
A Framework for Automated Text Generation
Benchmarking
Steven Layne1,2, Sebastian Gehrmann3, Franck Dernoncourt1, Lidan Wang1, Trung Bui1 and
Walter Chang1

1Adobe Research
2University of Illinois Urbana Champaign
3Harvard University

Abstract
Researchers in areas such as translation and summarization need to compare their results to a wide range of published baselines
that commonly use different evaluation methods. We aim to enable an easy comparison by presenting TextGen-Benchmarch,
an open-sourced tool1 for streamlining the generation and evaluation of text. Text generation methods and evaluation metrics
can easily be added to TextGen-Benchmarch, and its pipeline results in a more efficient comparison between methods as
users can supply corpora, systems, and evaluation techniques and receive comparison reports in easy to analyze tabular and
graphic formats.

Keywords
Summarization, Text generation, evaluation

1. Introduction
An in-depth evaluation and a fair comparison to the cur-
rent literature are crucial parts in the development of
Machine Learning (ML) systems. In addition to model-
specific investigations, this evaluation process typically
includes automated metrics that allow predictions to be
compared to those of other approaches. However, subtle
differences in output formatting or evaluation metrics
can lead to drastically different reported results [1]. It is
thus of particular importance to ensure a homogeneous
evaluation environment that applies the same evaluation
to each system output.
In the case of (conditional) text generation problems,

the goal is to generate text that is conditioned on an in-
put and subject to constraints defined by the task, for
example, the length. Depending on the task, there are
various metrics that can be applied for the evaluation,
such as ROUGE [2, 3], METEOR [4], BLEU [5], NIST [6],
or CIDEr [7]. A commonality between these metrics is
that all of them compare a generated text against one or
many, typically human-generated, references. These ref-
erences are a demonstration of what an adequate result

The AAAI 2022 Workshop on Scientific Document Understanding
Envelope-Open stevenlayne2017@u.northwestern.edu (S. Layne);
gehrmann@seas.harvard.edu (S. Gehrmann);
franck.dernoncourt@gmail.com (F. Dernoncourt);
lidwang@adobe.com (L. Wang); bui@adobe.com (T. Bui);
wachang@adobe.com (W. Chang)
GLOBE http://francky.me/ (F. Dernoncourt)
Orcid 0000-0002-8257-9516 (S. Gehrmann); 0000-0002-1119-1346
(F. Dernoncourt)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

should look like for a given task and input. The metrics
are used to give a quantitative measure of quality for
generated text with respect to the reference(s). However,
every metric uses different input and output formats.
Moreover, some metrics like ROUGE and METEOR can
be configured with multiple parameters. For example, the
𝛼 parameter in ROUGE mediates the preference for preci-
sion or recall for computing F-Measures [8]. Any change
in the selection of options results in a different result and
the evaluation options are typically not reported along
with published results. Thus, it is necessary to compare
outputs of multiple systems with the same options across
multiple metrics to ensure a fair comparison.
We propose TextGen-Benchmarch, which simplifies

the process of model evaluation by streamlining the
benchmarking process and enabling the quick compar-
ison of text-generation systems for a given task. The
framework is agnostic to the underlying problem and
implements a wide range of common evaluation metrics.
Moreover, TextGen-Benchmarch provides a simple API
to include additional models. During the evaluation, it
can use either cached or user-provided predictions or use
the model API to run inference on a given sample. We
demonstrate the effectiveness of the tool for the problem
of extractive summarization and show how it can make a
comparison between related approaches easier and more
well-rounded.

2. Related Work
Some tools encapsulate different metrics into a single li-
brary so that users can evaluate their hypotheses against
references using a shared interface.While these tools suc-

mailto:stevenlayne2017@u.northwestern.edu
mailto:gehrmann@seas.harvard.edu
mailto:franck.dernoncourt@gmail.com
mailto:lidwang@adobe.com
mailto:bui@adobe.com
mailto:wachang@adobe.com
http://francky.me/
https://orcid.org/0000-0002-8257-9516
https://orcid.org/0000-0002-1119-1346
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Corpus

User- or Model-Generated Text

Framework

Text-Generator Evaluator Plots

Scoresf(y, ŷ)

Figure 1: Demonstration of the TextGen-Benchmarch pipeline. The framework uses the Evaluator to compare gold-references
against predictions and generates plots and tables to summarize the results. The predictions can either take the form of
predefined user-input, cached outputs from previous runs, or generated with the Text-Generator module that can be extended
with any model.

cessfully enable the evaluation of a specific system, they
are limited to a single system at a time. Therefore, each
user is required to develop their own comparison.
Some libraries are also restricted in the compatible

input formats. For example, the COCO (Common Objects
in Context) Caption evaluation library [9] provides an
interface that was created to evaluate captioning results.
It has support for BLEU, METEOR, ROUGE-L, CIDEr, and
SPICE. The evaluation library enables users of COCO
caption to streamline the evaluation of their results but is
limited to COCO-compatible input objects as the library
was intended to be used in the context of the MS-COCO
Evaluation Server [9].
Other libraries can compare models with different in-

put formats, but only for limited tasks. For example,
Spark provides ML Pipelines 1, a high-level API for their
data handlers. At the end of a pipeline, users may pass
their results to evaluators which are designed for clas-
sification and regression models, and do not serve text
generation models.

3. System Overview
The TextGen-Benchmarch framework is built in Python
and provides a pipeline as illustrated in Figure 1. Before
starting, TextGen-Benchmarch parses a configuration file
that contains (1) the paths to datasets, (2) the systems,
and (3) the metrics to be used. It additionally allows for
descriptors for the text format. For example, if sentences
are surrounded by tags that should be ignored during
evaluation, it can be specified here. Any specified dataset
must contain two sub-folders samples and gold. The

1https://spark.apache.org/docs/latest/mllib-evaluation-
metrics.html

gold folder contains files with line separated references.2

Samples are read in using Python’s file-stream which
ensures minimal memory usage. The references can be
stored as either plain-text or as a JSON file to enable
multiple references. Here, each line should be formatted
as follows:

{ ” r e f e r e n c e s ” :
[” r e f 1 ” , ” r e f 2 ” , ” r e f 3 ”]

}

TextGen-Benchmarch loads samples from the datasets
specified in the configuration file. It parses the files and
passes one document at a time to the Text-Generator.
The Text-Generator returns model-generated text, which
is then stored in the file system to be used during eval-
uation. Users may provide their own generated text in
conjunction with model-generated texts or skip text gen-
eration entirely by turning off the generation in con-
figuration. Text generation is also skipped if TextGen-
Benchmarch infers that a given dataset has already been
processed with the model and is cached on the file system.
If the evaluation is enabled, the user andmodel-generated
text are evaluated against the reference texts. TextGen-
Benchmarch currently supports ROUGE, METEOR, NIST,
and BLEU scores. We provide additional details on how
the library interfaces with data in Section 4.

4. Extending the System
TextGen-Benchmarch is designed to make it as easy as
possible for users to add and remove text generators
and metrics. TextGen-Benchmarch interfaces with two

2Python natively supports file-stream with line separated files
which is why it is a formatting requirement.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
METEOR Score

Arxiv

DUC-2004

CNN-DM

METEOR Metric Score for each System Sorted by Corpus

smmrRE
sumyEdmundson
sumyEdmundsonLocation
sumyEdmundsonCue
sumyEdmundsonKey
sumyEdmundsonTitle
sumyTextRank
sumyLuhn
sumyLSA
sumyLexRank
sumySumBasic
sumyRandom

Figure 2: Meteor Score Report on DUC, ArXiv, and CNN-DM

library files – one for metrics and one for text generators.
Additions can be added to these two libraries.

4.1. Adding text generators
The text generator library provides a single public
method with two inputs: a targeted text generator and
text. The targeted text-generator is called and it returns
the resulting text. A user can add additional models by
adding a method for their model that takes in text as
input and returns a generated text as output.

On load of the library class, information related to the
format of samples is saved. This information includes
separators for tokenized sentences and a Boolean that
indicates whether the text is tokenized. Custom methods
must use this information to decide how to preprocess
the input text before passing it into the flow of their
added model. Some text generators require sentences
to be pre-tokenized whereas other text generators have
custom tokenizers and expect raw text. For additional
convenience, we provide an interface for a tokenizer and
a detokenizer with the library.

4.2. Adding Metrics
Adding metrics follows a similar process to to one out-
lined for text generators. The metric library provides a
method with a single input: a custom Summary Reader
Object (SRO). The SRO has two public methods: readOne
and readAll . When readOne is called a tuple of the form
(prediction, references) . When readAll is called, a list
of all 𝑁 tuples is returned, where 𝑁 corresponds to the
number of generated texts.

The readOne and readAll methods are abstractions for
Python’s file-stream reader.

5. Report types
TextGen-Benchmarch provides the following report
types.

• CSV: Fixed Metric generates a separate CSV for
each metric. Each row is a different model. Each
column represents a corpus. To assist with com-
parisons of the same evaluation metric and set of
summarizers but against different corpora.

• CSV: Fixed corpus generates a single report for one
corpus. Each row represents a model and each
column a metric. This assists with comparisons
on the same corpus with a single set of models
but against different metrics.

• Horizontal Barchart: Fixed Metric. Grouped by the
corpus, this shows scores on the X-axis, sorted by
average metric score across corpora. This visual-
ization helps draw comparisons between models
across different corpora.

6. Example Reports
We demonstrate the usage of TextGen-Benchmarch us-
ing the extractive summarization problem. An extractive
summary is defined as a subset of sentences from a num-
ber of documents (either one or many) that effectively
summarizes the message of the input. Typical metrics
for this task include ROUGE and METEOR. We present a
comparison of popular non-parametric extractive sum-
marizers on the DUC 2004 [10], ArXiv [11] and CNN-
DM [12, 13] datasets respectively. We are comparing
smmrRE, our re-implementation of SMMRY extractive

summarizer 3, and Python’s sumy summarizers 4.
For ArXiv and CNN-DM, we used 1,000 samples of the

test-set for demonstration purposes. Thus, the results
should not be interpreted as official scores. They do, how-
ever, highlight some interesting variation between the
performance of the summarizers in the different metrics.
Figure 2 shows the METEOR scores. The order corre-

sponds, from top to bottom, to a summarizer’s rank when
comparing the average score across all corpora. Here,
smmrRE ranks first and sumyRandom comes in last.

References
[1] S. A. Ellafi, Preprocessing and normalization for

automatic evaluation of machine translation, Asso-
ciation for Computational Linguistics, 2005.

[2] C.-Y. Lin, E. Hovy, Automatic evaluation of sum-
maries using n-gram co-occurrence statistics, in:
Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, Association for Computational Linguis-
tics, 2003, pp. 71–78.

[3] C.-Y. Lin, ROUGE: A package for automatic eval-
uation of summaries, in: Text summarization
branches out: Proceedings of the Association for
Computational Linguistic workshop, volume 8,
2004.

[4] S. Banerjee, A. Lavie, METEOR: An automatic met-
ric for mt evaluation with improved correlation
with human judgments, in: Proceedings of the
acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summa-
rization, volume 29, 2005, pp. 65–72.

[5] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu, Bleu: a
method for automatic evaluation of machine trans-
lation, in: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics,
2002. URL: http://aclweb.org/anthology/P02-1040.

[6] G. Doddington, Automatic evaluation of machine
translation quality using n-gram co-occurrence
statistics, 2002, pp. 138–145.

[7] R. Vedantam, C. Lawrence Zitnick, D. Parikh, Cider:
Consensus-based image description evaluation, in:
Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 4566–4575.

[8] C.-Y. Lin, A brief introduction of the rouge sum-
mary evaluation package, Univeristy of Southern
California/Information Sciences Institute, 2005.

[9] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta,
P. Dollár, C. L. Zitnick, Microsoft coco captions:

3https://smmry.com/about
4https://github.com/miso-belica/sumy

Data collection and evaluation server, CoRR
abs/1504.00325 (2015).

[10] P. Over, J. Yen, Introduction to DUC-2004: an intrin-
sic evaluation of generic news text summarization
systems, 2004.

[11] A. Cohan, F. Dernoncourt, D. S. Kim, T. Bui, S. Kim,
W. Chang, N. Goharian, A discourse-aware atten-
tion model for abstractive summarization of long
documents, in: Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), As-
sociation for Computational Linguistics, 2018, pp.
615–621. URL: http://aclweb.org/anthology/N18-
2097. doi:10.18653/v1/N18-2097 .

[12] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espe-
holt, W. Kay, M. Suleyman, P. Blunsom, Teaching
machines to read and comprehend, in: Advances in
Neural Information Processing Systems, 2015, pp.
1693–1701.

[13] R. Nallapati, B. Zhou, C. dos Santos, C. Gulcehre,
B. Xiang, Abstractive text summarization us-
ing sequence-to-sequence rnns and beyond, in:
Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning, Asso-
ciation for Computational Linguistics, 2016, pp.
280–290. URL: http://aclweb.org/anthology/K16-
1028. doi:10.18653/v1/K16-1028 .

http://aclweb.org/anthology/P02-1040
http://aclweb.org/anthology/N18-2097
http://aclweb.org/anthology/N18-2097
http://dx.doi.org/10.18653/v1/N18-2097
http://aclweb.org/anthology/K16-1028
http://aclweb.org/anthology/K16-1028
http://dx.doi.org/10.18653/v1/K16-1028

	1 Introduction
	2 Related Work
	3 System Overview
	4 Extending the System
	4.1 Adding text generators
	4.2 Adding Metrics

	5 Report types
	6 Example Reports

