
T5 Encoder Based Acronym Disambiguation with Weak
Supervision
Gwangho Song1, Hongrae Lee2 and Kyuseok Shim1,3

1 Seoul National University, Seoul, South Korea
2 Google, Mountain View, CA, USA
3 Corresponding author

Abstract
An acronym is a word formed by abbreviating a phrase by combining certain letters of words in the phrase into a single term.
Acronym disambiguation task selects the correct expansion of an ambiguous acronym in a sentence among the candidate
expansions in a dictionary. Although it is convenient to use acronyms, identifying the appropriate expansions of an acronym
in a sentence is a difficult task in natural language processing. Based on the recent success of the large-scale pre-trained
language models such as BERT and T5, we propose a binary classification model using those language models for acronym
disambiguation. To overcome the limited coverage of a training data, we use a weak supervision approach to increase the
training data. Specifically, after collecting sentences containing an expansion of an acronym from Wikipedia, we replace the
expansion with its acronym and label the sentence with the expansion. By conducting extensive experiments, we show the
effectiveness of the proposed model. Our model is placed in the top 3 models for three of four categories in SDU@AAAI-22
shared task 2: Acronym Disambiguation.
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1. Introduction
An acronym is a word formed by abbreviating a phrase
which is called a long-form or an expansion (e.g., AAAI
for Association for the Advancement of Artificial Intel-
ligence). Due to its brevity, its usage is ubiquitous in
many literature and documents, especially in scientific
and biomedical fields [1, 2, 3, 4, 5]. A report found that
more than 63% of the articles in English Wikipedia con-
tain at least one abbreviation [1]. Furthermore, among
more than 24 million article titles and 18 million article
abstracts published between 1950 and 2019, there is at
least one acronym in 19% of the titles and 73% of the
abstracts [2].

Acronyms frequently have multiple long-forms, and
only one of them is valid for a specific context. For exam-
ple, in a 2001 version of the WWWAAS (World-Wide Web
Acronym and Abbreviation Server) database, 47.97% of
acronyms have multiple expansions [6]. As another ex-
ample, in the SciAD dataset released by SDU@AAAI 2021
Shared Task: Acronym Disambiguation [5], an acronym
has 3.1 long-forms on average and up to 20 long-forms.
When sufficient context is not available, this leads to the
ambiguity of the meaning of acronyms and creates seri-
ous understanding difficulties [2, 7, 8, 9]. Thus, acronym
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Input:

- Sentence: Since our generative models are
based on DP priors, they are designed to fa-
vor a small number of unique entities per image.

- Dictionary:

⎧⎨⎩ Dynamic Programming
DP Dependency Parsing

Dirichlet Process

Output: Dirichlet Process

Figure 1: An example of acronym disambiguation

disambiguation task is important and challenging.
The goal of acronym disambiguation(AD) is to select

the correct long-form of an ambiguous acronym in a sen-
tence among the candidate long-forms in a dictionary.
Figure 1 shows an example of acronym disambiguation.
A sentence containing an ambiguous acronym “DP” and
a dictionary with the long-forms of “DP” are given as
the input. In the dictionary, the acronym “DP” has three
possible long-forms: “Dynamic Programming”, “Depen-
dency Parsing” and “Dirichlet Process”. According to
the context of the input sentence, since “DP” stands for
“Dirichlet Process”, a model outputs “Dirichlet Process”
as its expansion.

The problem of acronym disambiguation is usually cast
as a classification problem whose goal is to determine
whether a long-form has the same meaning with the
acronym in an input sentence. Early approaches [10, 11,
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𝒙 = 𝒆𝒂,𝑗 ⊕ [SEP] ⊕ 𝒔

Encoder

MLP

prediction score 𝑝

ℎ

𝒔 = Since our generative models are based on 

[SOA] DP [EOA] priors, they are designed to 

favor a small number of unique entities per image.

𝒆𝒂,𝑗 = Dynamic Programming

𝒂

An input sentence

The acronym

in the sentence

A candidate 

long-form for 𝒂

Figure 2: An illustration of the proposed model

12, 6] rely on the traditional classification models such as
SVMs, decision trees and naive Bayes classifiers. As deep
learning becomes more mainstream in natural language
processing, several works employ contextualized word
embeddings to create semantic representations of long-
forms and context [9, 13, 14, 15, 16]. Moreover, with the
recent success of the pre-trained language models such
as BERT [17] and T5 [18] in natural language processing,
classification models for acronym disambiguation are
developed based on the pre-trained language models [4,
19, 20, 21].

To study multilingual acronym disambiguation, we
develop a binary classification model by utilizing T5 [18],
which is one of the most popular pre-trained language
models, as well as mT5 [22] which is a multilingual vari-
ant of T5. We evaluate the proposed model on the dataset
released by SDU@AAAI 2022 Shared Task: Acronym
Disambiguation [23]. Since the acronyms in the test
dataset do not appear in the training dataset, the training
dataset provided in the competition may not be sufficient
to solve the problem. Thus, we use a weak supervision
approach to increase the training dataset. By training on
the provided training dataset as well as the weakly la-
beled training dataset generated by our weak supervision
method, the proposed model ranks in the top 3 place for
three of four categories in SDU@AAAI-22 shared task 2:
Acronym Disambiguation.

The remainder of this paper is organized as follows.
We provide related work in Section 2 and present our pro-
posed model in Section 3. In Section 4, we describe the
datasets used for training the model, including weakly
labeled datasets generated by weak supervision. Finally,
we discuss the experimental results in Section 5 and sum-
marize the paper in Section 6.

2. Related Work
In this section, we present the previous works on
acronym disambiguation. We also summarize the pre-
trained language models widely adopted in various natu-
ral language processing. In addition, we introduce weak
supervision approaches to construct additional data.

2.1. Acronym Disambiguation
Early approaches [10, 11, 12, 6] rely on the traditional
classification models such as SVMs, decision trees and
naive Bayes classifiers. As deep learning becomes more
mainstream in natural language processing, several
works employ contextualized word embeddings to cre-
ate semantic representations of long-forms and context
[9, 13, 14, 15, 16]. The works in [13, 14] study the use of
word embeddings [24, 25] to build classifiers for clinical
abbreviation disambiguation. The UAD model proposed
in [15] creates word embeddings by using additional un-
structured text. The work in [9] compares the averaged
context vector of the words in a long-form of an acronym
with the weighted average vector of the words in the con-
text of the acronym based on word embeddings trained
on a domain-specific corpus. In [26], the proposed model
is trained to compute the similarity between a candi-
date long-form and the context surrounding the target
acronym.

Many works utilize deep neural architectures to con-
struct a classifier [16, 8, 4, 19, 20, 21]. At the AAAI-
21 Workshop on Scientific Document Understanding
(SDU@AAAI-21), the top ranked participants [20, 19, 21]
present models for acronym disambiguation based on
pre-trained language models such as RoBERTa [27] and
SciBERT [28]. In [20], the problem of acronym disam-
biguation is treated as a span prediction problem, and the
proposed model predicts the span containing the correct
long-form from the concatenation of an input sentence
and candidate long-forms of the acronym in the sentence.
The hdBERT model proposed in [21] combines RoBERTa
and SciBERT to capture both domain agnostic and do-
main specific information. The work in [19], which is
the winner of the shared task of acronym disambiguation
held under the workshop SDU@AAAI 2021, incorporates
training strategies such as adversarial training [29] and
task-adaptive pre-training [30]. Following a similar strat-
egy to the recent works [19, 21], we develop a binary
classification model for acronym disambiguation.



Category
# Sentences # Acronyms

Avg. # Sentences
per acronym

Train Dev Test Train Dev Test Train Dev Test

Legal English 2,949 385 383 242 31 30 12.186 12.419 12.767
Scientific English 7,532 894 574 405 52 40 18.598 17.192 14.350
French 7,851 909 813 541 68 60 14.512 13.368 13.550
Spanish 6,267 818 862 437 56 53 14.341 14.607 16.264

Total 24,599 3,006 2,632 1,625 207 183 15.138 14.522 14.383

Table 1
Statistics of the labeled datasets

2.2. Pre-trained Language Models
There has been significant progress across many natu-
ral language processing (NLP) tasks by the pre-trained
language models trained on large-scale unlabeled cor-
pora. Based on the transformer architecture [31], a set of
large-scale pre-trained language models are developed,
including BERT [17], RoBERTa [27], GPT [32] and T5
[18]. Since these models are pre-trained on datasets pri-
marily consisting of English text, multilingual models
such as mBERT [33] and mT5 [22] are presented. To pro-
cess multilingual texts in the datasets published in the
shared task for acronym disambiguation in the workshop
SDU@AAAI-22, we use both T5 and mT5 to encode input
texts.

2.3. Weak Supervision
Modern machine learning models generally need a large
amount of hand-labeled training sets for performance
improvement [34]. Since creating hand-labeled training
datasets is time-consuming and expensive, recent works
rely on weak supervision to generate noisy datasets
[35, 36, 37, 38, 39, 40, 41, 42]. Distant supervision, one
of the most popular techniques for weak supervision,
utilizes external knowledge bases to produce noisy la-
bels [35, 36, 43] Other works obtain noisy labels by us-
ing crowdsourcing [40, 41, 42] or simple heuristic rules
[44, 37]. The system proposed in [39] automatically gen-
erates the heuristics to assign training labels to a large-
scale unlabeled data. Similar to the works in [35, 36, 43]
based on distant supervision, we use the relationships
between acronyms and their possible long-forms as the
weak supervision sources.

3. Acronym Disambiguation
Model

We first provide the problem definition of acronym dis-
ambiguation. We next present the overall architecture
and details of our proposed model.

3.1. Problem Definition
The problem of acronym disambiguation is defined as a
classification problem [5]. Given a dictionary 𝒜 which is
a mapping of acronyms to candidate long-forms (or ex-
pansions), let 𝒜(𝑎) = {𝑒𝑎,1, . . . , 𝑒𝑎,𝑚(𝑎)} be the set
of all candidate long-forms of an acronym 𝑎, where
𝑚(𝑎) is the size of the set. Then, for an input sen-
tence 𝑠 = ⟨𝑤1, 𝑤2, . . . , 𝑤𝑛⟩ consisting of 𝑛 tokens (i.e.,
𝑤1, . . . , 𝑤𝑛) and an acronym 𝑎 = ⟨𝑤𝑖, . . . , 𝑤𝑗⟩ with
1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 which is a contiguous subsequence
of 𝑠, we want to predict the correct long-form of the
acronym 𝑎 among the candidate long-forms in 𝒜(𝑎).
Note that we represent a text as a sequence of tokens
by using a tokenizer such as WordPiece [45] and Senten-
cePiece [46]. Following the existing works [19, 21], we
simplify the problem as a binary classification problem.
In other words, given an input sentence 𝑠, an acronym 𝑎
appearing in 𝑠 and a candidate long-form 𝑒𝑎,𝑘 in 𝒜(𝑎),
we predict the label 𝑦 which is 1 if 𝑒𝑎,𝑘 is the correct
long-form of 𝑎 in the context of 𝑠, and 0 otherwise.

3.2. Model Architecture
We provide an illustration of the proposed model in Fig-
ure 2. The model consists of an encoder, which trans-
forms an input token sequence into a vector representa-
tion, and a multi-layer perceptron (MLP) with a sigmoid
activation function to output the prediction. We use the
pre-trained language models such as T5 [18] or mT5 [22]
encoder layers to encode the input tokens, and take the
hidden state of the first token as the encoder output. The
encoder takes as input the concatenation of the input
long-form 𝑒𝑎,𝑗 and the sentence 𝑠 [19]. A separator sym-
bol (i.e., [SEP]) is used to separate them. In other words,
by using the symbol ⊕ to represent the concatenation of
two token sequences, the input token sequence 𝑥 of the
encoder is defined as

𝑥 = 𝑒𝑎,𝑗 ⊕ ⟨[SEP]⟩ ⊕ 𝑠. (1)

We also insert two special tokens [BOA] and [EOA] be-
fore and after the acronym 𝑎 in 𝑠 to highlight the po-
sition of the acronym. For example, consider the input



sentence containing the acronym “DP” and one of its can-
didate long-form “Dynamic Programming” in Figure 1.
As shown in Figure 2, the encoder takes as input the
token sequence obtained by concatenating “Dynamic
Programming”, [SEP] and the input sentence. The en-
coder converts the input token sequence 𝑥 into a vector
representation ℎ ∈ R𝑑, where 𝑑 is the number of hidden
units. The MLP layer is used to compute the prediction
score 𝑝 from ℎ. That is,

𝑝 = sigmoid(𝑊𝑇ℎ+ 𝑏), (2)

where 𝑊 ∈ R𝑑 and 𝑏 ∈ R are parameters of the MLP
layer. We interpret 𝑝 as the probability that the input
long-form 𝑒𝑎,𝑗 is the correct long-form of the acronym
𝑎 in 𝑠.

Given a set of 𝑁 sentences 𝒮 = {𝑠1, . . . , 𝑠𝑁}, let 𝑎𝑖

be the acronym contained in the sentence 𝑠𝑖. For every
pair of a sentence 𝑠𝑖 ∈ 𝒮 and a long-form 𝑒𝑎𝑖,𝑗 ∈ 𝒜(𝑎𝑖),
we obtain an input token sequence 𝑥𝑖,𝑗 by Equation (1),
as well as its corresponding label 𝑦𝑖,𝑗 . Thus, from the
sentence set 𝒮 , we can build a training dataset 𝒟 =
{(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗) | 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑚(𝑎𝑖)}. We train
the model on the training dataset 𝒟. Let us denote the
prediction score for 𝑥𝑖,𝑗 by 𝑝𝑖,𝑗 . Then, we use the cross-
entropy loss to train the model on the training dataset
𝒟. In other words, the loss is defined as

ℒ = −
𝑁∑︁
𝑖=1

𝑚(𝑎𝑖)∑︁
𝑗=1

(𝑦𝑖,𝑗 log 𝑝𝑖,𝑗 + (1− 𝑦𝑖,𝑗) log (1− 𝑝𝑖,𝑗)).

(3)
At the inference stage, for an input sentence 𝑠 with an
acronym 𝑎, we compute the prediction score for each
candidate long-form in 𝒜(𝑎) and choose the one with
the highest prediction score.

4. Datasets
We describe the labeled datasets published for the
shared task on acronym disambiguation in the workshop
SDU@AAAI-22 [47]. Moreover, we present the details of
additional datasets generated by our weak supervision
method.

4.1. Labeled Datasets
The detailed statistics of the labeled datasets is provided
in Table 1. The datasets consist of four categories (i.e.,
Legal English, Scientific English, French and Spanish).
In total, there are 24,599, 3,006 and 2,632 sentences in
the training, development and test datasets, respectively.
Every sentence in the datasets has a single ambiguous
acronym which is to be disambiguated. On average, an
acronym appears in 14 or 15 sentences. As mentioned in
the web page (https://sites.google.com/view/sdu-aaai22/

Category # LFs # ACs Avg. Fanout

Legal English 1,126 456 2.469
Scientific English 2,275 671 3.390
French 2,578 926 2.784
Spanish 1,859 682 2.726

Total 7,838 2,735 2.866

* LF: long-form, AC: acronym

Table 2
Statistics of the dictionaries

Category L L+𝑊1 L+𝑊5 L+𝑊10 L+𝑊20

Legal
English

2,949 3,366 4,640 5,921 8,048

Scientific
English

7,532 8,337 10,688 12,875 16,264

French 7,851 8,575 10,479 12,135 14,609
Spanish 6,267 6,980 9,036 10,922 13,788

Total 24,599 27,258 34,843 41,853 52,709

Table 3
Statistics of the labeled and weakly labeled datasets

shared-task) of the competition on acronym disambigua-
tion, for each category, there is no overlap of acronyms
between any pair of the training, development and test
datasets. Table 2 shows the statistics of the dictionary
for every category. In the table, the “Avg. Fanout” indi-
cates the average number of candidate long-forms for
an acronym. A dictionary contains a mapping from an
acronym to the set of its candidate long-forms. The num-
ber of occurrences of an acronym in the datasets of all
categories is 2.866 on average.

4.2. Weakly Labeled Datasets
Among the acronyms in the dictionaries, 40.6% of them
do not appear in the training dataset. To train the pro-
posed model for such acronyms, we collect additional
data by incorporating a weak supervision method [35].
Specifically, we first extract the sentences containing a
long-form in the dictionaries from English, French and
Spanish Wikipedia dump dated November 7, 2021. For
each language, we do not use the long-form of every
acronym whose number of occurrences is at least 1,000 in
the Wikipedia dump, since the pre-trained language mod-
els are likely to be well-trained for such frequent long-
forms. For each extracted sentence from Wikipedia, we
replace the long-form in the sentence with its acronym.
We next assign 1 as the label for the pair of the extracted
sentence and the long-form, and 0 for every pair of
the sentence and each of the other long-forms of the
acronym.

Let 𝑁𝑠 be the maximum allowed number of sentences
extracted from the Wikipedia dumps for a long-form. For

https://sites.google.com/view/sdu-aaai22/shared-task
https://sites.google.com/view/sdu-aaai22/shared-task


Encoder # Params
Legal

English
Scientific
English

French Spanish All

BERT-base-cased [17] 108M 69.74±3.21 65.37±0.79 64.68±0.98 66.64±0.97 66.02±0.42
T5E-base [18] 110M 66.94±1.60 64.31±1.02 66.42±0.72 68.14±1.08 66.32±0.73
BERT-large-cased [17] 334M 70.35±1.57 66.48±0.90 66.11±0.63 66.90±0.76 66.95±0.52
mT5E-base [22] 277M 67.47±3.37 62.47±0.62 69.09±1.24 72.88±2.50 67.90±1.59
RoBERTa-base [27] 125M 70.94±2.30 67.82±2.75 67.10±1.68 71.64±0.77 68.98±0.37
mBERT-base-cased [33] 178M 73.18±2.46 66.74±1.32 69.98±1.28 76.74±2.62 71.18±0.91
hdBERT [21] 472M 71.03±1.24 75.69±0.49 67.81±0.53 74.17±0.79 72.25±0.17
T5E-large [18] 335M 75.62±1.39 72.85±0.65 70.57±0.46 72.91±2.23 72.49±0.22
mT5E-large [22] 564M 72.83±0.90 69.62±0.37 72.11±1.18 78.35±1.00 73.09±0.51
mT5E-xlarge [22] 1,670M 75.44±2.03 70.92±0.88 72.49±0.51 78.95±0.88 74.08±0.57
T5E-xlarge [18] 1,241M 78.73±1.10 77.56±0.63 72.69±1.40 77.88±0.73 76.24±0.79

Table 4
F1 score with varying the encoder

each value of 𝑁𝑠 in {1, 5, 10, 20}, we create a weakly
labeled dataset. Let L and 𝑊𝑘 denote the labeled dataset
provided in the competition and the weakly labeled
dataset generated with 𝑁𝑠 = 𝑘. Then, we refer to the
combination of the labeled dataset (L) and each of the
weakly labeled datasets as L+𝑊1, L+𝑊5, L+𝑊10 and
L+𝑊20, respectively. The statistics of the combined
datasets are presented in Table 3. As an example, when
𝑁𝑠 = 10, we obtain 17,254 additional sentences contain-
ing an acronym in the dictionaries by weak supervision,
and the ratio of unseen acronyms in the training dataset
is reduced from 40.6% to 21.6%.

5. Experiments
We first present the experimental setup and next report
the results of experiments including the competition for
acronym disambiguation.

5.1. Experimental Setup
We conduct all experiments on a single machine with an
AMD EPYC Rome 7402P 24-Core CPU and two NVIDIA
GeForce RTX 3090 GPUs under PyTorch framework [48].
For each sentence, we consider a window of 64 tokens
where the acronym in the sentence is located in the mid-
dle of the window, and use the sequence of tokens in that
window for training. We set the batch size to 16 and use
Adam optimizer [49]. Furthermore, we use the union of
the training datasets with all categories to train imple-
mentations of the proposed model for 10 epochs with a
learning late of 10−5. Moreover, we apply dropout [50]
to the encoder of the model with a dropout probability
of 0.1.

To evaluate the performance of the model, we use
macro-averaged precision (P), recall (R) and F1 score (F1)
computed for each long-form [15, 5] on the development

and test datasets. Specifically, we first compute precision,
recall and F1 score for each long-form and then report
the average value of all long-forms for each measure.
Furthermore, for the development data, we report the
average value with its standard deviation by training the
models three times with different random seeds.

5.2. Experimental Results
Pre-trained models We compare the performance of
the implementations of the proposed model with varying
the pre-trained model of the encoder. We use BERT [17],
mBERT [33], RoBERTa [27], hdBERT [21], T5 [18] and
mT5 [22] as the encoder. Since pre-trained models with
various model sizes are available for BERT and T5, we
test them with varying the model size, too. While the
default learning rate is 10−5, we use a learning rate of
10−6 for hdBERT since we get a better performance with
10−6.

Table 4 shows the F1 score on the development dataset
for each category. The results show that the implementa-
tion with T5-xlarge achieves the highest performance in
terms of the F1 score in every category except Spanish.
The second best in terms of the F1 score for all categories
is the implementation with mT5-xlarge as the encoder.
Note that although T5 is pre-trained using English cor-
pora, we can see that the model with the encoder of T5
is generalized well to the other languages. As the size of
a model increases, the accuracy of the model tends to be
improved. However, the implementation with T5-xlarge
performs better than that with mT5-xlarge since T5 is
pre-trained with supervised training, while mT5 is not.
Note that we cannot evaluate the pre-trained models with
a larger size such as T5-xxlarge and mT5-xxlarge models
due to GPU memory limitations used in our experiment.

Weak supervision To confirm the effectiveness of the
weakly labeled datasets, we train the proposed model



Data P R F1

L 79.43 ± 0.68 73.30 ± 0.89 76.24 ± 0.79
L+𝑊1 81.05 ± 0.48 75.11 ± 0.50 77.97 ± 0.47
L+𝑊5 81.54 ± 0.61 74.50 ± 0.15 77.86 ± 0.32
L+𝑊10 81.78 ± 0.76 74.66 ± 0.77 78.06 ± 0.76
L+𝑊20 81.14 ± 0.70 73.98 ± 0.33 77.40 ± 0.47

Table 5
Performance with the weakly labeled datasets

which uses T5-xlarge as the encoder on both the la-
beled and weakly labeled datasets with varying 𝑁𝑠 =
1, 5, 10, 20. We provide the results in Table 5. Recall that
we use L and Wk to denote the labeled dataset and the
weakly labeled dataset generated with 𝑁𝑠 = 𝑘 respec-
tively, as described in Section 4. The table shows that
the F1 score becomes larger with increasing the value
of 𝑁𝑠 for 𝑁𝑠 = 1, 5, 10. However, when 𝑁𝑠 = 20, the
accuracy is degraded since the skewness of the number
of sentences containing an acronym increases. In other
words, as 𝑁𝑠 increases, the number of the extracted sen-
tences containing a frequent long-form becomes large,
while that of the extracted sentences containing rare long-
form does not. Since the model performs the best when
𝑁𝑠 = 10, we set 𝑁𝑠 to 10 as the default value.

Table 6 presents some examples which are classified
incorrectly with the labeled dataset only, but are classi-
fied correctly after training on both labeled and weakly
labeled datasets. The two rightmost columns show the
prediction scores generated by the model trained using
only the labeled dataset and using both the labeled and
weakly labeled dataset with 𝑁𝑠 = 10 (i.e., L+𝑊10), re-
spectively. Without the weakly labeled dataset, as shown
in the table, the model fails to find the correct long-forms
for the sentences. However, by using the weakly labeled
dataset, the prediction scores for the correct long-forms
increase significantly.

Performance on the test dataset We evaluate the
implementations of our model with T5-xlarge and mT5-
xlarge as the encoder after training them on both the
labeled and weakly labeled dataset. When we use T5-
xlarge, we set the learning rate to 9 × 10−6 since we
find that the model performs the best with that learning
rate by a hyperparameter search. As shown in Table 7, in
terms of the F1 score on the test dataset, the model with
T5-xlarge performs the best for both Legal English and
Scientific English datasets. On the other hand, the model
with mT5-xlarge shows better performance than that
with T5-xlarge for French and Spanish datasets. To fur-
ther improve the performance of the best model in each
category, we additionally train the best model by using
only the dataset of the category for 5 epochs with a learn-
ing rate of 10−6. The results show that the category-wise

fine-tuning improves the accuracy for every category.

SDU@AAAI-22 Shared Task: Acronym Disambigua-
tion In the competition, for each category, we use the
model performed the best on the test dataset as shown in
Table 7. The bolded numbers in the table are the scores
of our model. The results show that our model ranks the
2nd place for Legal English and 3rd place for Scientific
English and French.

6. Conclusion
We propose a binary classification model for acronym dis-
ambiguation by utilizing large-scale pre-trained language
models. To increase the size of the training datasets, we
use a weak supervision approach to generate weakly
labeled datasets. Experimental results show that train-
ing on both labeled and weakly labeled datasets is ben-
eficial to the accuracy of the proposed model. For the
shared task on acronym disambiguation in the AAAI-
22 Workshop on Scientific Document Understanding
(SDU@AAAI-22), our model ranks within the 3rd place
in three of four categories.
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