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Abstract
The application of conventional autoencoders for textual data often leads to learning trivial and redundant representations
due to the high dimensional nature of the text, sparsity, and following power-law word distribution. In order to address these
challenges, we introduce a new autoencoder, termed CSCAT (Coherence-based Second Chance Autoencoder for T ext), which
uses competitive learning to select k winning neurons in the bottleneck layer that becomes specialized in recognizing specific
patterns–leading to learning semantically significant representations of the text. CSCAT introduces a new competition
learning based on a measure of consistency to eliminate incoherent features. Our experiments demonstrate that CSCAT
achieves outstanding performance on several tasks, including classification, topic modeling, and document visualization
compared to LDA, k-sparse, KATE, NVCTM, and ProdLDA.

Keywords
Topic Modeling, Autoencoder, Data Analysis, Second Chance Learning

1. Introduction
Deep neural networks [1] have revolutionized many do-
mains, especially unstructured data, including computer
vision [2], speech recognition [3], and text classification
[4] to name a few. While most current neural network
applications use supervised learning, unsupervised learn-
ing has also presented significant advances in extracting
patterns in unlabeled data with reasonable efficiency. For
example, unsupervised models have been used to aid
information retrieval [5], discover patterns in medical
datasets [6, 7], and video prediction [8].

One of the most popular unsupervised deep learning
algorithms are autoencoders [9, 10]. An autoencoder
is a neural network that learns data representations by
reconstructing the input data at the output layer (i.e.,
𝑦 (𝑖) = 𝑥(𝑖)), where 𝑦 (𝑖) is the network’s output (prediction)
for the 𝑥(𝑖) input sample. Thus, the main objective for
autoencoders is to learn the important features of the
input data by constraining the size of the middle layer
named bottleneck, often by reducing its dimension less
than the input layer.

While autoencoders have demonstrated significant re-
sults in several domains, most notably visual applications
such as image compression [12] and denoising images
[13]; it has been challenging to use autoencoders for tex-
tual data due to the text high-dimensionality and sparsity
[11]. Adding to the aforementioned challenges, autoen-
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Figure 1: Example illustrating the KATE approach [11]. All
layers are fully-connected. Values in Red represent activations
after the competition.

coders are also known to learn trivial representations of
the text due to the power-law word distribution [14].

Fortunately, the research community has identified
the need for proper methods to utilize autoencoders for
textual-data applications, leading to the emergence of
several methods that address these challenges. This new
body of research introduced several innovations, includ-
ing neural autoregressive topic models [15], deep belief
networks for topic modeling [16], and neural variational
inference for text processing [17, 18]. Additionally, in
order to better understand textual data and learn more se-
mantically meaningful representations, other research es-
tablished the idea of k-competitive autoencoders, which
produced impressive results in the textual data domain,
including K-sparse [19] and KATE (K-competitive Au-
toencoder for TExt) [11] depicted in Figure 1.

The primary principle behind 𝑘-competitive autoen-
coders is to select the top 𝑘 ”winner” neurons that conquer
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the activation values (a.k.a. power ) from the loser neu-
rons. By incorporating competition among the neurons
of the hidden layers, these methods aim to specialize the
winner neurons in learning meaningful representations
of the text. The top 𝑘 winners are chosen based on some
competition criteria.

For instance, K-sparse focuses on maintaining sparsity
by preserving the 𝑘 highest activations during training
and the 𝛼𝑘 highest activations during testing, where 𝛼
is a hyperparameter. Similarly, KATE selects 𝑘 winners
made up of the ⌈𝑘/2⌉ largest positive activations and the
⌊𝑘/2⌋ largest absolute negative activations. Those win-
ner neurons then acquire the total energy of the loser
neurons, which become inactive, i.e., set to zero. 𝑘 is a
hyperparameter representing the desired number of neu-
rons to compete, and it is strongly related to the number
of topics.

K-sparse is vulnerable to the ”dead hidden neurons”
problem caused by adding too much sparsity (low 𝑘 val-
ues), and therefore some neurons can never be updated
in the back-propagation process. While this issue can be
addressed by incorporating a sparsity scheduling tech-
nique, this solution adds significant overhead during the
learning process. In contrast, KATE was built on top of
K-sparse and solved the dead hidden neurons problem.
However, its competition considers the largest positive
and negative activations (the weakest neurons are loser
neurons) only–leading to ignoring some essential knowl-
edge preserved in low signal neurons that are never se-
lected as winners. Indeed, our research proves that some
of the neurons that maintain weak signals during early
training cycles might hold important information on rep-
resentative features.

To this end, we present CSCAT (Coherence-based
SCAT), a novel autoencoder that builds on earlier work
in k-competitive learning called SCAT [20]. CSCAT
achieves two main innovations over the previous k-
competitive learning methods. First, it provides a second
chance for the weakest neurons to reveal their potential,
i.e., important topics that would otherwise be ignored.
Second, a coherence-based filtration technique that re-
moves non-coherent neurons from the competition pro-
cess. Our extensive evaluation demonstrates that these
two innovations can lead to better results compared to
the prior work in this domain. To summarize, our work
contributes the following:

• A novel idea of a coherence-based criterion for
filtering neurons that are eligible to enter the
learning competition produced by the SCAT
layer. This process prevents neurons from a
low-coherence score to more than 𝑘/2 other neu-
rons entering the competition. We hypothesize
that eliminating not coherent features during the
training phase will result in better topic represen-

tations.
• A thorough evaluation and comparison to KATE,

K-sparse, LDA [21], NVCTM [22] and ProdLDA.
The evaluation tasks include topic modeling,
topic coherence score, document classification,
and visualization using three datasets: 20 News-
groups, Wiki10+, and Reuters dataset.

2. RELATEDWORK
For topic modeling of document collections, Latent
Dirichlet Allocation (LDA) has gained prominence. By
constructing a probability distribution across words, the
model seeks to reveal the hidden structure of documents
as a combination of topics. Non-parametric learning [23],
sparsity [24, 25] and efficient inference [26]are only a few
of the LDA versions that have been developed. The funda-
mental flaw in the LDA is that the order of words was not
taken into account because of the underlying use of ”bag
of words” [27]. To solve this issue, the Topic Keyword
Model (TKM) was created, which takes into account the
position word 𝑖 in a context [28]. TKM fully utilized the
critical idea of a joint probability 𝐷 × 𝑊 from the aspect
model [29] to highlight certain aspects of the topics in
the documents. TKM conceives the main ideas of the
aspect model, but in text documentations, the position 𝑖
of a word was also taken into consideration. A word’s
context was taken into account. This means that if a
word appears repeatedly in the same document but with
different neighboring words, each occurrence may have a
different probability. In [30] , a new version of LDA called
ProdLDA was released. This topic model substitutes the
mixture model used in LDA with a product of expert
distribution across particular words. In terms of topic
coherence score and qualitative assessment, ProdLDA
creates better topics than regular LDA. When the model
was tested based on accuracy, however, the results were
not similar, as shown in table 3.

Even with ideal reconstructions, autoencoders often
only extract simple representations of text data; how-
ever, by adding proper regularization to the models, more
meaningful representations can be generated. Many au-
toencoder versions have lately been proposed based on
this premise [19, 31, 32]. K-competitive autoencoders,
such as KATE, are recent autoencoders that perform well
on text classification tasks. KATE (K-competitive Autoen-
coder for TExt) builds on k-sparse for learning meaning-
ful representations by introducing competition among
hidden layer neurons. KATE’s approach is to select 𝑘win-
ner neurons composed of 𝑐𝑒𝑖𝑙𝑘/2 largest positive activa-
tions and 𝑓 𝑙𝑜𝑜𝑟𝑘/2 largest absolute negative activations,
which then gain the energy of loser neurons.

Overall, CSCAT’s technique is fairly similar to that
of traditional k-competitive autoencoders. However, we



choose the winners from among the strongest and weak-
est positive and negative neurons, guaranteeing more
equal competition and giving the weakest negative and
positive neurons a second chance. Second, before starting
the competitive process, we offer a filtration mechanism
that filters out incoherent neurons. This guarantees that
the winning neurons are distinctive and coherent.

Unsupervised learning has seen a lot of success with
generativemodels for learning fromunlabeled data. Deep
Belief Networks (DBN) are a type of deep generative
model in which the input data is reconstructed using a
deep autoencoder based on the top two layers of a direct
acyclic graph [33]. Maaloe et al. [16] introduced a topic
modeling approach based on DBN. The neural variational
inference (NVI) approach makes the deep generative
framework, such as variational autoencoders, suitable
for topic modeling [17]. Neural Variational Document
Model (NVDM) is a variational autoencoder based neural
network for document modeling [17]. One disadvantage
of NVDM is that it ignores the correlation between the
topics. Liu et al. [22] presented the Neural Variational
Correlated Topic Model (NVCTM), a centralized trans-
formation mechanism that reshapes topic distributions
to express links between topics. NVCTM consists of two
components: the inference network with a centralized
transformation flow and a multinomial softmax genera-
tive model. NVCTM’s efficiency in capturing perplexity,
topic coherence, and document categorization tasks has
been proven through rigorous testing. Although this
model frequently earns a high coherence score, its classi-
fication performance is inferior to that of other similar
models.

3. Approach

Autoencoders draw their technical advantage from con-
straining a bottleneck layer, often by reducing its dimen-
sions, to force the neural network to learn representative
features from the data, and then used to reconstruct the
data at the output layer. However, latent representation
layers usually learn the minimal set of trivial, redundant
features required to reconstruct the input data. When it
comes to topic modeling, features are frequently chosen
based on the most common words based on power-law
word distributions, which might hinder the whole pro-
cess and lead to ignoring important topics linked to less
frequent terms. Thus, we propose a competitive learn-
ing approach that not only encourages the competition
among the most significant activation values but also (1)
gives a second chance to the neurons with the weakest
activations and (2) inactivates the neurons with the low-
est coherence during training phase. Figure 2 illustrates
a toy example of the training process in CSCAT.

The competition criterion in our study is based on a

unique finding in the Neuroscience area that has already
spawned numerous novel deep learning approaches. Min-
gorance et al. [34] discovered that the kinase JNK (c-Jun
N-terminal protein kinase) gives the weaker neurons a
second chance before choosing the neurite that best meets
the criteria to produce an Axon. Weak neurons will never
have a chance to form anAxon unless there is a fair alloca-
tion of power. Without this fair redistribution of power,
weak neurons will never receive a chance to form an
Axon. Using this analogy, we designed our 𝑘-competitive
learning approach to provide the weakest activations a
second chance and then selecting the neurons that ac-
tivate after energy redistribution. Otherwise, neurons
with low power will never make into the autoencoder’s
latent features.

Our experiments reflect the findings of [35] from the
Neuroscience domain into the deep learning domain and
prove the correctness of our initial hypothesis–that some
essential features might be buried in neurons with low
activation values that never receive a chance to appear
in the fully-trained network due to initialization random-
ness or initial low frequency of important words. Based
on this idea, we suggested SCAT in a prior work and
then extended it with unique coherence-based filtering
mechanism in the CSCAT, which we present in this paper.
We explain the approach of CSCAT in the following.

3.1. Definition
We define CSCAT as a neural network accepting an input
vector 𝑥 ∈ ℝ𝑑 with 𝑑-dimensions, and 𝑊 ∈ ℝ𝑑×𝑚 is the
weight matrix, and ℎ1, ℎ2, …, ℎ𝑚 are the 𝑚 hidden layers,
and �̂� ∈ ℝ𝑑 is the output vector. The activation values at
the hidden layers are calculated as 𝑧 = 𝑔(𝑊𝑥 + 𝑏), where
𝑔 represents the activation function and 𝑏 is the bias at the
encoder side. We use 𝑡𝑎𝑛ℎ(𝑥) = 𝑒2𝑥−1

𝑒2𝑥+1 as the activation

function for the hidden neurons and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1+𝑒−1

as the activation function for the output neurons. The
output neurons are defined as �̂� = 𝑔(𝑊 𝑇𝑧 + 𝑐), where
𝑊 𝑇 is the weight matrix obtained by weight tying–
sharing–and 𝑐 is the bias at the decoder side. We use
the binary cross-entropy loss function, 𝑙(𝑥, �̂�), as defined
in Equation 1, where 𝑉 is the vocabulary of the dataset.

𝑙(𝑥, �̂�) = −∑
𝑖∈𝑉

𝑥𝑖𝑙𝑜𝑔( ̂𝑥𝑖) + (1 − 𝑥𝑖)𝑙𝑜𝑔(1 − ̂𝑥𝑖) (1)

Given a vocabulary 𝑉 and the number of times, 𝑛𝑖, a
word 𝑖 is mentioned, the input vectors, 𝑥𝑖, are calculated
as given in Equation 2.

𝑥𝑖 =
log(1 + 𝑛𝑖)

max𝑖∈𝑉 log(1 + 𝑛𝑖)
𝑓 𝑜𝑟 𝑖 ∈ 𝑉 (2)

Given our model definition, the CSCAT approach goes
through the following steps during the training phase at



Figure 2: Example illustrating CSCAT approach. All layers are fully-connected, but the connections are light-colored for
illustration purposes.

the bottleneck layer (see Algorithm 1): (1) filter out the
neurons based on a given coherence measurement, (2)
select top 𝑘 winner neurons, (3) inactivate loser neurons
and aggregate their power to the winner neurons, and
then continue the regular training process. Refer to Table
2 for a list of notations used in the rest of the paper. We
further explain each of the steps, as mentioned earlier in
the following.

3.2. Coherence-Based Rule
One of the major issues in clustering particularly in topic
modeling is that the final topic words are not coherent. In
fact, the association among the top words per topic could
be a good indication of the highly correlated words. In
training phase, we want to ensure that the words learned
by the model are logically consistent per topic.

Point-wise mutual information [36] is one measure
of the statistical independence of observing two words
in close proximity. Given a learned 𝑊, the practice to
extract top-N most probable words for each topic is to
take the most positive entries in each column. We define
the topic coherence metric NPMI [37] in Equation 3 as
follows:

𝑛𝑝𝑚𝑖(𝑇𝑖) =
𝑛
∑
𝑗=2

𝑗−1
∑
𝑖=1

log 𝑃(𝑇𝑤𝑖 ,𝑇𝑤𝑗)
𝑃(𝑇𝑤𝑖)𝑃(𝑇𝑤𝑗)

− log 𝑃(𝑇𝑤𝑖 , 𝑇𝑤𝑗)
(3)

where 𝑇𝑤𝑖 and 𝑇𝑤𝑗 are the topic word 𝑖 and 𝑗 in the sets of
filtered topics. 𝑤 is the list of top-N words for a topic. For
a model generating 𝑚 topics, the overall npmi score is an
average over all topics. However, since we incorporate
the coherence score into the training phase, we consider
the coherence of each topic separately. Thus, top-N word
of each topic 𝑇𝑖 will get a coherence score. This score
will be compared with the mean of scores, we refer to it
as 𝜃, and the topics that have coherence score less than
the mean will get inactivated during training phase. This
process helps in eliminating topics that may not lead to
a coherent topic.

𝜃 =
𝑚
∑
𝑖=1

𝑛𝑝𝑚𝑖(𝑇𝑖)
𝑚

(4)

where 𝑚 is number of topics. Thus, we compare each
𝑛𝑝𝑚𝑖(𝑇𝑖) with 𝜃 and select those that meet our condition;
having coherence greater or equal the average of coher-
ence across all topics.



Algorithm 1: Approach of Training Phase

procedure Training Phase:
for e in epochs do

𝑧 = 𝑡𝑎𝑛ℎ(𝑊𝑥 + 𝑏)
𝐻 = 𝑐𝑠𝑐𝑎𝑡_𝑙𝑎𝑦𝑒𝑟(𝑧)
𝐻 = 𝑠𝑐𝑎𝑡_𝑙𝑎𝑦𝑒𝑟(𝑘, 𝐻)
̂𝑧 = 𝑝𝑜𝑤𝑒𝑟_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑧, 𝐻)
�̂� = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 𝑇 ̂𝑧 + 𝑐)
𝑙𝑜𝑠𝑠 = 𝑐𝑟 𝑖𝑡𝑒𝑟 𝑖𝑜𝑛(𝑥, �̂�)
𝑏𝑎𝑐𝑘_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑊 ,𝑊 𝑇, 𝑙𝑜𝑠𝑠)

function cscat_layer(𝑧):
for each 𝑛𝑒𝑢𝑟𝑜𝑛 in 𝑧 do

𝐻 ← {𝑛𝑒𝑢𝑟𝑜𝑛 | 𝑛𝑝𝑚𝑖(𝑛𝑒𝑢𝑟𝑜𝑛) > 𝜃 }

function scat_layer(𝑘, 𝐻):
𝑠𝑝 = get_strongest_positive(𝑘/4, 𝐻)
𝑠𝑛 = get_strongest_negative(𝑘/4, 𝐻)
𝑤𝑝 = get_weakest_positive(𝑘/4, 𝐻)
𝑤𝑛 = get_weakest_negative(𝑘/4, 𝐻)
𝐻 ← [𝑠𝑝, 𝑠𝑛, 𝑤𝑝, 𝑤𝑛]

function power_aggregation(𝑧, 𝐻):
for each 𝑛𝑒𝑢𝑟𝑜𝑛 ∈ 𝑧 and ∉H do

𝑡𝑜𝑡𝑎𝑙_𝑒𝑛𝑒𝑟𝑔𝑦 += E(𝑛𝑒𝑢𝑟𝑜𝑛)
E(𝑛𝑒𝑢𝑟𝑜𝑛) = 0

for each 𝑛𝑒𝑢𝑟𝑜𝑛 ∈ 𝐻 do
E(𝑛𝑒𝑢𝑟𝑜𝑛) += 𝑡𝑜𝑡𝑎𝑙_𝑒𝑛𝑒𝑟𝑔𝑦

Table 1
The datasets included in our experiments

Dataset 20 Newsgroups Reuters Wiki10+
Train size 11314 554414 19972
Test size 7532 250000 1972

Validation size 1000 10000 1000
Vocabulary size 2000 5000 2000

Table 2
Notations

Notation Description
𝑚 Number of dimension (topics)
𝑘 Number of winner neurons
𝑧𝑠 Set of strongest activations
𝑧𝑤 Set of weakest activations
𝑛 Number of highest activations per topic
𝐸 Energy of the activations

3.3. Selecting K-Competitive Neurons
After filtering the neurons using their coherence scores
obtained in the previous step, we select the top strongest
and weakest, positive and negative activations per di-
mension 𝑚 among the eligible vectors. The selected top
𝑘 neurons, referred to as winners, will gain the activation

values of the loser neurons.
In particular, we select 𝑘/2 top strongest activation

values (positive and negative) and 𝑘/2 weakest activa-
tion values (positive and negative) neurons. Selecting the
neurons with the weakest activations in our approach
plays a critical role in identifying features that otherwise
are buried in weak signals. This is mainly supported by
the fact that weak activation values might be caused by,
especially in early training epochs: (1) initialization ran-
domness and (2) representing rare (less frequent) words
with small values in the vector space. To ensure that
weakest activations have a real potential to become rep-
resentative features, we track their behavior over training
cycles and only keep the neurons that illustrate improve-
ment over time. Otherwise, they are removed from the
competition process. For example, lets assume that 𝑧𝑝𝑤
= {𝑧𝑤1 , 𝑧𝑤2 , … , 𝑧𝑤𝑘} is the set of weakest selected neurons
in the previous iteration. We will re-evaluate the values
of these activations, after being considered winners and
aggregated new power, to only keep those that grow in
power during subsequent iterations, as follows:

|𝑧𝑝𝑤𝑖 | ≤ |𝑧𝑝+1𝑤𝑖 | 𝑓 𝑜𝑟 𝑖 ∈ 𝑚 (5)

3.4. Neuron Power Aggregation
After winner neurons are selected, they add the total
activation values from all loser neurons to their current
activation value (we refer to this process as neuron power
aggregation). Loser neurons are then inactivated (i.e.,
assigned the value 0). Algorithm 1, 𝑝𝑜𝑤𝑒𝑟_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
function defines this step; where it first calculates the
total energy of the loser neurons, assign them to 0, and
finally adds this total energy to the winner neurons. Note
that the base case scenarios are not included in the algo-
rithm for simplicity.

4. Experiments
We evaluate the performance of CSCAT on several tasks
compared to the current state-of-the-art models. First, we
briefly discuss the used datasets and the relevant baseline
models. All experiments were performed using Nvidia Ti-
tan RTX GPU with 64G RAM. We implemented our mod-
els using Keras version 2.2.4 [38] with TensorFlow 1.13
backend [39]. We used an internal model management
tool, called ModelKB, to keep track of our experiments
[40, 41]. We used three datasets in our experiments: 20
Newsgroups [42], Reuters [43], and Wiki10+ [44]. The
details about the datasets are listed in Table 1.

4.1. Baseline Models
The results of our CSCAT model are compared to the
following models:



Table 3
Document Classification Results

Model 20 Newsgroups Wiki10+ Reuters
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

LDA [21] 0.42 0.50 0.46 0.72 0.45 0.56 0.70 0.49 0.44
k-sparse [19] 0.42 0.42 0.42 0.72 0.45 0.56 0.80 0.50 0.62
NVCTM [22] 0.57 0.56 0.57 - - - - - -
KATE [11] 0.70 0.70 0.70 0.73 0.45 0.56 0.70 0.49 0.61

ProdLDA [11] 0.53 0.53 0.53 0.49 0.45 0.47 0.51 0.56 0.47
CSCAT (ours) 0.71 0.71 0.71 0.61 0.59 0.62 0.81 0.52 0.61

1. LDA [21]: a probabilistic topic model that uses
the bag-of-words technique to model a topic and
a mixture of topics to model a document.

2. K-sparse [19]: an autoencoder that enforces spar-
sity in the hidden layers by keeping the 𝑘 highest
activities in the training phase and the 𝛼𝑘 highest
activities in the testing phase. k-sparse uses linear
activation functions, while the non-linearity in
the model derives from the selection of 𝑘 highest
activities.

3. NVCTM [22]: a novel model that proposes the
idea of centralized transformation flow to capture
the correlations among topics by reshaping topic
distributions. The implementation of this model
is not available, so we compared our results to
the results reported in their original paper.

4. KATE [11]: a shallow autoencoder model with
a competitive hidden layer selects the k largest
positive neurons and largest absolute negative
neurons. Moreover, KATE uses an additional hy-
perparameter 𝛼 to amplify the energy value.

5. ProdLDA [30]: a new topic model that replaces
the mixture model in LDA with a product of ex-
pert.

4.2. Quantitative Analysis
In this section, we analyze the performance of CSCAT
compared to the models mentioned above on two tasks:
multi-class classification using the dataset of 20 News-
groups and multi-label classification using the Wiki10+
and Reuters datasets. The results of both tasks are re-
ported in Table 3. We also compare and report the topic
coherence scores of these models.

4.2.1. Multi-class classification

This task included training a simple softmax multi-class
classifier with a cross-entropy loss function on the 20
Newsgroups dataset. The classification precision, recall,
and F1 scores are listed under the 20 Newsgroups column
in Table 3. We set the number of topics to 50, and 𝑛
(number of highest positive activations to consider for

Table 4
Coherence Score Evaluation Results

Model T = 25 T = 50
LDA [21] 0.112 0.140

k-sparse [19] 0.093 0.090
NVCTM [22] 0.180 0.176
KATE [11] 0.073 0.101

ProdLDA [11] 0.251 0.240
CSCAT (ours) 0.151 0.118

the coherence comparison among topic vectors) for all
the experiments is set to 15. Changing 𝑛 from 10 to 50
had little differences in the model’s performance, so we
kept 𝑛 = 15, which achieved best results. Also, note that
we did not run the experiment on the NVCTM model,
rather we obtained these results from its research paper.

It is obvious from the table that competition-based
autoencoders achieve better results than conventional
models, such as LDA. For example, KATE achieves 70%
for all three measurements outperforming NVCTM, K-
sparse, and LDA, but CSCAT outperform all listed models
achieving 0.71 scores on all three measures.

4.2.2. Multi-label classification:

we implemented amulti-label logistic regression classifier
with a cross-entropy loss function to evaluate the models
on the multi-label classification task using Wiki10+ and
Reuters datasets. The precision, recall, and F1 scores of
these experiments are also listed in Table 3. Note that due
to the missing implementation of the NVCTM model, we
could not reproduce the results reported in the original
paper.

We observe from the table that there are some incon-
sistencies among the results of this task. We believe
that this is because those two datasets, i.e., Wiki10+ and
Reuters, are highly-imbalanced. Thus, there exist some
differences among the precision on the one hand and
the recall on the other hand. KATE wins the precision
accuracy in the Wiki10+ task while CSCAT wins both
the recall and F1 scores. We also observe that CSCAT
significantly outperform the rest of the models.



Figure 3: Topic visualization: Religion

Figure 4: Topic visualization: Politics

4.2.3. Topic Coherence

We used a topic coherence measurement that is known to
have a human-level judgment, called Normalized Point-
wise Mutual Information (NPMI) [45]. We evaluated
NPMI across all the models using the 20 Newsgroups. We
extracted the top-10 words per topic and then computed
the NPMI scores as illustrated in Equation (6), using topic
numbers, 𝑇 = 25, 50.

The results of the NPMI are illustrated in Table 4. We
notice that CSCAT achieves scores of 0.151 for 25 top-
ics and 0.118 for 50 topics compared to NVCTM, which
scores of 0.180 and 0.176 for 25 and 50 topics, consecu-
tively. However, this higher coherence score in NVCTM
comes with a lower classification accuracy compared to
both SCAT and CSCAT, as explained in the previous sub-
section in addition to lower performance at the document
visualization task, as we explain in the following subsec-
tion. Overall, CSCAT achieves the second-best coherence
score results among the results of the models.

𝑛𝑝𝑚𝑖(𝑁 ) =
𝑁
∑
𝑗=2

𝑗−1
∑
𝑖=1

log 𝑃(𝑤𝑖,𝑤𝑗)
𝑃(𝑤𝑖)𝑃(𝑤𝑗)

− log 𝑃(𝑤𝑖, 𝑤𝑗)
(6)

4.3. Qualitative Analysis
In this section, we illustrate that our models can learn
semantically meaningful representations from textual
data. We compare our results to the baseline models,
including LDA, K-sparse, and KATE and ProdLDA using
the 20 Newsgroups dataset, with the number of topics
set equal to 25. The results are listed in figure 3, 4 and 5
for religion, politics and sports.

We can observe from the figures that our CSCATmodel
generates the most semantically meaningful topics. Here,
we show three topics. The top 10 words learned from
the Religion category: “resurrection”, “doctrine”, “scrip-
ture”, “testament”, “holy”, “jesus”, “spirit”, “christ” and
“faith” are strongly related to Religion. CSCAT also learns
meaningful representation for the Sport category, includ-
ing words like “players”, “baseball”, “playoffs”, “leafs”,

Figure 5: Topic visualization: Sport



“scoring”, “league”, and “scored” and under Politics topic
words like “congress”, “senate”, “clinton”, “president”,
“secretary”, “administration” which represent the most
meaningful representations among the rest of the words
generated by other models.

5. Conclusions
CSCAT is a new autoencoder for textual data based on the
concept of competitive learning, in which only 𝑘 neurons
of the bottleneck layer engage in the learning process
while the rest are inactivated. Those winning neurons be-
come highly specialized in learning specific properties as
a result of the competition. Unlike prior techniques that
introduced competition between the strongest positive
and negative neurons, our method removes extremely
incoherent neurons first and then adds a competition for
the highest and lowest positive and negative neurons in
the autoencoder’s bottleneck layer.

Our thorough experiments showed that our method
delivers very close or higher performance on a variety
of textual data applications, such as classification and
topic modeling. Furthermore, compared to the baseline
models we examined in this paper, our model returns
more semantically meaningful topics. Our approach can
also be used to reduce the dimensionality of textual data.
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