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Abstract

Acronym Disambiguation (AD) task is designed to find the exact expansion of the acronym in a given sentence. Since little
work has been done in a Machine Reading Comprehension (MRC) way, this paper presents a novel model which leverages the
advantages of both MRC and sequence tagging. First, AD is regarded as a multi-choice task and all the candidate expansions
are options. We design useful question-answer pairs where Question can be seen as the combination of sentence and acronym
while Context consists of the candidate expansions. Second, we apply adversarial learning (i.e. FGM) and normalization
methods such as Gradient Centralization (GC) to further improve the robustness and generalization of the model. Third, the
final answer is jointly predicted by two tasks which can enhance model’s understanding towards AD. Besides, the model also
infers the test set to construct pseudo-labelling set to make the most of data. The model we put forward provides a novel way
to handle AD and the performance can be competitive.
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1. Introduction

Acronyms are built in part from the first letters of word
components and pronounced like a word (e.g. NASA).
Due to their convenience, acronyms are of widespread
use in many scenarios where long words show frequently.
For instance, an original sentence is, “Here we present a
non-linear method based on a deep convolutional neural
network and this convolutional neural network is quite
powerful”. Undoubtedly, this sentence is long and tedious.
By replacing the initial long part with the acronym, the
sentence can be brief and explicit. “Here we present a
non-linear method based on a deep CNN and this CNN
is quite powerful”.

Although using acronyms in documents seems like a
favorable choice, people who don’t know much about a
specific field can suffer from the ambiguity of acronyms.
Therefore, it is beneficial to figure out the relationship
between acronyms and their correct expansions for the
further aim of eliminating the ambiguity of the acronym.
However, given that acronyms are widely used in con-
siderable fields, it is hard for people to clarify the real
meanings of acronyms one by one. Thus, it is neces-
sary to build a model which can automatically find the
accurate expansions of acronyms used in documents.

As shown in Table 1, each instance in Acronym Disam-
biguation (AD) task includes a sentence which contains
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Table 1
An example of acronym disambiguation task

Sentence A Maximum Entropy Approach to NERn.
Acronym NER

Candidate ~ Named Entity Recognito, ...

Label Named Entity Recognitio

an acronym, the specific acronym part, the candidate
expansions of a given acronym and its true label [1]. For
the sentence in table 1, we need to choose appropriate
expansion for the acronym from the candidate expan-

» &«

sions (e.g. “Named Entity Recognitio”, “named entity

» &«

recognition”, “Named Entity Recognition”, “named entity
taggers”, “nition”, “named entity recogniser”, “Named
Entity Recognizer”, “Name Entity Recognizer”, “Named
entity recognition”). Understanding so many acronyms
in different scenarios is still hard for someone who is not
a native speaker of English let alone the poor machine.
Consequently, AD can be seen as a classification task.
At the beginning, much attention is paid on the rule-
based methods [2], [3] and they do work. For example,
an inexact pattern matching algorithm is proposed and
play a role in the past [4]. Due to the complexity of differ-
ent acronyms’ meanings in various scenarios, rule-based
methods can always fail to catch the subtle relationship
between an acronym and the according expansion [5].
Thus, an increased number of research shifts focus to ex-
ploiting the contextualized information. Based on lexical
knowledge, the method computes the similarity between
the acronym and words near it [6]. On the other hand,
unsupervised methods are put forward to break the limit
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Figure 1: The left object represents the input of the model where Question is “Context” : sentence [SEP] “Acronym”: acronym.

Note that “Acronym” and “Context” are the prompts. Context is all the candidate expansions split by

s(‘” «

Option” : Expansion

1| Expansion 2 ... where “Option” is also a prompt. FGM is the acronym of Fast Gradient Methods. Interestingly, the middle
character is “BERT” from the Sesame Street (https://www.keywordbasket.com) and it stands for our base model. Our final
answer prediction is produced by jointly training sequence tagging and reading comprehension. By means of inferring the test
set, we can construct pseudo-labelling set and use it in training the model to realize full potential of all the data.

of annotated data. Via clustering word embedding [7],
[8] into different groups, machine can learn how to dis-
tinguish one expansion from another. Each group just
represents an expansion [9].

Given that supervised methods always have a better
performance [10], more researchers tend to apply semi-
supervised approaches [11] to further combine both ad-
vantages.

Over the past few years, pre-training models such as
BERT [12] have already been proven to be powerful.
BERT firstly masks the words in contexts at a certain
possibility like “ Beijing is the caption of [MASK] (China)
” and then predicts the masked part to gain the repre-
sentations of the corpus. Also, BERT is pre-trained at a
binarized next sentence prediction task. When it is pre-
trained done, BERT is finetuned at the annotated data.
By fully making use of the unlabeled and annotated data,
BERT outperforms all the models before it at many tasks
on GLUE [13]. Afterwards, a large number of BERT’s
variants come out RoBerta [14], ERNIE [15], SpanBert
[16], etc.

BERT aRGE is our base model (L=24, H=1024, A=16,
Total Parameters=340M). Different from other BERT mod-
els, this model is pre-trained by applying Whole Word
Masking technique and then fine-tuned on the SQuAD
dataset. Our whole model architecture is in Fig 1. To let
the model exploit the relationships between the acronym

and sentence, we design the question as “Context” : sen-
tence [SEP] “Acronym”: acronym. Note that the lower-
case word just represents the instance in the dataset.
Context is composed of all the candidate expansions sep-
arated by “|” which just highlights different expansions
to make the model easy to learn the differences. Eventu-
ally, our model is jointly trained on two tasks: sequence
tagging and machine reading comprehension. The re-
sult of inferring the test set can be used to construct the
pseudo-labelling set to make full use of all the data to
further improve the model’s performances.

The main contributions of this paper are summarized
as 4 points:

+ We introduce Acronym Disambiguation to Read-
ing Comprehension Task naturally and observe
something interesting about the components of
question-answer pairs.

« To the best of our knowledge, we should be the
first to train two tasks: sequence tagging and
reading comprehension jointly on AD.

« Our end-to-end model does not need any extra
operations and it is environmentally friendly com-
pared to the ensemble of many models.

« Adversarial training is smoothly combined with
Gradient Centralization to improve the perfor-
mance.



This paper is organized as follows: Related work is
included in Section 2. Then comes with model structure
and experiment which has 4 subsections: The task, fine-
tuning results and training details. And the last two
sections are the conclusion and references.

2. Related Work

2.1. Adversarial Training

Since neural networks are fragile and vulnerable to per-
turbations, adversarial training is a good way to enhance
model’s robustness by training the model on extra ad-
versarial examples. Based on the observation that the
direction of the perturbation (i.e. the gradient) matters
most, the Fast Gradient Sign Method (FGSM) is originally
yielded to produce adversarial examples [17]. Afterwards,
the Fast Gradient Method (FGM) is added on the word
embedding to improve the generalization of the model
[18]. Different from them, the Projected Gradient De-
scent (PGD) does a range of attacks on the model and
can map the perturbation to a specified range every time
[19]. It is obvious that PGD performs better at the cost
of high computation complexity. By restricting most of
the forward and back propagation within the first layer
during the adversarial training, YOPO reduces the cost of
computation [20]. FreeAT recycles the gradient informa-
tion when updating the model parameters to cut down
the cost [21].

Given that the model is likely to overfit the dataset, we
improve the model’s robustness by adding perturbations
to the word embedding (e.g. FGM).

2.2. Reading Comprehension and
Sequence Tagging

Machine Reading Comprehension (MRC) plays a role in
the development of Artificial Intelligence (AI) and still
faces complicated problems at present. The early Ques-
tion Answering (QA) system is rule-based and works
really bad [22]. After that, the system is made up of rules
[23] which compute the similarity of question-answer
pairs and Bag-Of-Words Model (BOW) [24], [25]. But
rule-based methods always fail. Soon the dataset MCTest
is put forward whose instance contains a passage and
question [26]. And the answer must be chosen from the
four choices. Machine Learning approaches come up (e.g.
to minimize the max-margin loss function) to perform
better on the MCTest [27], [28], [29]. With the devel-
opment of deep learning, the Long Short-Term Memory
(LSTM) [30] with attention is proposed and achieves good
results [31]. Since the ratio of noise in the CNN/Daily
Mail dataset is high, SQuAD comes up to further boost
the development of MRC [32]. Nowadays, BERT-based
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Figure 2: This is the process of predicting the answer span.
The green cubes mean they have crossed an embedding block
which contains three embedding layers: token embedding,
segment embedding and position embedding. The yellow
cubes mean they are already encoded by BERT.

methods have exceeded the performance of humans.
Inspired by the habit of humans that we first verify if
the answer exists and then we can choose to answer it
or not, Retrospective Reader is proposed to better tackle
the complex problems [33]. Motivated by their work, we
consider the acronyms as the named entity and other
parts are not. By designing this strategy, we can also do
sequence tagging task just like verifying the acronym.

3. Method

3.1. Problem Definition

The objective of Machine Reading Comprehension (MRC)
is to output the distribution p(alg, ¢) where g,c,a € 7°*
represent the given question, supporting context and
the prediction answer respectively and are composed
of tokens in the vocabulary 7 (Fig 2). Since the context
here is all the candidate expansions split by “|”, we exactly
focus on extractive reading comprehension task because
the answer can be found in the context. We denote ¢;___;
as the answer span where i < j. The answer span is
predicted by maximizing the sum of the possibility of
the start of the answer span p(start = i|q,c) and the
possibility for the end p(end = jlg, ¢).

The goal of Sequence Tagging is to predict the
possibility of every position being the special token
(Y1, V2, .., ¥p) such as the named entity based on the
given sequence T = {(x1, y1), (2, y2), - (3, )}

3.2. Multi-Task Fine-Tuning

Our multi-task model gets improved by leveraging the
both advantages of MRC and Sequence Tagging task.
Lspan, Ltag represent the loss of MRC and Sequence Tag-
ging task repectively. The whole loss is computed by



equation 1 where « just indicates the importance of se-
quence tagging task.

)

L= Ly + aLtag

3.2.1. MRC

Following [12], the input sequence X is encoded by multi-
layer Transformer [34]. Let H = {hy, hy,...,h,} denote
the last-layer hidden states of X. The start possibility s
can be computed by Equation 3. And the analogous rule
for the end possibility e.

FFN(x) = max(0, xW; + by )W, + by
s = Sigmoid(FFN(H))

@
®)

And the aim of MRC is to fit a model to the examples
drawn from the training dataset 92 and 0 refers to all the
parameters.
argmin Eg . o o[- log pe(alg, c)] (4)
We can turn the problem into minimizing the binary
cross-entropy loss for the start and end predictions where
¥, yf are respectively ground-truth start and end posi-
tions of example i and N is the size of 2.

N
1
Linre = =35 2 [log(p},) + log(piy)]

=1

®)

3.2.2. Sequence Tagging

We first label every token in the sequence 0 and 1 for the
right expansion part which means other expansions are
labeled 0. For instance:

- input = “[CLS]Acronym[SEP]A Maximum En-
tropy Approach to NERn.[SEP]Named Entity
Recognitio|named entity recognition...”

« labeled = [0,...,0,1,...,1,0,...,0]

We can train the model by minimizing the cross-
entropy loss where 3; is predicted by the model and y; is
the label just like the example’s.

yi = Softmax(FFN(H)) (6)

N
1 N .
g =~y 2 lnlog i + (1= log =01 @)

3.3. Adversarial Training

Adversarial Training (AT) is a good way to enhance the
model’s robustness by training the model on the gener-
ated adversarial examples. By adding small perturbations
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Figure 3: This shows the distribution of the length of sen-
tences. More specifically, the length ranges from 1.00 to 251.00
and the mean length is 28.90.

to the features of training examples, AT can generate ad-
versarial examples which are likely to induce the model
to make wrong predictions. The model is first trained
on the original training instances and then generate ad-
versarial examples. Finally, the adversarial examples are
used in the training process. The unified paradigm is
summarized below [19].
argminE( i) g rrr;gL(@, x + Tady, Y)] ®)
Tudv S are the perturbation and perturbation space
repectively. L is the common loss function. The intuition
of Equation 8 is to find the appropriate perturbation 7,4,
which can maximize the loss. By finding the best param-
eter 6 to minimize the loss resulted from 7,4, our model
can be more robust to the unseen perturbations in the
real world. Following [18], we apply the same method
to generate 1,4, where € is the hyper parameter which is
default as 1. and g is the gradient of common training on
the original dataset.

Tady = € & where g =V, L(0,x, )

lgll
lglls = lg1l? + lgaf? + -~ + lgnl?

©

(10)

3.4. Gradient Centralization

Although the performance of Neural Networks like Trans-
former can be impressive, it is hard to train them because
of the oscillation of training process and risks of being
trapped in a local minimum. Performing normalization
on activation or weights can to some degree improve
this situation. Similar to normalization methods, gradi-
ent centralization (GC) centralizes the column vectors
of weights so that the mean value of the column vectors



Table 2
Different Designs Of QA Pairs

P R F1 Question Answer
0.5368,155 0450207, 0.4897,,s, [CLS] sentence [SEP] choice
0.5569,515 0.4728.145, 0.4949,,3, [CLS] acronym [SEP] sentence [SEP] choice
0560854  0.4529.,5, 0.5010,30, [CLS] “Acronym”: acronym [SEP] “Context”: sentence [SEP]  “Option”: choice
0.5812,50; 0464404, 0.5162,19, [CLS] “Context™ sentence [SEP] “Acronym”: acronym [SEP]  “Option”: choice

is 0 [35]. Specifically, e, & are the GC operation and
loss respectively. V,, Z is the ith column of the gradient
matrix and py o is the mean value of the ith column
of the gradientl matrix. By removing the mean value
from every column vector of the gradient matrix, GC can
make the optimization landscape more smoother which
contributes to the more efficient training and the better
generalization.

Pce (vw,-:f) = vwig W,z (11)

4. Experiment

In this section, we present our model’s fine-tuning results
on shared task 2: Acronym Disambiguation.

4.1. The Task

This task is designed to find the exact meaning of the
ambiguous acronym in a given sentence. The input is a
sentence which includes the acronym and the systems is
going to figure out the expanded form of the acronym.
For instance:

« Input Sentence: Here we present a non-linear
method based on a deep CNN.

+ Input Candidate Long-forms: convolutional
neural network, Convolutional Neural Network,
convolutional neural networks

« Output: convolutional neural network

Also, this task covers several languages: English,
French and Spanish. Interestingly, only the English ver-
sion contains different domains: legal and scientific [36].
And we choose the scientific one for it is more related
to our field. Besides, there is no overlap among the
acronyms in the training set, the development set and
the evaluation set. The model’s performance is evaluated
by the macro-averaged precision (P), recall (R) and F1.

4.2. Fine-Tuning Results

In this subsection, we present different plans for the mod-
elling and the according results on the official dev test. To
reduce the effect of the seed, every experiment is carried
out with 3 different seeds:2021, 2022 and 2023.

Table 3
Adversarial Training and Gradient Centralization

Operation P R F1

baseline 0.5812,5¢,,  0.4644,4,  0.5162 ¢,
+ FGM 0.5707,,34  0.4634,,,, 051133,
+GC 058,50, 04682, 4, 0.5181,, 4,
+FGM,GC  0.5794,5,, 0.4770,,5;, 0.5232,4

4.2.1. Training Details

Since the case of words differs, we set do lower case as
False. For the training process, we use 5 epochs and
the batch size of both training and validating is 32. The
optimizer is AdamW [37] which applies weight decay on
Adam [38] in a different way. And the learning rate, adam
epsilon, max grad norm and weight decay are 2e—5, 1e—8,
1.0 and 0.0 respectively. Also, we use the linear schedule
for warming up and ratio is 0.1. Due to the observation
in the dataset (Fig 3), the max sequence length is 160.

All the experiments are done on the GPU RTXA6000
which has 48GB. And time for every independent exper-
iment in Table 2, 3, 4 take 7m 51s, 13m 41s and 14m 59s
respectively. Besides, the space for every experiment is
19GB.

4.2.2. Options of QA pairs

Different designs of QA pairs matter. In Table 2, the
choice stands for the candidate expansions split by “|”.
Note that the dropout ratio here is 0.0 to better observe
the effect of different designs. Although the sentence con-
tains the specific acronym such as CNN, concatenating it
to the question still improves the model’s performances.
“Acronym”, “Context” and “Option” are the prompts. In-
terestingly, just adding prompts to the question and an-
swer works. Also, exchanging the position of sentence
and acronym can lead to a better score. However, it
should make no difference in humans’ thinking. Maybe
the focus of the machine needs to be further explored.

4.2.3. Better Generalization

Since the model has the risk of overfitting the training
dataset, we apply adversarial Learning such as FGM and
Gradient Centralization (GC) to enhance the model’s



Table 4
Multi-Task Learning

o P R F1
0.0 0.5812,50,, 0.4644.04, 0.5162,,
0.2  0.5963,,4, 0.4823.,6, 0.5333.;4,
04 0.5747,334, 0.4618,;3, 0.5120,,
0.6 0.6055.;5;, 0.4810,;7,, 0.5361,¢y
08 0.5758,534 0.4675,45,  0.5160.¢ 1
1.0 0.5906,51, 0.4733,.,5;,  0.5255, g,
Table 5
Data Augmentation and Pseudo-labelling
P R F1
baseline 0.5812,50, 0.4644.04, 0.5162,, ¢
shuffle 0.5843,, 4z  0.4685,,7, 052014
pseudo-labelling  0.6158,53,,  0.4998.,5, 0.5517,, 74

generalization. In this process, we observe the dropout
ratio can influence the training so we choose the best
ratio from [0.1, 0.2, 0.3] (0.2). It turns out the combination
of FGM and GC leads to the largest improvement (Table
3).

4.2.4. Multi-Task Learning

Here we do experiments on the effect of the value of «
in Equation 1. Since it may take more time for conver-
gence in multi-task learning, the epochs here is 10. Also,
the dropout ratio is 0.0. We can draw conclusions from
Table 4 that the joint training does help. Furthermore,
appropriate a such as 0.6 can be a better choice.

4.2.5. Data Augmentation and Pseudo-labelling

We also use data augmentation such as shuffling the
options during training, which can improve the perfor-
mance (Table 5). Finally, we combine everything together
and construct pseudo-labelling set for second training
which leads to the comprehensive improvement.

5. Conclusion

By leveraging the advantages of both Machine Reading
Comprehension task (MRC) and sequence tagging, our
multi-task model gets improved in Acronym Disambigua-
tion task. The combination of adversarial training and
gradient centralization can further improve the model’s
performance. And extra improvement can be made via
designing useful prompts related to the specific task. For
future work we plan to focus on the interesting phenom-
ena observed in the experiments.
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