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Abstract
We introduce the task of detection of competing model entities from scientific documents. We define competing models
as those models that solve a particular task that is investigated in the target research document. The task is challenging
due to the fact that contextual information is required from the entire target document to predict the model entities. Hence,
traditional sequence labelling approaches fail in such settings. Furthermore, model entities themselves are long-tailed in
nature, i.e, their prevalence in scientific literature is limited, along with a scarcity of labelled data for training supervised
learning techniques. To address the above bottlenecks, we combine an Unsupervised Graph Ranking algorithm with a
SciBERT-CRF based sequence labeller to predict the entities. We introduce a strong baseline using the above mentioned
pipeline. Also, to address the label scarcity of long-tailed model entities, we use distant supervision leveraging an external
Knowledge Base (KB) to generate synthetic training data. We address the problem of overfitting in small sized datasets for
supervised NER baselines using a simple entity replacement technique. We introduce this model as part of a starting point for
an end-to-end automated framework to extract relevant model names and link them with their respective cited papers from
research documents. We believe this task will serve as an important starting point to map the research landscape of computer
science in a scalable manner, needing minimal human intervention. The code and dataset is available in the given link :

https://github.com/Swayatta/Competing-Models.
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1. Introduction
The number of scientific publications in the computer
science domain has increased exponentially in the recent
past. Hence, it has become increasingly cumbersome
for researchers to keep track of the advancement of the
research landscape. Often, research papers introduce
new models that perform strongly in comparison with
the baseline or advance the state-of-the-art. In order to
effectively benchmark models and compare their perfor-
mances, it is important to be able to map the research
landscape for similar or related tasks. Papers with Code
(Pwc1) is a community driven corpus that serves to au-
tomatically list models that solve particular subtasks ,
with links to the scientific research paper that introduced
the model. Our aim is to build a similar but automated
end-to-end pipeline which detects model names from sci-
entific papers and benchmarks them against other similar
models that solve the same task.

In this paper, we introduce the task of extracting com-
peting model names from a research paper. We establish
an end-to-end pipeline that extracts all the competing
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model names from a research paper and links them to
their respective citation. While browsing related work
for a given task, a researcher has to manually visit every
research paper that uses a competing model that is used
for the same task. This process is time-consuming if a
survey of a research landscape is to be done on a large
scale. Our motivation is to automate this process by au-
tomatically extracting model names that solve a similar
task and linking them to their corresponding cited paper.
If executed on a large scale, this pipeline would be able
to effectively map the computer science research land-
scape in an automatic and scalable manner with minimal
human intervention.
We introduce a strong baseline for this task by com-

bining an unsupervised document level graph ranking
algorithm and a supervised BERT-based sequence tagger
to obtain entity model names. Essentially, we treat the
relevant keyphrases extracted by the graph ranker as a
superset of candidates for the sequence labeller.
We introduce two datasets for this task. For training

the supervised sequence tagger, we create weakly super-
vised distant labels using an external Knowledge Base
and unlabelled corpora. We also release a manually anno-
tated dataset for the evaluation purpose of the sequence
tagger. For evaluating the entire framework of compet-
ing model name extraction, we release another dataset
with full paper document level annotation. Furthermore,
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we use a simple entity citation linking technique to link
the extracted model names with their respective citation
in the research document. We believe this task will be a
significant step forward towards mapping the research
landscape of computer science.

Our contributions can be summarised as follows:

• We introduce a novel approach of treating ranked
keyphrases as a superset of sequence labellers for
solving this task. To the best of our knowledge,
this approach has not been used before in prior
research work. We believe this approach can be
extended to other similar tasks that require docu-
ment level contextual information for NER.

• We create an annotated dataset of annotated full
papers for evaluation of the pipeline. Previous
datasets for sequence labelling in the scientific
literature focused only on annotating abstracts of
scientific papers [1, 2]. We believe the approach
of incorporating full length document informa-
tion is crucial to capture the entire document con-
text, hence we introduce a full paper annotated
dataset for final evaluation.

• We introduce strong baselines while relying only
on distantly supervised weak labels to train our
sequence labeller. We evaluate the trained model
on our annotated evaluation dataset.

2. Related Work
Unsupervised Ranking Algorithms for Keyphrase
Extraction: EmbedRank[3] extracts candidate phrases
based on POS sequences and uses sentence embeddings
(Doc2Vec or Sent2vec) to represent both the candidate
phrases and the document in the same high-dimensional
vector space and ranks them using cosine similarity with
respect to the document embedding. [4] propose Wiki-
Rank, an unsupervised automatic keyphrase extraction
method that links semantic meaning to text. In graph-
based ranking algorithms, candidate phrases are treated
as nodes and related candidate phrases are connected
by edges. TextRank [5] considered related candidates as
co-occurring phrases within a given window. SingleR-
ank [6] added weights to the edges between related can-
didates.SGRank [7] and PositionRank [8] incorporated
statistical and positional heuristics into a graph-based
algorithm to obtain ranked keyphrases. MultipartiteRank
[9] is an advanced version of TextRank that incorporates
positional knowledge in edge weights, leading to state-
of-the-art performances over benchmark datasets.

Sequence labelling forNamedEntityRecognition:
Long tailed entities are named entities which rarely occur
in text documents. For these types of entities, the task of
Named Entity Recognition (NER) is non-trivial. Recent
approaches have aimed at solving the problem of NER

using supervised training using deep learning models.
However, supervised learning techniques require a large
amount of token-level labelled data for NER tasks. Anno-
tating a large number of tokens can be time-consuming,
expensive and laborious. For real-life applications, the
lack of labelled data has become a bottleneck on adopting
deep learning models to NER tasks.

Most scientific named entities can be classified as long-
tailed entities because of the rarity and domain-specificity
of their occurrence. Recent work on NER in scientific doc-
uments has been concentrated around detecting biomed-
ical named entities [10] or scientific entities like tasks,
methods and datasets [1, 2, 11]. Some papers like [12]
focus on the detection of a single specific entity-type (like
dataset names) from scientific documents. Although pre-
vious work has focused on identifying methods [1, 2] as
named entities, but what constitutes a method can have
a significant variance when it comes to human annotated
data. The authors [1] report the Kappa score of 76.9% for
inter-annotator agreement in the SciERC dataset, which
is widely used as a benchmark for scientific entity extrac-
tion.
NER has traditionally been treated as a sequence la-

belling problem, using CRF [13] and HMM [14]. Recent
approaches have used deep learning based models [15]
to address this task, which require a large amount of
labelled data to train. The high cost of labelling remains
the main challenge to train such models on rare long
tailed entity types, where availability of labelled data is
scarce. In order to address the label scarcity problem,
several methods like Active Learning [16], Distant Super-
vision [17, 18, 19], Reinforcement Learning-based Distant
Supervision[20, 21] have been proposed. [12] focused
on detecting dataset mentions from scientific text and
used data augmentation to overcome the label scarcity
problem.

3. Motivation
Papers with Code (PwC2) is a community driven cor-
pus that serves to automatically list models that solve
particular subtasks, with links to the scientific research
paper that introduced the model. Our aim is to build a
similar but automated end-to-end pipeline that detects
model names from scientific papers and benchmarks
them against other similar models that solve the same
task. We believe the task introduced in this paper (ex-
traction of competing model names from scientific docu-
ments) to be a significant step forward towards the whole
pipeline.

2https://github.com/paperswithcode/paperswithcode-data



Type Sentence Paper Title
Competing Other transition-based models extend TransE to additionally use projection

vectors or matrices to translate head and tail embeddings into the relation
vector space, such as: TransH (Wang et al., 2014), TransR (Lin et al., 2015b),
TransD (Ji et al., 2015), STransE (Nguyen et al., 2016b) and TranSparse (Ji
et al., 2016).

A Novel Embedding
Model for Knowledge
Base Completion Based
on Convolutional Neural
Network

Competing In Table 2, we compare SCIBERT results with reported BIOBERT results on
the subset of datasets included in (Lee et al., 2019).

SCIBERT: A Pretrained
Language Model for Sci-
entific Text

Non-competing TransE [4] is a translation based model inspired by Word2Vec [16] On Evaluating Embed-
ding Models for Knowl-
edge Base Completion

Non-competing (Xie et al. 2016) use convolutional neural networks (CNN) to encode word se-
quences in entity descriptions.

KG-BERT: BERT for
Knowledge Graph Com-
pletion

Non-competing To find the hyper-parameters, we used HyperOpt (Bergstra et al., 2015), which
uses Bayesian optimization.

Tabular Data: Deep
Learning is Not All You
Need

Table 1
Few examples of competing and non-competing models. The competing models are highlighted in bold, whereas
the non-competing models are highlighted in underlined italic.

4. Task Definition
We define competing models as model names that at-
tempt to solve the same task as investigated by the target
research paper. For example, if a research paper investi-
gates the task of producing knowledge base embeddings,
TransR [22] will be a competing model name as it has
been introduced by prior research work to solve the same
task. If a research paper investigates the task of Ques-
tion Answering, some competing model names can be T5
model [23] or XL-Net [24], because these are models that
have been used to solve this task in prior research work.
A non-competing model name would be a model that has
not been used directly to solve the same task. We pro-
vide a few examples to illustrate the difference between
a competing and a non-competing model in Table 1. For
the first two examples, the models highlighted in bold are
competing models because they directly solve the task
investigated in the input research paper. For the third
example, TransE is a competing model, but Word2Vec is
not. The reason for this is that TransE produces Knowl-
edge Base embeddings directly that aid in Knowledge
Base completion (which is the target task in the research
paper). But, Word2Vec is a language model that TransE
is inspired by, as denoted in the sentence. Hence, it only
contributes indirectly to the research task. So, it is a
non-competing model. Similarly, HyperOpt, in the last
example, is non-competing, as it is an algorithm the au-
thors used for hyperparameter search and is not a model
that contributes directly in solving the task investigated
in the input research paper.
Our task in this paper is to detect competing model

names given an input research document. Also, after

In this paper, we present SDP-LSTM, a novel neural network to classify the
relation of two entities in a sentence.

Inspired by the unique feature representation learning capability of deep
autoencoder, we propose a novel model, named Deep Autoencoder-like NMF

(DANMF), for community detection.

We introduce the Multi-View Transformation Network (MVTN) that regresses
optimal view-points for 3D shape recognition, building upon advances in

differentiable rendering.

Figure 1: Example sentences with annotated model name
entities

extracting themodel names, we link the extracted entities
with their respective cited papers.

5. Annotation Process
We create two datasets for training and evaluation. We
annotate sentences from scientific papers as per token-
level BIO tagging scheme to evaluate our sequence la-
beller, which only uses contextual information from an
input sentence for sequence tagging. To evaluate the
whole pipeline, we provide document-level annotations
with full length research papers as input and competing
model names as the annotated output. We use two dif-
ferent datasets for a more comprehensive evaluation, as
our pipeline uses two stages. The first stage involves
extracting candidate keyphrases utilising the entire doc-
ument level information for keyphrase ranking. The
second stage is our sequence labeller that uses sentence
level information to find model named entities. We de-
scribe the annotation process for the dataset creation
for sequence labelling first. Considering our end goal



Train Test Total
# sentences 7800 1000 8800
# tokens 232600 22873 255473
# entities 19012 3647 22659
# unique entities 14748 1249 15672
avg # tokens per sen-
tence

29.82 22.873 29.03

avg # entities per sen-
tence

2.44 3.65 2.57

Table 2
Overall statistics of train and evaluation dataset for sequence
labeller evaluation

# total papers 75
# total sentences 34656

# avg sentences per paper 462.08
# entities 622

# unique entities 473
# avg entities per paper 8.29

Table 3
Overall statistics of the document-level annotated dataset for
evaluation of the entire pipeline

of automating a high precision framework of extracting
related model names and to minimise ambiguity, we con-
sider only named models as model entities for this task .
Few examples are - NMN+LSTM+FT, SpERT (with overlap),
B-BOT + Attention and CL loss, SA-FastRCNN, DS-CNNs
(Random Walk), Sparse Transformer 59M (strided). We
consider model entities that have a unique name or that
are formed by combination of other model names, eg -
NMN+LSTM+FT. A few example sentences with model
entities are displayed in Figure 1. We define and annotate
the test corpus using the standard BIO tagging scheme.
Each model entity type was defined to have maximum
span length. For Acronyms, we consider the full length
entity name instead of the short form acronym if it occurs
in text - eg. DeCLUTR: Deep Contrastive Learning for Un-
supervised Textual Representations. On average, there are
2.5 tokens per entity. We refer Google Scholar and Seman-
tic Scholar to confirm entity types. We randomly selected
a subset of abstracts from the arxiv dataset containing
1.7M+ paper data and metadata and randomly select sen-
tences from them to annotate. Also, we randomly sample
the DBLP citation dataset containing 1,511,035 papers
and obtain the full length versions from the available pa-
pers using DOI matching and obtained a random sample
of sentences from the full text. We use two different sets
of corpus because we want our model to be evaluated
on multiple domains within computer science and differ-
ent publication venues. All the statistics related to our
annotated corpus and train set are provided in Table 2
For evaluating the whole pipeline, we annotated full

length research papers. We read through the introduc-
tion and find out the task the paper solves. Then we
browse the entire paper and find all mentions of model
names that solve a similar task. The process has a low
level of ambiguity because a majority of the model men-
tions occur in the related work section, citation contexts
or experimental results section. It is a standard prac-
tice among authors to cite the relevant research paper if
they mention any model names from prior research work.
Hence, we only consider models that the authors cite to
be candidates for competing models. We make sure the
labelled entities are model names by referring to Google
Scholar and Semantic Scholar. If there is any ambiguity
regarding whether a labelled entity is a model name or
not, we discard the full paper. To infer if a model is a
competing model or not, we find the task or the problem
the paper solves. This is usually mentioned clearly in the
introduction and the related work section. We label the
model entities (that the authors mention as solving a sim-
ilar problem or task as the original paper) as competing
models. To further verify that the claim by the authors is
indeed true, we visit the cited research paper and ensure
that the model is solving a similar task. Furthermore,
we only consider papers where the “competing” relation
among models is clear and discard any paper where there
is ambiguity regarding this relation. Hence, we ensure
ambiguity to be significantly low regarding our annota-
tions. The statistical details about the annotations are
provided in Table 3. As we ensure a negligible level of
ambiguity, we use only one human annotator (one of
the authors in this paper) for our annotation process.
We believe the need for multiple annotators for an inter-
annotator agreement is insignificant for our task, as a
low level of ambiguity is ensured by considering only
named models and clearly defined tasks with competing
model names.

6. Method
Our entire pipeline has two components. Firstly, we ex-
tract all citation sentences from the input research paper.
We combine all the citation sentences to create a mini-
document. We use a graph ranking algorithm to extract
all the candidate keyphrases from this mini-document.
This graph ranking algorithm utilises document level
information to rank keyphrases. Secondly, we use a se-
quence labeller for extracting named entities from the
positively labelled citation sentences. Lastly, we merge
the results of the graph ranker and the sequence labeller
to output final competing model entities. In the subsec-
tion Sequence Tagging , we provide details about the
training process and the model for our sequence tagger.
In subsection Graph-Ranking Algorithm, we provide de-
tails about the unsupervised graph ranking algorithm for



keyphrase extraction.

6.1. Graph-Ranking Algorithm
We use Multipartite Rank [9] as it had proved to be the
state-of-the-art among all keyphrase ranking algorithms,
performing particularly well on longer scholarly docu-
ments. We briefly describe how we use this algorithm
for unsupervised keyphrase extraction.
Let 𝐶 be the set of all citation sentences in a docu-

ment 𝑑. 𝐶 forms an order set of citation sentences, which
is collectively treated as a document. We build a graph
representation of 𝐶. A set of candidate keyphrases𝐾 is ex-
tracted from 𝐶. The candidate keyphrases 𝐾 are grouped
into topics based on the stem forms of the words they
share using hierarchical agglomerative clustering with
average linkage. The candidate keyphrases are used to
build amultipartite graph, where the nodes are keyphrase
candidates that are only connected if they belong to a dif-
ferent topic. The edges between each node is weighted as
the inverse of the distance between the two keyphrases
𝐾𝑖, 𝐾𝑗 in 𝐶. Weight 𝑤𝑖𝑗 is calculated as the sum of the
inverse distances between 𝐾𝑖 and 𝐾𝑗:

𝑤𝑖𝑗 = ∑
𝑝𝑖∈𝑃(𝐾𝑖)

∑
𝑝𝑗∈𝑃(𝐾𝑗)

1
𝑝𝑖 − 𝑝𝑗

where 𝑃(𝐾𝑖) is a set of word offset positions of 𝐾𝑖. The
first occurring candidates of each topic are promoted
more as they capture higher relevance. Weights of the
first occurring candidates of each topic is modified ac-
cording:

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝛼.𝑒
1
𝑝𝑖 ∑

𝐾𝑘∈𝑇 (𝐾𝑗)\𝐾𝑗

𝑤𝑘𝑖

where 𝛼 is a hyperparameter that controls the strength
of the weight adjustment, 𝑇 (𝐾𝑗) is the set of candidates
belonging to the same topic as 𝐾𝑗 , 𝑝𝑖 is the offset position
of the first occurrence of candidate 𝐾𝑖. After the graph
is built, a ranking algorithm is then used to order each
keyphrase candidate 𝐾𝑖. We adopt the popular TextRank
Algorithm [5] for the ranking mechanism. A final set of
top ranked keyphrases �̃� is obtained.

6.2. Sequence Tagging
For training our sequence tagger, we only rely on distant
labels created using an external Knowledge Base and an
unlabelled research text corpus. We also demonstrate
that for long-tailed entity types, there is a need to en-
sure fairer distribution among entity occurrence in order
to prevent overfitting, which occurs in the form of the
model memorising certain popular entity names. The de-
tails about the training set creation is provided in section
Training Set Creation with Entity Replacement. The de-
tails about the model and the results on the evaluation set

is provided in section Distantly Supervised NER Model.
The training process overview for the sequence labeller
is shown in Figure Training pipeline for the Sequence
Labeller.

6.2.1. Training Set Creation with Entity
Replacement

We utilise the publicly available Papers with Code (PwC)
corpus as a Knowledge Base. We crawl PwC and ob-
tain all the model names occurring in the metadata for
each task and subtask. We obtain a total of 14,748 model
names. For the unlabelled corpora, we use a total of
227,000 abstracts from arxiv and obtain all sentences
(7800) containing a model name mention. We find that
the occurrence of some model names is much more fre-
quent in literature (e.g - CNN). Due to the small dataset
size and the large imbalance in few entity mentions, the
model is prone to overfitting. To mitigate this, we use
a simple entity replacement technique, where we find
all model entity mentions, and randomly replace them
with other names to ensure a fairer distribution. The
distribution pre-replacement is shown in Figure 4. We
use all 14,748 model entities at least once and limit an
entity occurrence to at most 2 in the train dataset, after
replacement.

6.2.2. Distantly Supervised NER Model

We treat NER as a sequence labelling problem. Given a
sequence of 𝑁 tokens 𝑋 = [𝑥1, ..., 𝑥𝑁], we aim to find an
entity which is a span of tokens 𝑠 = [𝑥𝑖, ..., 𝑥𝑗](0 ≤ 𝑖 ≤
𝑗 ≤ 𝑁) associated with the entity type model name. We
formulate this as a sequence labelling task of assigning
a sequence of labels 𝑌 = [𝑦1, ..., 𝑦𝑁]. The aim of our
sequence labeller is to classify each token as a certain
entity type as per the BIO tagging scheme.

We consider 𝐾 train sentences denoted as {(𝑋𝑘, 𝑌𝑘)}𝐾𝑘=1
with distant token level annotations. We aim to learn a
function 𝑓 (𝑋 , 𝜃), which can correctly predict the entity
labels for a train sentence 𝑋𝑘. We minimise the loss:

𝜃∗ = argmin
𝜃

1
𝐾

𝐾
∑
𝑘=1

𝑙(𝑌𝑘, 𝑓 (𝑋𝑘, 𝜃))

over {(𝑋𝑘, 𝑌𝑘)}𝐾𝑘=1 where 𝜃 is the parameter and 𝑙 is the
cross-entropy loss.

We experiment with multiple baselines which are stan-
dard for the sequence labelling process.

• A BiLSTM + CRF model where the bidirectional
contextual representations are captured by the
BiLSTM model, and the resultant representations
are passed to the Conditional Random Field (CRF)
that produces sequence labels as output.



Knowledge
Base

Bi-LSTM  MODEL 
SIMCLDA MODEL 

Longformer   MODEL 

Sentences

The optimized 4-layer BiLSTM model was then calibrated
and validated for multiple prediction horizons.

Furthermore, case studies show that SIMCLDA
 can effectively predict candidate lncRNAs
for renal cancer.

Longformer's attention mechanism is a
drop-in replacement for the standard self-attention.

Unlabelled
corpora

The optimized 4-layer BiLSTM model
was then calibrated and ...

The optimized 4-layer TransE model
was then calibrated and ...

Entity Replacement

B-Model I-Model O O O O

CRF Layer

SciBERT Embeddings

Distantly Labelled 
Training Data

Weak Labels 

Figure 2: Training pipeline for the Sequence Labeller

Target
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The authors use CNN [1]
layer on top of BERT [2]

embeddings

The ImdB dataset [2] is 
popular for sentiment

classification

Citation
Sentences     

SciBERT Embeddings +
CRF

Trained NER Model
(Model Name Extractor)

B-Model

The authors use CNN [1] layer on
top of BERT [2] embeddings

The authors use CNN  [1] layer on top of
BERT  [2] embeddings.

Entity-Citation
Linker

Predicted Entities ( with
citation link)

CNN

BERT

[1]

[2]

Graph-Ranker 

BERT 
CNN 

... 
. 

Predicted
Entities

Figure 3: Inference Pipeline of the end-to-end framework

Figure 4: Distribution of entity occurrence frequency in the
training dataset pre-replacement

• A BERT + CRF model where the contextualised
embeddings are captured by a pre-trained BERT
base uncased model and passed onto the CRF
layer to produce token labels.

• A SciBERT + CRF model where the domain spe-
cific contextualised embeddings are captured by
a pre-trained SciBERT [25] model. SciBERT is

BERT-based language model train on large un-
labelled scientific corpora using MLM objective.
The output embeddings are passed to the linear
CRF layer which predicts token labels from con-
textual representations.

We evaluate our baselines using our evaluation dataset
and the results are displayed in Table 4. We demonstrate
that entity replacement provides a significant boost in
performance for each of these models. The reason is
that the model does not memorise entity names for the
replaced dataset and uses the context to predict the en-
tity types. The results also prove that standard NER
approaches can provide decent results on the evaluation
dataset while relying only on weakly labelled training
data.



P R F1
BiLSTM + CRF (w/o replace-
ment)

0.205 0.519 0.294

BERT + CRF (w/o replace-
ment)

0.389 0.310 0.345

SciBERT+CRF (w/o replace-
ment)

0.391 0.312 0.346

BERT+CRF (with replace-
ment)

0.575 0.563 0.569

BiLSTM + CRF (with replace-
ment)

0.628 0.631 0.629

SciBERT+CRF (with replace-
ment)

0.641 0.632 0.636

Table 4
Result on Evaluation Dataset

7. Combining Graph-Ranker and
Sequence Tagger

We used the Unsupervised Keyphrase Extraction algo-
rithm to capture only those keyphrases that are most
relevant to the document. Although the Sequence Tag-
ger performs well on detecting model name mentions
using sentences as the contextual information, we need
to capture document level relevance as well to extract
competing models. The reason is that not all model name
mentions are relevant to the task the given target research
paper aims to solve. Hence, we predict only those entities
which are common to both top-ranked keyphrases and
the extracted model names from our distantly supervised
sequence tagger. More formally,

𝑌″ = �̃� ⋂ �̃�

where �̃� is the set of predicted entities by the sequence
tagger, �̃� is the set of top-ranked keyphrases and 𝑌″ is
the final set of predicted entities. The entire inference
pipeline is illustrated in the Figure 3.

8. Results
We use the evaluation metric of micro-average Preci-
sion, Recall and F1-Score to evaluate the performance
of the different baselines investigated. We use the full
document-level annotated dataset for this evaluation.
We report the results in Table 5. We compare perfor-

mances of 4 Unsupervised Graph-Rankers for keyphrase
extraction: TextRank [5], SingleRank [26], PositionRank
[8] and MultipartiteRank [9]. We observe that the recall
is highest for SingleRank, as it extracts most of the rele-
vant candidate keyphrases and ensures a high amount
of entity coverage. For SciBERT-CRF model, we notice
that even though the recall is high, the precision is signif-
icantly low. It is due to the fact that although it detects

P R F1
TextRank 0.063 0.273 0.098
PositionRank 0.098 0.841 0.162
SingleRank 0.105 0.863 0.179
MultipartiteRank 0.123 0.834 0.214
SciBERT-CRF 0.290 0.764 0.420
TextRank + SciBERT-CRF 0.512 0.235 0.322
PositionRank + SciBERT-CRF 0.608 0.661 0.633
SingleRank + SciBERT-CRF 0.609 0.679 0.642
MultipartiteRank+SciBERT-CRF 0.639 0.672 0.655

Table 5
Result on evaluation on the document level annotated dataset

model entitymentionswith a good accuracywhile consid-
ering sentences as contextual information as reported in
Table 4, not all models are competing. In order to discern
which of the extracted candidate entities are competing
models, document context is needed. Hence, we find
that combining the two approaches leads to a significant
boost in precision while maintaining a decent recall. The
highest performance is yielded by the combination of
Multipartite Rank with SciBERT-CRF, despite Multipar-
tite Rank having a slightly lower recall than SingleRank.
The reason can be attributed to the higher precision of
Multipartite Rank among all unsupervised keyphrase ex-
traction algorithms investigated. The higher precision
in Multipartite Rank can be attributed to the fact that it
aims to select the most relevant phrases by incorporating
positional information among edge weights among the
candidate keyphrases. Hence, its combination with the
sequence labeller yields the highest F1-score among all
combinations.

9. Entity Citation Linker
The entity citation linker is inspired from the prior work
of [27]. The aim of this algorithm is to link the entities
with their corresponding citation. The first step is to
obtain all the possible entities and the citations. Then,
a closeness score is calculated for each entity-citation
pair, which is the string distance between the entity and
the citation. Then, we take all the citations and keep
only the closest citations per entity. Finally, we take all
the entities and keep the closest entity per citation. As
demonstrated by the authors, this technique is able to
accurately map most entities with their corresponding
citations. We use this technique to link all the extracted
model entities with their respective citations.



10. Error Analysis
We conduct error analysis for the Unsupervised
keyphrase extraction, model entity extraction using se-
quence labelling, the two-stage framework and entity
citation linking. For the keyphrase extraction, the graph-
ranker extracts most of the relevant model candidates.
However, precision suffers significantly as most mod-
els are not keyphrases. Their are multiple keyphrases
extracted by the algorithm that are not model names
- few examples being domain names like ‘Information
Retrieval’, ‘Networking architecture’, dataset names like
‘SquaD 1.1’ or other terms that are relevant to the re-
search paper.

For the sequence labeller, we observe mainly two types
of error. First, we notice precision error being introduced
into the model because in the training set we consider
maximum span of each entity and the occurrence of I-
Model ( token lying inside a named entity) is relatively
high. However, in the evaluation test set of the sequence
labeller, the occurrence of singular B-Model entities is
massively more. This leads to the misclassification of O
as an I by the model. Also, although the model is able to
detect model entities reasonably given the sentence as the
context, it is unable to discern competing models from
unrelated ones. This leads to a significant precision de-
crease when evaluated on the document-level annotated
evaluation set.
Finally, after evaluating the performance of the two-

stage pipeline on the document-level annotated dataset,
we find that the model often mistakes dataset names for
model entity mentions. This can be attributed to the high
relevance of datasets with respect to the research paper.

Lastly, for the entity citation linker, sometimes an en-
tity that is associated with a citation marker occurs in
the initial part of a sentence and its not the closest to the
citation. This can lead to missed out or incorrect linking.

11. Implementation details
We implement the NER model in Pytorch. For tokeniza-
tion, we use the pre-trained SciBERT tokenizer. The
embedding layer is the output from the pre-trained SciB-
ERT model. We include a dropout layer with a dropout
probability of 0.5 to reduce overfitting. Learning rate
is set to 1e-5 and we train all models for a total of 10
epochs. The output from the dropout layer is passed
through a linear layer with input dimension same as the
hidden dimension of SciBERT (768). For all Unsupervised
Graph Ranker, we use the same hyperparameter settings
as specified in their respective papers

12. Conclusion and Future work
We have introduced the task of extraction of competing
models from a research paper. We use a novel approach
of treating relevant keyphrases extracted using an Un-
supervised Graph Ranking algorithm as the superset of
a BERT-based sequence labeller. We also use distant
supervision to train our sequence labeller. We test our se-
quence labeller and the entire pipeline on two annotated
datasets. We also utilise a simple entitiy replacement
technique to reduce overfitting in the sequence labeller.
Finally, we use the entity-citation linking technique to
link all the extracted model entities with their respective
citation. We believe this work to be a significant step for-
ward to map the research landscape of Computer Science
in an automated and scalable manner.
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