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Abstract
MeSH (Medical Subject Headings) is a large thesaurus created by the National Library of Medicine and used for fine-grained
indexing of publications in the biomedical domain. In the context of the COVID-19 pandemic, MeSH descriptors have emerged
in relation to articles published on the corresponding topic. Zero-shot classification is an adequate response for timely
labeling of the stream of papers with MeSH categories. In this work, we hypothesise that rich semantic information available
in MeSH has potential to improve BioBERT representations and make them more suitable for zero-shot/few-shot tasks. We
frame the problem as determining if MeSH term definitions, concatenated with paper abstracts are valid instances or not, and
leverage multi-task learning to induce the MeSH hierarchy in the representations thanks to a seq2seq task. Results establish a
baseline on the MedLine and LitCovid datasets, and probing shows that the resulting representations convey the hierarchical
relations present in MeSH.
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1. Introduction
With the outbreak of the COVID-19 disease, the biomedi-
cal domain has evolved: new concepts have emerged, and
old ones have been revised. In that context, scientific pa-
pers are typically manually or automatically labelled with
MeSH terms, Medical Subject Headings [1], which helps
routing them to the best target audience. It is crucial for
the community to be able to react swiftly to events like
pandemics, and manual efforts to annotate large numbers
of publications may not be timely. To automate that task,
it is difficult to use typical classification methods because
of the lack of data for some classes, we therefore consider
this problem as a zero-shot/few-shot documents classifi-
cation problem. Formally, in zero-shot learning, at test
time a learner (the model) observes documents of classes
that were not seen during training, and respectively in
few-shot learning, the model will have seen only a small
number of documents with these classes. Class distri-
butions from our medline-derived dataset are plotted in
Figure 1. As shown on the histogram, lots of classes
are annotated in only one document, which makes them
difficult to learn.

Another obstacle (independent from the pandemic) is
the scale of the MeSH thesaurus, as there are thousand
of MeSH descriptors. State-of-the-art on MeSH classi-
fication thus uses IR techniques [2], or focuses on only
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Figure 1: Distribution of the MeSH descriptors: 2853 MeSH
terms appear only once in the train dataset, 3565 between
2 and 10 times, while a minority of them appear very fre-
quently (out of 19,125 annotated documents with 8,140 MeSH
descriptors).

single MeSH descriptors [3].
In this work we rely on BioBERT [4] to extract repre-

sentations from paper abstracts and classify them. Such
model is pretrained with masked language modeling ob-
jectives on data from the biomedical domain, and we
assume that BioBERT encodes some semantic knowledge
related to the biomedical domain. However, it has been
shown that this pretraining might not be optimal for
tasks such as NER or NLI [5].

We formulate the zero-shot task as an “open input”
problem where we take both the class and the text as
an input, and output a matching score between the two.
The motivation behind this formulation is that the model
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Figure 2: Example of the MeSH hierarchy. COVID-19 and
Bronchitis have three common ancestors (Diseases category,
Infections and Respiratory Tract infections) and then split in
distinct MeSH descriptors. The hierarchy is all included in the
Tree Numbers of the MeSH terms.

would learn to use the semantics of the class labels, and
thus will be able to extend the semantic knowledge en-
coded by pretrained model (eg. BioBERT) to new classes.
Therefore, our assumption is that those models host and
can make use of a good representation of the semantics
underlying the MeSH hierarchy, including unobserved
terms.

In order to improve the semantic representations of
pretrainedmodel, we propose amulti-task training frame-
work, where an additional decoder block predicts the
position in the hierarchy of the input MeSH term. MeSH
descriptors have a position in the hierarchy that is de-
fined by their Tree Numbers (see Figure 2), so the goal
of this secondary module would be to generate those
Tree Numbers during training. Model learnt with this
additional task should better encode MeSH hierarchical
structure and hopefully improve zero-shot and few-shot
capacities of thus learnt representations. Enforcing that
semantic knowledge is embedded in the model also guar-
antees a degree of explainability, an important feature in
the medical domain.

The main findings of the work are: (a) Our multi-task
framework improves precision on some datasets, and
thus the F1-score, but it is not systematic. (b) Probing
tasks show that performance increases are directly linked
to a better knowledge of the MeSH hierarchy. Still, in-
cluding hierarchical information on a large scale dataset
(Medline) is difficult, especially in few-shot and zero-shot
settings.

2. Related work
Zero-shot classification. There is a large literature
on zero-shot learning, which consists in classifying
samples with labels not seen in training [6, 7]. Pre-
trained models such as BERT [8] or BioBERT [4] are
central to zero-shot learning in NLP. These models ben-

efit from very large datasets they can be trained on in
a self-supervised way. Such pretraining allows them
to learn rich semantic representation of the text, and
perform knowledge transfer on other lower-resourced
tasks. Those pre-trained models can be used in a zero-
shot setting, by creating representations for the given
document and each of the the different classes, and then
computing similarity scores based on those representa-
tions. Chalkidis et al. [9] proposed for example to com-
pute the similarity score with an attention mechanism
between classes and documents representations. Rios and
Kavuluru [10] proposed in addition to the attentionmech-
anism to include hierarchical knowledge using GCNN,
but they do not handle the case where the hierarchy is
only available during training. Wohlwend et al. [11] also
worked on the representation space using prototypical
network and hyperbolic distances and they showed that
there was still possible improvements in metric learning.

Fine-grained biomedical classification. BioASQ
challenge is one of the reference on fine-grained clas-
sification of biomedical articles; however the challenge
does not focus on zero-shot adaptation, which is the sce-
nario we consider in this work. Mylonas et al. [3] have
tried to perform zero-shot classification across MeSH
descriptors, but their testing settings considered only
a small number of MeSH descriptors. In our work we
try to perform a larger scale evaluation in context of
the pandemic. Finally, [12] proposed an architecture for
hierarchical classification tasks that is able to learn the
hierarchy by generating the sequence from the hierarchy
tree (using an encoder/decoder architecture). Our work
considers similar architecture in a zero-shot scenario.

Probing. Probing models [13, 14] are lightweight clas-
sifiers plugged on top of pretrained representations. They
allow to assess the amount of “knowledge” encoded in the
pretrained representations. Alghanmi et al. [15], Jin et al.
[5] introduced frameworks in the biomedical domain for
disease knowledge evaluation focusing on relation types
(Symptom-Disease, Test-Disease, etc.), while we are will-
ing to assess how well a hierarchical structure is encoded
in representations. We rely on the structural probing
framework [16] that we compare against the hierarchical
structure encoded by MeSH thesaurus.

3. Proposed approach
First, we will explain the architectures we explored to
address the zero-shot classification problem, and more
precisely the multi-task learning framework. Then, we
will focus on the design of the probing tasks, that we used
to analyse to what extent the hierarchical knowledge was
encoded by the different representations.



Figure 3: Architecture BioBERT MTL. The encoder (blue) creates a representation of the MeSH, then the decoder (red)
generates the Tree Number from this representation. GRU cells are used in the decoder as well as an attention mechanism to
better handle long sequences. The binary output (green) is the matching score.

3.1. Zero-shot Architecture
BioBERT Single-Task Learning (STL). The first
model is a BioBERT encoder, followed by a dense layer
on the [CLS] token. Input of BioBERT is composed
of the MeSH term, the MeSH description and a doc-
ument abstract: [CLS] MeSH term : MeSH description
[SEP] Abstract , and output is a single neuron, that goes
through a sigmoid activation function.

As an example, input for the MeSH term Infections
is [CLS] Infections : Invasion of the host organism
by microorganisms or their toxins or by parasites
that can cause pathological conditions or diseases.
[SEP] Abstract .

BioBERTMulti-Tasks Learning (MTL). The second
architecture is similar to the BioBERT STL, but in ad-
dition to the binary classification task it learns simulta-
neously an additional task of MeSH term hierarchical
position generation. The motivation behind this addi-
tional task is that the learnt representations would better
encode hierarchy of MeSH terms and hopefully better
deal with zero-shot classification or fine-grained classifi-
cation problems.

Figure 3 describes the architecture of this model. It
uses an additional decoder block, as a secondary task to
predict the tree number of the given input. The gener-
ation step 𝑗 + 1 is defined as (without considering the
batch size):

𝑎𝑡𝑡𝑗 = 𝑏𝑒𝑟 𝑡_ℎ × ℎ𝑗 (1)

𝑎𝑡𝑡𝑗 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑎𝑡𝑡𝑗) (2)

𝑎𝑡𝑡𝑛_𝑎𝑝𝑝𝑙𝑖𝑒𝑑𝑗 = 𝑎𝑡𝑡𝑗
𝑇
× 𝑏𝑒𝑟 𝑡_ℎ (3)

𝑖𝑛𝑝𝑢𝑡𝑗 = 𝑒𝑚𝑏𝑒𝑑𝑗 + 𝑎𝑡𝑡𝑛_𝑎𝑝𝑝𝑙𝑖𝑒𝑑𝑗 (4)

ℎ𝑗+1, 𝑜𝑢𝑡𝑗+1 = 𝐺𝑅𝑈 (ℎ𝑗, 𝑖𝑛𝑝𝑢𝑡𝑗) (5)

where 𝑏𝑒𝑟 𝑡_ℎ is the output of BERT, of shape (512, 768),
ℎ𝑗 the hidden state of the GRU cell, of shape (768,), and
𝑒𝑚𝑏𝑒𝑑𝑗 the embedding of the current word, also of shape

(768,). On line (4), the + operator corresponds to a sum of
the two vectors (both of shape (768,)) in each of their di-
mensions. For the word generation, 𝑜𝑢𝑡𝑗+1 is then passed
through a dense layer and a logsoftmax function.

Note that 𝑏𝑒𝑟 𝑡_ℎ is formed from the output tokens of
BioBERT corresponding to the MeSH description (by
applying the MASK to all other tokens). We also apply
“teacher forcing”, to reduce error accumulation.

The original problem is thus transformed in a multi-
tasks problem, where the two losses (binary cross en-
tropy and negative log likelihood losses) are then jointly
learned:

𝑙𝑜𝑠𝑠𝑡𝑜𝑡 =
1
2𝜎21

𝑙𝑜𝑠𝑠1 +
1
2𝜎22

𝑙𝑜𝑠𝑠2 + log(𝜎1𝜎2) (6)

where both 𝜎1 and 𝜎2 are learnable parameters included
in the models parameters [17, 18], to allow the model
to balance between the binary and tree number gener-
ation losses. The last regularization term is only here
to prevent the model to learn the naive solution of just
increasing 𝜎1 and 𝜎2 to reduce the loss.

The output vocabulary of the decoder is composed of
the tree numbers tokens: A-Z letters, 00-99 digits, and 000-
999 digits. All together, the vocabulary size is around
1100, on which we apply an embedding layer to trans-
form discrete tree numbers to a continuous embedding
space. As this vocabulary is completely new, embedding
is learnt from scratch using back-propagation. Note that
for MeSH descriptors that have multiple tree numbers,
we just duplicate the inputs to learn the multiple posi-
tions in the hierarchy.

In both architectures, the full set of parameters is
updated during training. Thus, each model provides
new representations of the input text and labels, that
are further evaluated through zero-shot classification or
through probing.

3.2. Hierarchical Probing Task
To better understand the capacity of pretrained repre-
sentations to encode hierarchical relations of biomedical



terms, we considered two probing tasks, adapted from
[16]. The objective is to test whether the representations
learned by the model are linearly separable with regards
to the probing tasks.

We define the probing task from a main model, taking
as input a MeSH descriptor m𝑖 and returning its internal
representation h𝑖. We then recall that it is possible to
define a scalar product h𝑇𝐴h from any positive semi
definite symmetric matrix 𝐴 ∈ S𝑚×𝑚+ , and more generally
from any matrix 𝐵 ∈ R𝑘×𝑚 by taking 𝐴 = 𝐵𝑇𝐵. Using the
metric distance corresponding to this scalar product we
then define a distance from any matrix :

𝑑𝐵(h𝑖,h𝑗) = (𝐵(h𝑖 − h𝑗))𝑇(𝐵(h𝑖 − h𝑗))

with h𝑖 and h𝑗 the representations of two MeSH descrip-
tors (more details on representations in section 5.2). Our
model has as parameter the matrix 𝐵, which is trained
to reconstruct a gold distance from one MeSH term to
another. More specifically, the task aims to approximate
by gradient descent :

𝑚𝑖𝑛
𝐵

∑
𝑖,𝑗

|𝑑𝑇(h𝑖,h𝑗) − 𝑑𝐵(h𝑖,h𝑗)2|

where 𝑑𝐵 is the predicted distance and 𝑑𝑇 the gold dis-
tance. We also note that, as in the original paper, we add
a squared term on the predicted distance. Concerning
the dimensions of 𝐴 and 𝐵, 𝑚 is the dimension of the rep-
resentation space (same than h), and 𝑘 is the dimension
of the linear transformation which we will take equal to
512. We did not further experiment on the dimension
of the linear transformation (see the original paper by
[16] for discussion on both the squared distance and the
linear transformation dimension).

Gold distance. The only difference with the original
paper is the definition of the gold distance. We have
evaluated two probes:

1. Shortest-Path Probe: given two MeSH descrip-
tors, we ask the model to predict the distance
between the two MeSH terms, as the length of
the shortest path in the graph defining the MeSH
hierarchy;

2. Common-Ancestors Probe: model predicts
whether two MeSH descriptors have k common
ancestors. For this second task we thus define
multiples binary probe models that predict if the
two MeSH terms have at least k common ances-
tors or not (for k between 1 and 3). In this partic-
ular case of a binary probe task, we thus add a sig-
moid function on the predicted distance (where
the sigmoid function is not centered on zero, but
on a positive constant, as distances are always
positive)1.

1We have also tried to cast the probe as a regression directly pre-

4. Experimental settings
In this sectionwe present the datasets we used to train the
models and evaluate the corresponding representations.
We also explain how we construct a zero-shot dataset out
of the Medline dataset with MeSH annotations.

4.1. Datasets
Medline/MeSH. Medline is the US National Library
of Medical/Biomedical dataset2, containing millions of
biomedical scientific documents, and built around the
MeSH thesaurus (Medical Subject Heading). This the-
saurus contains about 30,000 MeSH descriptors, updated
every year, and used for semantic indexing of the doc-
uments. These MeSH terms also define a hierarchy:
the first level separates the MeSH terms into 16 main
branches, then each MeSH term is the child of another
more general MeSH term, and this over up to a depth
of fifteen. The sequence of nodes traversed to reach a
MeSH term from the root is called Tree Number.

An example of the hierarchy is shown in Figure 2 with
the two MeSH COVID-19 and Bronchitis. For example
here, Covid-19 has the Tree Number C01.748.214 (C be-
ing the main branch Disease, then we have 3 sub-levels:
C01 for Infections, C01.748 for Respiratory Tract Infections,
then C01.748.214 for Covid-19).

The majority of MeSH descriptors from the hierarchy
have multiple Tree Numbers, so the hierarchy follows
a directed acyclic graph structure. Also, the annotation
of scientific documents with ancestors of a MeSH is not
always explicit. For example, a document can be indexed
with term Covid-19, but not necessarily with terms Infec-
tions or Respiratory Tract Infections.

There are on average 13 annotated MeSH descriptors
per document, where 2 or 3 will be annotated as major
MeSH to indicate that the document deals more specifi-
cally with these topics. In our work, we use the whole
set of major and non-major MeSH descriptors. In addi-
tion to the MeSH annotation and hierarchy, the Medline
database provides a description for eachMeSH term, used
by our models as specified in section 3.1.

LitCovid. LitCovid is a subset of the Medline database
[19, 20], where extraction is done via PubMed (search
engine of Medline), using the keywords: “coronavirus”,
“ncov”, “cov”, “2019-nCoV”, “COVID-19” and “SARS-CoV-
2”. Using this subset of articles allow us to work more
specifically on COVID-19 related articles, with also a sub-
set of 9,000 COVID-19 related MeSH descriptors (instead
of the full set of MeSH descriptors). The LitCovid dataset

dicting the number of common ancestors given two MeSH descrip-
tors, but the regressor was unable to train from the representations,
hence the use of binary tasks.

2https://www.ncbi.nlm.nih.gov/mesh/

https://www.ncbi.nlm.nih.gov/mesh/


also contains its own categorization, composed of only
8 classes: Case report, Diagnosis, Forecasting, General,
Mechanism, Prevention, Transmission and Treatment,
with as for the MeSH a short description for each of
them.

All our experiments are made on the LitCovid dataset,
with 27,321 articles (Train-Val-Test split: 19,125 / 2,732
/ 5,464) that have both LitCovid and MeSH annotations
(several of the 8 classes from LitCovid + avg 13.5MeSH/ar-
ticle out of around 9,000 COVID-19 relatedMeSH descrip-
tors from Medline).

Training and evaluation relies on MeSH annotations
(semantically richer), with results that reflects both few-
shot for low frequency terms, and zero-shot results for
747 held-out MeSH descriptors. In a second step we also
evaluate on LitCovid categories to test a transfer learning
scenario where we change the categorization at test time.

4.2. Evaluation
We present in this section the adaptation of annotations
for the “open input” architectures. The objective is to
create pairs ({𝑙𝑎𝑏𝑒𝑙, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡}, 𝑏𝑜𝑜𝑙𝑒𝑎𝑛) from the original
annotation.

Zero-shot dataset creation. Inputs in zero-shot are
different due to new class appearances: a document 𝑑1
being associated with two labels (𝑙1 and 𝑙2) will thus be
transformed into two inputs ({𝑙1, 𝑑1}, positive) and ({𝑙2, 𝑑1},
positive). When a new label 𝑙𝑛𝑒𝑤 appears, it is enough to
create the input ({𝑙𝑛𝑒𝑤, 𝑑1}) to predict whether this label
𝑙𝑛𝑒𝑤 is positive or not for the document 𝑑1.

To make the task meaningful, we also add negatives
to both train and test datasets. However, in the case of
MeSH classification, using all the negatives is not pos-
sible, for two reasons: (i) scalability problem: there are
more than 9,000 labels and 27,321 documents, that results
in hundreds of millions of combinations. (ii) data balanc-
ing problem: 9,000 negatives for 13 positives on avg. We
therefore use following configurations:

• Balanced : one random negative pair is added for
each positive pair, to ensure a balanced distribu-
tion. So, given a document, we would always
have the same number of positive and negative
pairs. The negatives are sampled from all the
possible negatives, based on the MeSH terms dis-
tributions to ensure that, given a MeSH term, we
would also have the same number of positive and
negative pairs.

• Siblings : This configuration is only used in eval-
uation and aims at better disentangle errors due
to “incompleteness of MeSH annotations” from
real indexing errors. In this configuration, sib-
lings according to MeSH hierarchy of the pos-
itive pairs are added with negative labels. We

also add all the ancestors of the annotated MeSH
terms as positive labels to overcome annotation
incompleteness problem stated above. Adding
the ancestors increases the size of the dataset by
an important factor, so this is why this configura-
tion is used for evaluation only.

The choice of the negatives is crucial inmetric learning,
and there have been lots of efforts given on developing
techniques to find “hard negatives”. In our case, the
Siblings configuration creates by its nature negatives
that are difficult to distinguish from actual positives. Also
we made the choice to use a binary classification layer,
but losses like hinge loss or triplet loss could have been
interesting in this particular case.

For LitCovid we consider all the {document, label} pairs
since we do not have scaling problem (only 8 labels).

4.3. Training parameters
The losses (binary cross entropy for the binary task and
negative log-likelihood for the hierarchy generation task)
are optimised using the AdamW and Adam algorithm
with a learning rate of 2E-5 and 5E-4 respectively. Train-
ing is done over 4 epochs, with a save every 0.25 epochs.
Best model is selected based on the validation loss. We
used a batch size of 16, and performed 3 runs for each
model (see standard deviation in the section 5).

The BioBERT pretrained model we used was
monologg/biobert_v1.1_pubmed from Hugging Face. This
model accepts an input sequence of up to 512 tokens,
therefore extra tokens were truncated.

Concerning probing tasks, each MeSH-to-MeSH pair
requires a gold distance (see section 3.2). For the
Shortest-Path Probe they are computed using the
Floyd-Warshall algorithm, while for the Common-
Ancestors Probe, they were deducted from Tree Num-
bers. Optimizer of the probe task is AdamW, with a
2.5E-5 learning rate. We also only focused on the “N”,
“E”, “C”, “D” and “G” branches of the MeSH hiearchy,
corresponding resp. to “Health Care Category”, “Analyti-
cal, Diagnostic and Therapeutic Techniques and Equip-
ment Category”, “Diseases Category”, “Chemicals and
Drugs Category” and “Phenomena and Processes Cate-
gory” (they are the most representative of the dataset).
From all possible MeSH-to-MeSH pairs, we have ran-
domly selected 10% of them to reduce computation time.
Validation and evaluation are performed on 30% of the
MeSH descriptors, that we held out from probe training.

5. Results and discussion
We present in this section the results in zero-shot and
few-shot on both MeSH descriptors and LitCovid labels
from our two models BioBERT STL and MTL. We then



F1-score (std) Precision Recall F1-score (std) Precision Recall

Balanced ZSC Balanced

BioBERT STL 0.894 (0.001) 0.875 0.913 0.760 (0.004) 0.849 0.688
BioBERT MTL 0.873 (0.003) 0.868 0.878 0.754 (0.006) 0.856 0.674

Siblings ZSC Siblings

BioBERT STL 0.390 (0.002) 0.300 0.562 0.281 (0.005) 0.558 0.470
BioBERT MTL 0.402 (0.005) 0.312 0.570 0.285 (0.005) 0.594 0.455

Table 1
Results on Medline/MeSH with different evaluation configurations. Training has been done on the balanced dataset, while here
we test on both balanced and siblings dataset. In zsc balanced , all MeSH descriptors are zero-shot, while in zsc siblings it is
a generalized zero-shot setting (mixture of both zero-shot and non zero-shot MeSH descriptors).

discuss the results of the probing tasks, the architectures,
the quality of annotations and also how we approached
the problem of large scale zero-shot classification.

5.1. Zero/Few-shot classification
Medline/MeSH. The models have been trained on the
balanced configuration, and then tested on balanced and
siblings . Table 1 compares results on those different
test set configurations both in non zero-shot and zero-
shot settings. Note, that as highlighted in section 4.1, the
siblings configuration is more difficult than the balanced
one, which explains a high gap between the F1-score
from the two configurations. This is mainly due to a
lower precision as the model tends to wrongly predict
the siblings from the positive MeSH terms as positives ex-
amples (while we consider them as negatives in siblings
settings). On the balanced test set, BioBERT STL has
a better F1-score both in zero-shot and non zero-shot
settings, while on the siblings one, the BioBERT MTL
model performs better. This difference is due to the high
precision of BioBERT MTL model in both settings. More
precisely, the BioBERT MTL model seems to be better
on difficult pairs, like in the siblings settings where you
may have very close negative pairs (for example Breast
Cyst positive and Bronchogenic Cyst negative).

Figure 4 plots the F1-score with respect to the number
of occurrences of the MeSH descriptors in the train set
thus allowing to evaluate few-shot learning quality. First
we note a clear increase of F1-score with the number
of occurrences of the MeSH terms in the dataset (up to
0.7) on both models. This indicates, as one would expect,
that the models are really struggling with difficult pairs
that contains rare MeSH descriptors. In comparison with
Table 1, the F1-score in zero-shot on the balanced pairs
is of 0.76, while the F1-score for the rare MeSH terms is
much lower. We also note, that the BioBERT MTL model
allows to slightly improve performance in low resources
settings (for the terms occurring less then 10 times in the
training data: 1 and (1, 10] bins in the figure).

Concerning the MeSH descriptors themselves, Figure

Figure 4: F1-score depending on the number of occurrences of
the MeSH term in the train set. Evaluation dataset is siblings ,
training dataset is balanced .

5 shows F1-scores with respect to the deepness of the
MeSH descriptors both for BioBERT STL and MTL mod-
els. As shown in the figure, F1-score tends to decrease
for more general terms (first 4 levels of hierarchy), but
increases for more specific terms (after 4th level of hierar-
chy). We believe this could be due to the incompleteness
of annotations used during training of the MeSH descrip-
tors. Recall that training is performed in the balanced
setting, and therefore ancestor MeSH descriptors are not
always explicitly annotated, which could result in low
performance on high hierarchy levels. This graph is also
difficult to interpret since some branches from the MeSH
hierarchy are deeper than others, therefore “specificity”
of term with respect to its absolute depth may be differ-
ent; the only information on depth is that deeper MeSH
terms are in general more specific one.

LitCovid. Table 2 reports results on LitCovid dataset
in zero-shot setting for the representations obtained with



Figure 5: Comparison of F1-score depending on the deep-
ness of the MeSH descriptors on both BioBERT STL and MTL
models. Test set is siblings , and depth is computed from the
length of the MeSH descriptor Tree Numbers (average depth
when MeSH terms have multiple Tree Numbers).

STL and MTL models. On LitCovid, the STL model is bet-
ter. We believe this may be due to LitCovid categories be-
ing very general in comparison to the MeSH descriptors,
therefore the MTL model could not take advantage of its
better precision on more specialised pairs. In addition,
as previously, this could be due to the incompleteness
of MeSH annotations, where only most specific MeSH
terms are present in training data, while LitCovid relies
on more generic labels.

We report two simple baselines for LitCovid dataset
in Table 2:

• Baseline IsIn where an abstract is associated with
a label that appears in the abstract itself (both
lower-cased);

• Baseline Cos Sim, where we take the CLS token
representations of all labels (through a vanilla
BioBERT), same for all abstracts, and then com-
pute the cosine similarity between each pair, with
a threshold defined on the validation set.

We note that both BioBERT-based models perform signif-
icantly better compared to those naive baselines, which
indicates that the models are able to exploit the semantics
of the label to some extent, and goes beyond simple label
lookup in the abstract. We also see that the increase of
F1-score is mainly due to a better recall which implies
better coverage of our models.

5.2. Probing hierarchy knowledge
Finally, Table 3 reports the results of probing the learnt
representations. Results for the Shortest-Path Probe

ZSC LitCovid F1-score Precision Recall

Baseline IsIn 0.329 0.520 0.241
Baseline Cos Sim 0.308 0.228 0.471
BioBERT STL 0.512 0.444 0.604
BioBERT MTL 0.465 0.401 0.553

Table 2
Results in zero-shot on LitCovid, where the model has been
trained on the MeSH descriptors (balanced). F1-score is the
best from three runs.

are based on the mean error on the predicted distance
with respect to the gold distance (shortest path length
between two MeSH terms), while for the Common-
Ancestors Probe we report F1-score on binary tasks
for each 𝑘 (evaluating whether the two MeSH have at
least 𝑘 common ancestors).

MeSH representations. We use CLS token of respec-
tive models as representation of different MeSH in our
experiments. We have compared this representation to
both average pooling over the MeSH descriptors tokens
and max pooling in our preliminary experiments, and
observed that CLS token was leading to the best perfor-
mance on the probe tasks.

As a baseline, we give in table 3 two other representa-
tions: BioBERT vanilla and Random. In BioBERT vanilla,
representations are an average pooling of the MeSH out-
put tokens provided by the BioBERT pretrained model
without any finetuning (avg pooling was in this only case
better than the CLS token3), and for Random, MeSH rep-
resentations are random representations sampled from a
normal distribution.

Comparison STL/MTL. Table 3 indicates that both
STL and MTL model encode hierarchical structure of
MeSH terms better than random baseline, but also bet-
ter that BioBERT vanilla baseline. More specifically, the
Common-Ancestors Probe implies that between two
MeSH descriptors from the same categories, we have en-
coded a common base, and there is a projection where
MeSH descriptors from the same categories are closer to
each others. Concerning the Shortest-Path Probe, re-
sults shows that there is also a projection where distances
(as shortest paths in the hierarchy graph) are respected.
From the results, we also see that the additional task,
MTL model with the decoder block, is able to encode
even more hierarchical information in the CLS token, and
may be a hit to the better precision in zero-shot and
few-shot results. Also, it is interesting to see that in the
BioBERT vanillamodel, there is already some good knowl-

3possibly because in BioBERT vanilla model CLS token represen-
tations has not been finetuned for any task as opposed to our learnt
models.



Shortest-Path Probe Distance Error (std)

BioBERT vanilla 1.494 (-)
Random 2.597 (-)
BioBERT STL 1.462 (0.053)
BioBERT MTL 1.323 (0.013)

Common-Ancestors Probe F1 (k=1) k=2 k=3

BioBERT vanilla 0.855 0.521 0.538
BioBERT STL 0.864 0.546 0.541
BioBERT MTL 0.933 0.659 0.576

Table 3
Results of the probe tasks. For comparison of the shortest-
path task, the avg MeSH to MeSH distance is 10.033, with
a std of 3.016. For the common-ancestors task, k is the
number of common ancestors.

edge about this hierarchical structure, whichmakes sense
as this hierarchy is constructed on the semantics of the
biomedical terms.

5.3. Limitations and possible future
directions

Multi-Tasks-Learning. When dealing with MTL, the
main difficulty comes from convergence speed of the
different losses. In our framework, the main loss (clas-
sification loss) converges faster than the secondary loss
(decoder loss), so we are not able to take full advantage
of the decoder architecture. In a perfect scenario, the
main task should be the harder one, but here it was not
the case, so we were forced to stop training earlier even
when using different coefficients and learning rates for
the two losses. Another possible future direction to ex-
plore is to start training the decoder block before training
the classification layer.

Annotations. When dealing with transfer learning
across different datasets, the question of the quality of
the annotation needs to be taken into account. Different
annotation systems (even when documents are manually
annotated) may have labels that have different coverage,
and overlapping, which adds some bias in results. As
an example, when we train our model on the Medline
annotations and then test in zero-shot on LitCovid labels,
results are difficult to interpret, because the scale and
the coverage is completely different. [21] have studied
the semantic interoperability of different biomedical an-
notation tools across multiple countries and databases,
and they show that this was a real issue, that needs to be
considered when dealing with such terminologies.

Large scale Zero-shot. “Open input” architectures
are not adapted to very large scale zero-shot problems,

as we need to create too many pairs for a given docu-
ment. Our approach was to work on a balanced subset
of the possible pairs or a coherent one (resp. balanced
and siblings configurations) for training and evaluation,
however, this technique does not adapt to real world
applications.

An interesting future direction could be combining
our “open input” architecture with the high-coverage
retrieval-like step which would first pre-select a subset
of possible MeSH terms, and therefore restrict the search
space for the second “open input” classification step. For
example of the first step, a ColBERTmodel could compute
representations of abstracts and classes independently
instead of creating representations of pairs, and so reduce
computational cost. Another possibility could be to use
simple algorithms like BM25.

Other techniques in metric learning also exist, like
triplet loss learning or hinge loss. Using triplets with
“hard negatives” may help to learn a better representation
space.

6. Conclusion
In this work, we try to address the problem of zero-shot
classification that we defined as an open-input problem.
We compare a simple BioBERT model with a multi-tasks
learning architecture that includes hierarchical seman-
tic knowledge. In zero-shot and few-shot settings, the
multi-tasks framework does not increase performances
significantly. Still, we observe good results on precision
and on structural probing tasks, which implies that the
addition of the seq2seq task has some beneficial effect in
the ability of trained models to capture semantics. In par-
ticular, the model is able to build a representation space
where MeSH descriptors that have common ancestors
are closer to each other, and where the overall hierarchi-
cal organisation of the MeSH is respected. It would be
interesting to further investigate additional tasks to take
even better advantage of hierarchical knowledge encoded
in medical terminologies, and thus improve quality and
robustness of models representations.
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