approaches on themod-AGENDA
data, the results drop significantly. Nonetheless, the SVM
classifier still achieves the best results, with only little
difference between the AS and KE data sets as training
data sets. SciBERT still outperforms the MFC baseline.

The methods trained on the AS data set generalize
better to some degree than the methods trained on the
KE data set, despite the simple creation process of the
AS data set. A likely reason for this phenomenon is that
the AS data set is more similar to the AGENDA data set
than the KE data set. In particular, the research problem
descriptions in the KE data set are much shorter than in
the AS data set.

Overall, given 0.59 and 0.57 as the best accuracy scores
and 0.46 and 0.44 as the top F1 scores, we come to the con-
clusion that neural network recommendation based on
textual task descriptions is a nontrivial task (motivating
our paper), while it indicates that users (e.g., early-career
researchers) might find such recommender systems help-
ful.

5. Conclusion
This paper introduced the task of recommending neu-
ral network architectures based on textual problem de-
scriptions. To this end, we created two data sets of la-
beled problem descriptions. The first splits abstracts by
means of signaling phrases and labels the problem parts
by matching neural network-architecture names. The
second method uses recurring phrases to extract shorter
and more precise problem descriptions via regular ex-
pressions. We used both data sets to train and evaluate

classifiers. We identified the SVM-based approach as
a promising method, outperforming a BERT-based ap-
proach.

In the future, we will extend our recommender system
to machine learning methods in general and combine
it with the recommendation of other scholarly entities,
such as data sets [12]. Furthermore, we plan to provide a
running system for neural network architecture recom-
mendation accompanied with a user study.

References
[1] T. Elsken, J. H. Metzen, F. Hutter, Neural architec-

ture search: A survey, J. Mach. Learn. Res. 20 (2019)
55:1–55:21.

[2] A. Nguyen, T. Weller, FAIRnets Search - A Proto-
type Search Service to Find Neural Networks, in:
Proceedings of the International Conference on Se-
mantic Systems, SEMANTiCS’19, 2019.

[3] A. Nguyen, T.Weller, M. Färber, Y. Sure-Vetter, Mak-
ing Neural Networks FAIR, in: Proceedings of the
Second Iberoamerican Conference and First Indo-
American Conference, KGSWC’20, 2020, pp. 29–44.

[4] J. Chen, et al., Towards More Usable Dataset Search:
From Query Characterization to Snippet Genera-
tion, in: Proceedings of 28th ACM International
Conference on Information and Knowledge Man-
agement, CIKM’19, 2019, pp. 2445–2448.

[5] A. Sinha, Z. Shen, et al., An Overview of Microsoft
Academic Service (MAS) and Applications, in: Pro-
ceedings of the 24th International Conference on
World Wide Web Companion, WWW’15, 2015, pp.
243–246.

[6] Y. Jiang, A. Jia, Y. Feng, D. Zhao, Recommending
Academic Papers via Users’ Reading Purposes, in:
Proceedings of the Sixth ACM Conference on Rec-
ommender Systems, RecSys’12, 2012, pp. 241–244.



[7] R. Caponetto, F. Rizzo, L. Russotti, M. Xibilia, Deep
Learning Algorithm for Predictive Maintenance of
Rotating Machines Through the Analysis of the Or-
bits Shape of the Rotor Shaft, in: Proceedings of
the 1st International Conference on Smart Inno-
vation, Ergonomics and Applied Human Factors,
SEAHF’19, 2019, pp. 245–250.

[8] R. Koncel-Kedziorski, D. Bekal, Y. Luan, M. Lapata,
H. Hajishirzi, Text Generation from Knowledge
Graphs with Graph Transformers, in: Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT’19, 2019, pp. 2284–2293.

[9] I. Beltagy, K. Lo, A. Cohan, SciBERT: A Pretrained
Language Model for Scientific Text, in: Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP’19, 2019, pp. 3613–3618.

[10] D. P. Kingma, J. Ba, Adam: A Method for Stochastic
Optimization, in: Proceedings of the 3rd Inter-
national Conference on Learning Representations,
ICLR’15, 2015.

[11] J. Opitz, S. Burst, Macro F1 and macro F1, CoRR
abs/1911.03347 (2019).

[12] M. Färber, A. Leisinger, Recommending Datasets
for Scientific ProblemDescriptions, in: Proceedings
of the 30th ACM International Conference on In-
formation and Knowledge Management, CIKM’21,
2021, pp. 3014–3018.


	1 Introduction
	2 Data
	2.1 Neural Network Architectures
	2.2 Problem Descriptions
	2.2.1 Extraction by Abstract Splitting
	2.2.2 Extraction by Key Phrase Templates

	2.3 Neural Network Architecture Mentions
	2.4 Preparing AGENDA as Test Set

	3 Methods
	4 Experiments
	4.1 Evaluation Settings
	4.2 Evaluation Results

	5 Conclusion

