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Abstract
Acronym extraction plays an important role in scientific document understanding. Recently, the AAAI-22 Workshop on
Scientific Document Understanding released multiple high-quality datasets and attracted widespread attention. In this work,
we present our hybrid strategies with adversarial training for this task. Specifically, we first apply pre-trained models to obtain
contextualized text encoding. Then, on the one hand, we employ a sequence labeling strategy with BiLSTM and CRF to tag
each word in a sentence. On the other hand, we use a span selection strategy that directly predicts the acronym and long-form
spans. In addition, we adopt adversarial training to further improve the robustness and generalization ability of our models.
Experimental results show that both methods outperform strong baselines and rank high on the SDU@AAAI-22 - Shared
Task 1: Acronym Extraction, our scores rank 2nd in 4 test sets and 3rd in 3 test sets. Moreover, the ablation study further
verifies the effectiveness of each component. Our code is available at https://github.com/carlyoung1999/AAAI-SDU-Task1 .
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1. Introduction
An acronym consists of the initial letters of the corre-
sponding terminology and is widely used in scientific
documents for its convenience. However, this also makes
it difficult to understand scientific documents for both
humans and machines. In natural language processing,
accurate acronym extraction is beneficial for the down-
stream applications like question answering [1], defini-
tion extraction [2] and relation extraction [3, 4]. Recently,
SDU@AAAI-22 released multiple datasets [5] for scien-
tific document understanding, andwe focus on the task of
acronym extraction [6], which aims to extract acronyms
and their corresponding explanations (long-forms); a toy
example can be seen in Figure 1.

Traditional approaches utilize rule-based pattern [7]
or manual features [8] which are labor-force and time-
consumed. Recently, deep learning based methods [9, 10]
are preferred for their better performance and end-to-end
learning.

In this paper, we propose two strategies for acronym
extraction, sequence labeling strategy and span selection
strategy. Specifically, we first use pre-trained language
models like BERT [11] or RoBERTa [12] to obtain contex-
tualized word representations. Then, we utilize BiLSTM

The second workshop on Scientific Document Understanding at AAAI
2022
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open lisiheng21@mails.tsinghua.edu.cn (S. Li);
yangc21@mails.tsinghua.edu.cn (C. Yang);
liangt21@mails.tsinghua.edu.cn (T. Liang);
zhuxy21@mails.tsinghua.edu.cn (X. Zhu);
ycz21@mails.tsinghua.edu.cn (C. Yu);
yang.yujiu@sz.tsinghua.edu.cn (Y. Yang)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Input:

Existing methods for learning with noisy labels (LNL) 

primarily take a loss correction approach.

Output:

Acronym: LNL

Long-form: learning with noisy labels 

Figure 1: An example of Acronym Extraction.

to capture feature interactions between adjacent words
further and employ CRF to model the dependency be-
tween sequence labels for the sequence labeling strategy.
As for the span selection strategy, we use binary tag-
gers to predict the start and end index for acronyms or
long-forms. To further improve our models’ robustness
and generalization ability, we employ adversarial train-
ing, which dynamically adds noise to avoid overfitting.
These two strategies get comparable performance, and
we choose the better one for evaluation according to their
performance in the development set. Our contributions
are as follows:

• We propose two strategies for acronym extrac-
tion, sequence labeling and span selection.

• Our adversarial training further improves the ro-
bustness and generalization ability of our models.

• Experiments show that our models outper-
form strong baselines and rank high in the
SDU@AAAI-22 - Shared Task 1: Acronym Ex-
traction.

mailto:lisiheng21@mails.tsinghua.edu.cn
mailto:yangc21@mails.tsinghua.edu.cn
mailto:liangt21@mails.tsinghua.edu.cn
mailto:zhuxy21@mails.tsinghua.edu.cn
mailto:ycz21@mails.tsinghua.edu.cn
mailto:yang.yujiu@sz.tsinghua.edu.cn
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


2. Related Works
In this section, we introduce the related studies for
acronym extraction, including Rule-based, LSTM-based,
and Pre-trained-based methods.

2.1. Rule-based
Traditional acronym extraction methods mainly focus
on rule-based methods. Specifically, most of them [13]
utilize generic rules or text patterns to discover acronym
expansions in the field of biomedicine. Torres-Schumann
and Schulz [14] further extend rule sets to hiddenMarkov
models and improve both recall and precision values. Re-
cently, a new work [15] has made a comprehensive intro-
duction to the rule-based machine identification meth-
ods. They comprehensively classify present Rule-based
models, analyze two separate approaches (a machine al-
gorithm and a crowd-sourcing approach), and compare
them in detail. However, Due to the conservative nature
of rule-based models, this method requires complicated
manual formulations and lacks flexibility.

2.2. LSTM-based
Taking advantage of LSTM [16]’s power for text model-
ing, LSTM-based methods has got decent performance in
acronym extraction. They mainly focus on better seman-
tic representations and attention mechanisms. DECBAE
[17] extracts contextualized features with BioELMo [18]
and provides these features to specific abbreviated BiL-
STMs, achieving good performance. In addition, they
use a simple but effective heuristic method for automat-
ically collecting datasets from a large corpus. Li et al.
[19] propose a novel topic-attention model and compare
the performance of different attention mechanisms em-
bedded in LSTM and ELMo. Their model is applied to
the acronym task of medical terms. To further capture
the dependency between sequence labels, Veyseh et al.
[20] propose to combine LSTM with CRF for Acronym
identification and Disambiguation.

2.3. Pre-trained-based
Language models pre-trained with a large corpus have
shown promising performance in lots of downstream
tasks. One of the most popular is Bidirectional Encoder
Representations from Transformers (BERT) [21], which
obtains rich semantic representations by Masked LM task
in the pre-training stage. BERT has been applied to many
NLP tasks like information extraction [22] and dialogue
state tracking [23].

In addition, it is worth mentioning that there have
beenmany fine-grained improvements or specific domain
variants of BERT. RoBERTa [12] optimizes the training

strategy with BPE (Byte-Pair-Encoding) and dynamic
masking to increase shared vocabulary, thus providing
more fine-grained representations and stronger robust-
ness. SciBERT [24] has the same structure as BERT, while
it is well pre-trained to process scientific documents
specifically. Many works utilize the power of pre-trained
models for acronym extraction. Pan et al. [25] proposes
a multi-task learning method based on BERT-CRF and
BERT-Span, which makes full use of these two separate
models through redefining the fusion loss function and
achieves great performance. Li et al. [26] utilizes Sen-
tence Piece byte-pair encoding to relabel sentences. Then,
they are embedded into the XLNet [27] for processing.

3. Methodology

3.1. Task Formulation
Given a text𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑙}where each 𝑥𝑖 is a word and
𝑙 represents text length, acronym extraction aims to find
all acronyms and long-forms mentioned in this text. For-
mally, the model needs to automatically extract acronym
mention set 𝒜 = {[𝑠1, 𝑒1), [𝑠2, 𝑒2), ..., [𝑠𝑛, 𝑒𝑛)}, where 𝑠𝑖 and
𝑒𝑖 denotes the start and end position of the i-th acronym
respectively. In addition, the model also needs to extract
long-form mention set ℬ = {[𝑠1, 𝑒1), [𝑠2, 𝑒2), ..., [𝑠𝑚, 𝑒𝑚)},
similar with 𝒜.

3.2. Overview
Wedescribe our hybrid strategies to extract acronyms and
long-forms in this section. At first, we use pre-trained
models for tokenizing and encoding the original sentence.
Then, we employ a BiLSTM-CRF head to model acronym
extraction as a sequence labeling task and a BiLSTM-Span
head to model it as a span selection task. In addition, to
improve the robustness and generalization of our models,
we apply adversarial training techniques.

3.3. BERT Encoder
We adopt BERT or RoBERTa as a text encoder to capture
rich contextualized word embeddings. For brevity, we
use BERT to indicate both BERT and RoBERTa following.
Given the input 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑙}, with the help of deep
multi-head attention layers, BERT captures contextual-
ized representation for each token. The encoding process
is as follows:

𝐻 = BERT([𝑥1, 𝑥2, ..., 𝑥𝑙]) = [ℎ1, ℎ2, ..., ℎ𝑙]𝑇, (1)

where 𝐻 ∈ ℝ𝑙×𝑑, and 𝑑 denotes hidden dimension.
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Figure 2: The model architecture of our Sequence Labeling
strategy.

3.4. Sequence Labeling Strategy
For this strategy, we first transform the character-level
position labels provided by raw datasets to token-level
BIO labels as follows:

• B-Acronym: Beginning of an acronym.
• I-Acronym: Inside of an acronym.
• B-Long: Beginning of a long-form.
• I-Long: Inside of a long-form.
• O: Outside of any acronym and long-form.

To solve this sequence labeling problem, we adopt
a BERT-BiLSTM-CRF method, and the architecture is
shown in Figure 2. First, we utilize a BiLSTM network
to capture feature interactions between adjacent words
further:

𝐻 ′ = BiLSTM(𝐻), (2)

where 𝐻 ′ ∈ ℝ𝑙×2𝑑. Then, a linear classifier transforms 𝐻 ′

into the logits of 5 BIO labels defined above:

𝐿 = [𝐿0, 𝐿1, 𝐿2, 𝐿3, 𝐿4] = 𝐻 ′𝑊𝐿, (3)

where 𝑊𝐿 ∈ ℝ2𝑑×5 and 𝐿 = [𝐿0, 𝐿1, 𝐿2, 𝐿3, 𝐿4] ∈ ℝ𝑙×5 are
the logits.

To model the dependency between sequence labels,
we adopt a Linear Chain CRF (Conditional Random Field)
[28], the probability of a tagged sequence is:

𝑃(𝑌 |𝑋) =
exp(∑𝑙

𝑖=1 𝜑(𝑦𝑖|𝑥𝑖) + ∑𝑙
𝑖=1 𝜓(𝑦𝑖|𝑦𝑖−1))

𝑍(𝑋)
, (4)

where 𝑌 = [𝑦1, 𝑦2, ..., 𝑦𝑙] is the ground truth label se-
quence and 𝑦𝑖 is the label for 𝑖-th token. 𝜑(⋅) represents
emission scorer which refers to the logits 𝐿 above. 𝜓(⋅)
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Figure 3: The model architecture of our Span Selection
strategy.

denotes transition scorer in CRF and is a learnable matrix
practically. 𝑍(𝑋) is the normalization factor to constraint
the probability in (0, 1). The loss function is negative log-
likelihood :

ℒ𝑆𝐿 = − log(𝑃(𝑌 |𝑋)). (5)

For the inference, we use the Viterbi algorithm [28]
for decoding the best label sequence.

3.5. Span Selection Strategy
We also formulate it as an extractive span selection task,
aiming to find the text span of acronyms and long-forms
directly. Similar to the sequence labeling strategy, we
transform the character-level labels [𝑠𝑡𝑎𝑟 𝑡 , 𝑒𝑛𝑑) provided
by raw datasets to token-level [𝑠𝑡𝑎𝑟 𝑡 , 𝑒𝑛𝑑) for the follow-
ing token classification.

We adopt the same BERT encoder and LSTM network
as above to get contextualized word representations 𝐻 ′ ∈
ℝ𝑙×2𝑑. Then we construct four binary taggers:

• S-Acronym Tagger predicts whether a token is
the start of an acronym.

• E-Acronym Tagger predicts whether a token is
the end of an acronym.

• S-Long Tagger predicts whether a token is the
start of a long-form.

• E-long Tagger predicts whether a token is the
end of a long-form.

We apply a simple linear layer to represent these tag-
gers which work as follows:

𝐿 = [𝐿0, 𝐿1, 𝐿2, 𝐿3] = 𝐻 ′𝑊𝑆, (6)



Method
English Persian Vietnamese

P R F1 P R F1 P R F1

Rule 0.33 0.15 0.20 0.95 0.44 0.60 0.82 0.39 0.53
BERT 0.82 0.85 0.83 0.94 0.47 0.63 0.82 0.73 0.77
RoBERTa 0.84 0.88 0.86 0.94 0.52 0.67 0.97 0.48 0.64
Ours-SL 0.86 0.88 0.87 0.87 0.59 0.70 0.98 0.65 0.78
Ours-SS 0.86 0.89 0.87 0.84 0.67 0.73 0.81 0.91 0.85

Table 1
Performance comparison on the development sets of scientific domain.

Ranking
English Persian Vietnamese

P R F1 P R F1 P R F1

1 0.89 0.92 0.90 0.76 0.82 0.79 0.85 0.82 0.84
2 0.89⋆ 0.89⋆ 0.89⋆ 0.60⋆ 0.69⋆ 0.63⋆ 0.83 0.84 0.83
3 0.85 0.87 0.86 0.92 0.43 0.59 0.96⋆ 0.62⋆ 0.76⋆
4 0.83 0.88 0.86 0.64 0.51 0.57 0.64 0.66 0.65

Table 2
Performance comparison on the test sets of scientific domain, ⋆ indicates the score of our model.

where 𝑊𝑆 ∈ ℝ2𝑑×4, and 𝐿 = [𝐿0, 𝐿1, 𝐿2, 𝐿3] ∈ ℝ𝑙×4 are
logits for 4 classes declared above. The loss function is
binary cross entropy:

ℒ𝑆𝑆 =
𝑙

∑
𝑖=0

3
∑
𝑗=0

[−𝑦 𝑗𝑖 ⋅log(𝜎(𝑙
𝑗
𝑖 ))+(1−𝑦

𝑗
𝑖 )⋅log(1−𝜎(𝑙

𝑗
𝑖 ))], (7)

where 𝑦 𝑗𝑖 is the label for 𝑖-th token regarding class 𝑗, 𝑙 𝑗𝑖 is
the logit for 𝑖-th token regarding class 𝑗, and 𝜎(𝑥) denotes
sigmoid function.

For the inference, we first predict the class label of
each token. Then, we match each S-Acronym token with
the nearest E-Acronym token to get an acronym. The
operation for long-form is the same.

3.6. Adversarial Training
To enhance the robustness and generalization ability of
our models, we adopt adversarial training. Specifically,
given an input 𝑋, we incorporate a posterior regulariza-
tion mechanism [29]:

ℒ𝐴𝑑𝑣 = max
‖𝜖‖≤𝑎

∑Div(𝑓𝜃(𝑋)||𝑓𝜃(𝑋 + 𝜖)), (8)

where Div is some f-divergence1, 𝜖 is noise, 𝑎 is noise
norm and 𝑓𝜃 represents the predict function in our mod-
els, like CRF tagger and Binary taggers. This loss regular-
izes the posterior difference between original and noisy
inputs to avoid overfitting. Practically, we use an inner
loop to search the most adversarial direction.

1We use Jensen-Shannon divergence in our experiments.

Datasets Training Development Test

English Scientific 3980 497 498
Persian 1336 167 168
Vietnamese 1274 159 160

English Legal 3564 445 446
French 7783 973 973
Spanish 5928 741 741
Danish 3082 385 386

Table 3
Statistics of the datasets, the first three belongs to scientific
domain while the others belongs to legal domain.

3.7. Objective Function
We jointly train our models with adversarial training, for
sequence labeling strategy:

ℒ = ℒ𝑆𝐿 + 𝛼ℒ𝐴𝑑𝑣. (9)

For span selection strategy:

ℒ = ℒ𝑆𝑆 + 𝛼ℒ𝐴𝑑𝑣. (10)

The 𝛼 is used for controlling the significance of adversar-
ial training.

4. Experiments

4.1. Datasets
Our experiments are conducted on the official dataset
of SDU@AAAI-22 - Shared Task 1: Acronym Extrac-



Method
English French Spanish Danish

P R F1 P R F1 P R F1 P R F1

Rule 0.32 0.10 0.16 0.22 0.06 0.10 0.17 0.07 0.10 0.10 0.06 0.08
BERT 0.88 0.87 0.88 0.94 0.94 0.94 0.89 0.90 0.89 0.93 0.94 0.93
RoBERTa 0.87 0.88 0.88 0.78 0.76 0.77 0.88 0.88 0.88 0.90 0.92 0.91
Ours-SL 0.88 0.88 0.88 0.95 0.94 0.94 0.90 0.90 0.90 0.94 0.95 0.94
Ours-SS 0.89 0.88 0.89 0.95 0.93 0.94 0.90 0.90 0.90 0.95 0.93 0.94

Table 4
Performance comparison on the development sets of legal domain.

Ranking
English French Spanish Danish

P R F1 P R F1 P R F1 P R F1

1 0.90 0.92 0.91 0.94 0.95 0.94 0.90 0.91 0.91 0.95 0.98 0.96
2 0.88⋆ 0.91⋆ 0.90⋆ 0.92⋆ 0.93⋆ 0.93⋆ 0.90 0.91 0.90 0.95 0.97 0.96
3 0.87 0.91 0.89 0.93 0.92 0.92 0.90⋆ 0.90⋆ 0.90⋆ 0.95⋆ 0.95⋆ 0.95⋆
4 0.87 0.90 0.88 0.81 0.80 0.81 0.90 0.90 0.90 0.89 0.90 0.89

Table 5
Performance comparison on the test sets of legal domain, ⋆ indicates the score of our model.

Method
English Scientific

P R F1

Ours-SL 0.86 0.88 0.87
Ours-SL w/o CRF 0.84 0.88 0.86
Ours-SL w/o AT 0.86 0.87 0.86

Ours-SS 0.86 0.89 0.87
Ours-SS w/o AT 0.86 0.87 0.86

Table 6
Ablation studies in the development set of English Scientific.

tion. They provide the data of scientific domain includ-
ing English, Persian and Vietnamese; and legal domain
including English, French, Spanish and Danish. Table 3
summarizes the statistics of datasets used in our experi-
ments.

4.2. Baselines
To investigate the effectiveness of our proposed approach,
we compare it with the following three baselines:

• Rule-based This method utilizes a manually de-
signed pattern to extract acronyms and is pro-
vided by SDU@AAAI-22 2.

• BERT-based This method employs BERT [21] as
a text encoder to get contextualized word repre-
sentation, then employs a classification head to
tag each word.

2https://github.com/amirveyseh/AAAI-22-SDU-shared-task-1-AE

• Roberta-based This is similar with above, ex-
cept RoBERTa [12] as text encoder.

4.3. Implementations
For baselines, we select pre-train models trained with
corresponding language corpora in HuggingFace Trans-
formers [30]. As for ours, we adopt the best pre-trained
models according to their performance in the develop-
ment set. Specifically, we adopt roberta-base3 for En-
glish, roberta-fa-zwnj-base-ner4 for Persian, bert-base-
vi-cased5 for Vietnamese, bert-base-fr-cased6 for French,
bert-base-es-cased7 for Spanish and danish-bert-botxo-
ner-dane8 for Danish.

We tune the hyper-parameters according to the perfor-
mance in the development set. For the sequence labeling
strategy, the batch size, LSTM layer, LSTM hidden size,
adversarial training weight are 8, 1, 256, 0.1, respectively.
The batch size, LSTM layer, LSTM hidden size, and ad-
versarial training weight for our span selection strategy
are 16, 1, 256, and 1.0. We run all experiments using
PyTorch 1.9.1 on the Nvidia GeForce RTX 3090 GPU, In-
tel(R) Xeon(R) Platinum 8260L CPU on Ubuntu 18.04.4
LTS OS. Our code will be released soon.

3https://huggingface.co/roberta-base
4https://huggingface.co/HooshvareLab/roberta-fa-zwnj-base-ner
5https://huggingface.co/Geotrend/bert-base-vi-cased
6https://huggingface.co/Geotrend/bert-base-fr-cased
7https://huggingface.co/Geotrend/bert-base-es-cased
8https://huggingface.co/Maltehb/danish-bert-botxo-ner-dane



4.4. Results
4.4.1. Scientific Domain

The comparison between the proposed model and base-
line models is shown in Table 1. The main observations
can be summarized as follows:

• Compared with manually designed rule-based
methods, pre-trained model-based methods have
huge advantages because they can capture rea-
sonable word representations.

• The difference between the BERT model and
RoBERTa model is remarkable. We conjecture
this is due to the datasets being small; thus, the
results depend more on the power of the pre-
trained model.

• Our two strategies get similar results and outper-
form all baseline methods. We submit the better
one for testing.

Table 2 shows the top 4 scores in the test sets of the
scientific domain; our method gets decent performance
and ranks 2st in English and Persian, 3st in Vietnamese.

4.4.2. Legal Domain

The comparison is shown in Table 4, the observations are
similar with Scientific Domain, and our method outper-
forms all baseline models stably. Table 5 shows the top
4 scores in the test sets; our method gets decent perfor-
mance and ranks 2 in English and French, 3 in Spanish
and Danish.

4.5. Ablation Study
To further prove the effectiveness of each component, we
run ablation studies on the development set of English
Scientific, as shown in Table 6. We find that: (1) for our
sequence labeling strategy, CRF is necessary because it
helps capture the dependency between sequence labels.
(2) adversarial training is beneficial to both strategies by
adding reasonable noises, which improve our models’
robustness and generalization performance.

5. Conclusion
In this paper, we explore and propose two strategies
with adversarial training for SDU@AAAI-22 - Shared
Task 1: Acronym Extraction. Experiments show that
our methods outperform strong baseline methods in all
7 datasets. In addition, our score ranks high in the test
sets. For future work, we will try to solve the problem of
class imbalance in both strategies.
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