
Evaluating Blockchain Systems: A Comprehensive
Study of Security and Dependability Attributes
Stefano De Angelis

1,*
, Gilberto Zanfino

1
, Leonardo Aniello

1
, Federico Lombardi

1,2
and

Vladimiro Sassone
1

1University of Southampton, University Rd, Southampton SO171BJ, UK
2Conio Inc., San Francisco, California, U.S.A.

Abstract
Blockchain is the enabling technology behind decentralised, fully peer-to-peer, systems. It distributes

trust across a network of autonomous entities without the need for centralised trusted authority. It is

therefore easier for an attacker to add malicious nodes that remain undetected. The absence of trust

results in a more vulnerable system, where adversaries may come both from the inside and outside. In

this context, security guarantees become crucial to ensure blockchains’ reliability and trust.

In this work, we propose a comprehensive evaluation of security attributes for blockchains. We refer

to the well-established concepts of security and dependability, broadly used in distributed systems, to

identify the most relevant properties for blockchains. Thus, we use such properties to evaluate five of

the most prominent, platforms, such as three permissionless blockchains -Bitcoin, Ethereum 2.0, and

Algorand- and two permissioned blockchains -Ethereum-private and Hyperledger Fabric. We assess

security over three dimensions, i.e. the consensus, infrastructure, and smart contracts.

Keywords
Blockchain, Security and Dependability, Consensus,

1. Introduction

Blockchain replaces traditional centralised infrastructures through a distributed network of

entities that collectively fulfill operations without the need of trusting each other. The ad-

vantages of decentralisation are threefold: no single point of failure, distributed trust, and a

system harder to compromise [40]. However, correctness and reliability are traded for complex

distributed computing procedures. The increased complexity and lack of trust lead to a more

vulnerable system due to a wider attack surface. For instance, in 2021 about US$ 1.3B got stolen

in decentralised finance applications [13] by exploiting code issues related to smart contracts -

programs deployed and executed on the blockchain.

Security is nowadays a paramount need for blockchains. In traditional distributed systems,

security is often paired with dependability. Those properties include a set of attributes that

DLT 2022: 4th Distributed Ledger Technology Workshop, June 20, 2022, Rome, Italy
*
Corresponding author.

$ s.deangelis@soton.ac.uk (S. De Angelis); g.zanfino@soton.ac.uk (G. Zanfino); l.aniello@soton.ac.uk (L. Aniello);

federico.lombardi@conio.com (F. Lombardi); vsassone@soton.ac.uk (V. Sassone)

� 0000-0002-1168-9064 (S. De Angelis); 0000-0002-5576-3246 (G. Zanfino); 0000-0003-2886-8445 (L. Aniello);

0000-0001-6463-8722 (F. Lombardi); 0000-0002-6432-1482 (V. Sassone)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

18



identify the reliability, availability, confidentiality, and integrity of a system during its execution

[6, 7]. In a blockchain context, where several parties exchange value via peer-to-peer trans-

actions, it is crucial ensuring that the system remains secure and dependable thus avoiding

problems like double-spending. However, blockchain systems entail several infrastructures

and architectural choices such as the use of either a permissionless or permissioned network,

the consensus protocol, and the use of smart-contracts for applications. As a result, assessing

the security of each component might be a challenging task. In literature, some effort has

been devoted to studying security in consensus protocols employed for blockchain systems

[11, 38, 41]. However, a fair comparison is elusive due to several contrasting assumptions.

Moreover, some works attempted to provide security evaluation of blockchains applications by

assessing exploited vulnerabilities of smart contracts [28, 5, 37], however, most of these studies

mainly focus on the Ethereum platform [43].

In this paper, we propose a comprehensive evaluation of blockchains’ security aspects. We

provide a refined definition of security and dependability referencing the traditional properties

of safety and liveness and the CIA Triad - confidentiality, integrity, and availability. Thus

we introduce two new properties, namely profiling and fairness. The former determines the

ability of a blockchain to authenticate participants and define access control rules. The latter

models the willingness of a system to be accessible by any participant and to process operations

democratically. We evaluate those properties with respect to three dimensions, namely consensus,
infrastructure and smart contracts. We consider five most prominent blockchain platforms,

namely Bitcoin [32], Ethereum 2.0 [20], Algorand [24] Hyperledger Fabric [3] and a private

instance of Ethereum, called Ethereum private [23]. Firstly, we study the architectural models of

these platforms. Then, we focus on the underlying consensus protocols, i.e. the mechanism

used by the network to democratically agree on the order operations. The proposed analysis

distinguishes three types of attack vectors targeting assets, i.e. ‘computing’ in PoW and ‘stake’

in PoS, or network nodes, i.e. the maximum number of subverted nodes that PoA and PBFT

can tolerate. Finally, we drift the analysis to the application layer built on top of the smart-

contracts capabilities of blockchains. We provide a detailed description of well-known code

issues affecting smart contracts and thus evaluate how each issue impacts security.

The rest of this paper is divided as follows. Section 2 introduces the blockchain platforms we

consider in our study and Section 3 describes their underlying consensus protocols, whereas

Section 4 presents a collection of smart contract code issues. Then, Section 5 defines the refined

security and dependability properties and the security analysis of those properties at consensus,

platform, and smart contract layers. Finally, Section 6 sums up the results.

2. Blockchain Platforms

In this section, we describe the blockchain platforms considered in our analysis, namely Bitcoin,

Ethereum, Algorand, Ethereum-private and Hyperledger Fabric. We briefly introduce the

architectures, yet an overview of their performance and security.

Bitcoin. Bitcoin [32] is the first, open-source, permissionless blockchain born for electronic

machine-to-machine payment without need of any central authority. Bitcoin transactions are

processed in a fully decentralised manner and their ordering is guaranteed by an underlying

19



lottery-based (i.e. probabilistic) consensus mechanism, i.e., the PoW. Such a solution allows

a consistent, immutable, and therefore trustworthy, public ledger of transactions ever made.

However, in the lottery-based consensus model, valid blocks can get mined at the same time;

this makes it possible to fork the blockchain in multiple valid branches. To compromise a block

an attacker must control 51% of the computational power of the miners. Compromising more

than 6 blocks is considered computationally infeasible, therefore a block is considered final after

≈ 6 blocks. To avoid double spending and/or avoid spending tokens not owned, Bitcoin uses

the UTXO model, i.e., each transaction is composed of a list of unspent transactions indicating

the balance of accounts. Besides, the sender of a transaction is charged a mining fee whose

amount depends on the size of the transaction, i.e., the number of UTXO addresses used. To

ensure strong (eventual) integrity Bitcoin sacrifices performance, indeed the throughput is only

about 5 txn/s with a block confirmation period of about 10 minutes.

Ethereum. Ethereum [43] is the second main open-source blockchain project. The underlying

idea is to make the blockchain programmable through smart contracts, i.e., immutable pieces of

code deployed and executed autonomously on the so-called Ethereum Virtual Machine (EVM).

Smart contracts are developed in Solidity [19], a Turing-complete programming language.

The first version of Ethereum is based on the PoW consensus, like Bitcoin, but with a shorter

confirmation time (about 14 seconds) which increases the throughput to about 30 txn/sec.

This makes Ethereum more prone to forks than Bitcoin which are similarly solved with a

longest-chain rule. The PoW makes Ethereum vulnerable to 51% attacks, like Bitcoin, therefore

a block is considered final after 6 blocks. Ethereum does not employ a UTXO model to manage

transactions, but an account-based model, i.e., each account has its balance stored within the

state of the ledger. Each transaction is charged according to (i) gas price: the amount of ETH

(the Ethereum’s cryptocurrency) to be paid for each computational step; (ii) gas limit: a scalar

value representing the total amount of gas that can be consumed by the transactions in a block.

Ethereum 2.0. It is the most important update of the Ethereum protocol to cope with

scalability and performance issues. Among others, it proposes two major improvements, such

as the shift from PoW to a new PoS implementation called Casper Proof of Stake, and the

implementation of Shard Chains. The upgrade to PoS evolves Ethereum to a more energy-

efficient platform, while Shard Chains may drastically improve scalability by changing the way

the blockchain is replicated across the nodes of the network. Sharding allows parallel execution,

enabling the achievement of better throughputs. However, it comes at a security cost since each

shard is not managed by the entire network and hence is more vulnerable.

Ethereum Private Networks. Many implementations of the Ethereum protocol can run

private networks. We refer them to as Ethereum-private. Two of the most common Ethereum

clients are Geth [2], the Ethereum implementation in Golang language, and Parity [4], a Rust-

based implementation. Both allow the creation of a private instance, in which transactions are

visible only to a subset of network participants. Ethereum clients running private networks

enable the integration of pluggable lightweight consensus algorithms. These types of chains

are mainly used for business-to-business private enterprise settings which require higher

performance (hundreds of txn/sec) and privacy guarantees. The security of Ethereum-private

does not depend on computational power, but on the number of nodes, the attacker can control.

The attacker needs to control at least 1/3 of nodes, but a wrong consensus implementation may

20



drastically increase the probability of attack success.

Algorand. Algorand [1] is a novel permissionless blockchain platform that aims at solving

the so-called blockchain trilemma, namely, scalability, decentralisation, and security. Algorand

embeds a distributed computation engine, i.e., Algorand Virtual Machine (AVM), that runs on

every node of the network and executes smart contracts, similarly to Ethereum. Algorand’s

smart contracts are self-verifiable pieces of code that run on the blockchain and automatically

approve or reject transactions according to a certain logic. The AVM interprets smart contracts

written in an assembler-like language called Transaction Execution Approval Language

(TEAL). The transaction model is similar to Ethereum, namely is account-based. Algorand’s core

innovation is its new consensus protocol, PPoS, which can reach agreement in large networks

without giving up neither scalability nor security. Algorand blockchain is designed not to fork

ever, transactions are considered final as soon as executed and included in a block. This makes

Algorand much faster than Ethereum with a block time of about 4.5 sec and throughput of

about 1000 txn/s. Compromising Algorand requires an attacker to control 1/3 of the stake.

Hyperledger Fabric. Hyperledger Fabric [3] is a permissioned blockchain platform featured by

a modular architecture. The distinguishing characteristic of Fabric is that it splits the transactions

ordering, i.e. the consensus process, from transactions execution, i.e. the operations on users’

assets. The assets within the ledger state are represented as a collection of key-value pairs, and

through smart contracts (called chain-codes in Fabric’s jargon), it is possible to combine their

values to carry out complex functions according to users’ needs, e.g. to perform an auction.

Being permissioned, Fabric offers an authentication layer that identifies the system entities by

issuing X.509 digital certificates. Additionally, the authentication process enforces authorisation

policies on the operations. Fabric introduces the concept of channels to represent restricted

consortium networks. Transactions within a channel remain private and shared only across

channel participants, enabling data isolation and confidentiality. As the operating environment

is more trusted than a permissionless setting, it allows employing a lighter consensus, which

results in better performances despite restricted security assumptions.

3. Blockchain Consensus Protocols

In this section, we describe the consensus underlying the blockchain platforms mentioned in

the previous section, namely PoW, CPoS, PPoS, PoA and PBFT.

Proof-of-Work. The PoW is a lottery-based consensus schema consisting of computationally-

intensive hashing tasks executed by some distinctive network nodes, called miners. Specifically,

miners create a block by retrieving transactions from a local pool and rush looking for a random

number that, if concatenated with the transactions included in a block, makes the hash of the

block lower than a target number. Such target number is adjusted over time according to a

desired difficulty. The difficulty is chosen to keep constant the block period, i.e., the average

time required by miners to solve the puzzle. The more the global computational power of the

network, the higher the difficulty, thus the lower is the target number. After solving the PoW,

the miner can broadcast the corresponding block to the network for being accepted by other

nodes. If accepted, all the correct nodes consider it as the latest block in the chain and start

mining new blocks on top of it. Due to the probabilistic nature of the PoW, forks may happen. It

21



is the responsibility of the platform implementing the PoW to find a strategy to cope with forks.

The standard approach used by Bitcoin and Ethereum, as mentioned in the previous section,

is the longest-chain rule. Transactions may include a mining fee to incentive miners to pick

that from the pool. Thus, transactions with zero or low mining fees may never be included in a

block generating starvation [34, 32]. The verification and subsequent acceptance procedures

happening in PoW make a block persistent unless an attacker controls the majority of the

miners’ hash power (the aforementioned 51% attack), which enables it to create a chain fork

with modified transactions. However, being based on computational power rather than several

nodes, it is not vulnerable to sibling attacks. Although provides strong integrity properties,

besides energy inefficiency, PoW has performance limitation due to the intensive hashing tasks.

Casper Proof-of-Stake. The Proof-of-Stake (PoS) works by deterministically selecting a set of

validators according to their cryptocurrency holdings, i.e. their stake. Any node committing a

stake can become a validator by locking up their stake amount into a deposit. The validators

propose and vote on the next block, and the weight of each validator’s vote depends on the

deposit amount. In Ethereum’s PoS implementation, called Casper (CPoS) [18], each validator’s

turn is determined by one of the following techniques: Chain-based PoS: the algorithm pseudo-

randomly selects a validator during each time slot to propose a block; BFT-style PoS: a multi-round

process, in which each validator sends its vote for a specific block. At the end of the process, all

(honest and online) validators permanently agree on whether or not any given block is part of

the chain. Conversely to PoW, the CPoS protocol causes no waste of energy since it does not

requires computational tasks to be solved, therefore, performance can be much better. However,

if a validator does not follow the consensus rules, PoS applies penalties. Attacking a PoS requires

an attacker to control the majority of committed staking, making it not vulnerable to sibling
attacks. However, it is crucial not to make predictable the leader, otherwise, the attacker just

needs to compromise a much smaller set of nodes that may be elected as a leader; in this case,

the security drops from the ideal majority of committed staking to compromised nodes.

Pure Proof-of-Stake. The PPoS [24] is the underlying consensus of Algorand. It leverages

VRF (Verifiable Random Functions) [30] to significantly decrease the high volume of exchanged

messages occurring in traditional voting-based and lottery-based consensus. Specifically, PPoS

works as follows: it proceeds in rounds, and for each round there are three phases: block proposal,
soft vote, and certify vote. When a round starts, users use the VRF to select themselves as leader

and committee members. In the block proposal phase, the leader selected by the VRF propagates

a new block along with the VRF output, which proves that the account is a valid proposer. Then

in the soft vote, a selected committee of users cast a vote on the block proposals. This phase

reduces the number of proposals down to one, guaranteeing that only one block gets certified in

a round. When a quorum of votes from the committee members is reached starts the certify vote.

In this last phase, a new committee checks the validity of the block at the soft vote stage. Thus a

new vote begins to certify the block. When a quorum is reached, the block is committed and the

round terminates. Each phase is characterized by a timeout to ensure safety when partitions

occur. PPoS can achieve higher throughput and lower block time than traditional PoS due to a

reduced message exchange. Furthermore, the VRF makes the leader unpredictable, dismissing

the possibility of having fixed validators such as in traditional PoS.

Practical Byzantine Fault Tolerance. The PBFT consensus protocol [12] is characterised by a

22



single-leader and view-change approach. The algorithm proceeds in views, for each view there

exists a leader and a set of replicas. Each view executes a three-phase commit protocol where

replicas exchange messages to reach the total order of transactions. In case of misbehaving

leaders, all the correct replicas run a view change operation which starts a new view and elects

a new leader. In an eventually-synchronous network, where messages are delayed and network

partitions may happen, the PBFT consensus protocol guarantees strong consistency provided

that 𝑓 < 𝑁/3, with 𝑓 malicious nodes and 𝑁 replicas. PBFT has been proven to be optimal

with 𝑁 ≥ 3𝑓 + 1 nodes [12]. PBFT is vulnerable to sibling attacks though since it cannot

distinguish if an attacker is falsely impersonating multiple nodes.

Proof-of-Authority. The PoA has been proposed as part of the Ethereum consortium for private

networks and implemented with two protocols called AuRa and Clique [35, 39]. PoA relies on a

set of trusted authorities running the consensus. Consensus in PoA relies on a leader rotation
schema, which distributes the responsibility of block creation among the authorities [9, 22].

Time is divided into steps. In each step, an authority is elected as the proposer. The way

authorities are elected differs in the two consensus protocols. AuRa proposes a deterministic

function based on UNIX times, which requires strong synchronisation assumptions. Conversely,

Clique computes leaders according to the number of the next block on the blockchain. The

PoA is a hybrid consensus protocol between the lottery-based and voting-based approaches.

PoA protocols guarantee eventual consensus on transactions. Indeed, the lightweight leader

election may lead to forks that eventually get resolved. Consequently, PoA cannot achieve

instant finality but this is delayed in time. According to the concept of the longest chain, a block

in PoA is considered final when a majority of further blocks have been proposed, under the

assumption that blocks are proposed at a constant rate [35]. These algorithms are vulnerable to

sibling attacks, and thus cannot be used in permissionless settings.

4. Smart Contracts Issues

Beyond secure-by-design due to consensus algorithms, a prominent security role is played by

smart contracts. In this section, we evaluate potential issues that affect the smart contract-

enabled platforms, such as Ethereum, Algornad, and Hyperledger Fabric, thus we consider

possible preventions/mitigation methods.

(𝐼1) Reentrancy. This vulnerability occurs when a caller contract invokes a function of an

external callee contract. Specifically, a malicious actor can call back from the callee contract

funds withdraw function of the caller contract, i.e., reentrancy, before the execution of the

caller triggering an infinite loop of calls. This allows the attacker to bypass the validity checks

of the caller and iterate infinitely. Ethereum is vulnerable to reentrancy and its exploitation

may lead to indefinite withdrawal calls. Two reasons cause this vulnerability [36]: (i) validity

checks are handled by state variables that are not updated until other transactions terminate,

(ii) no gas limit is required when handling interactions between external smart contracts.

Prevention methods consists in (i) update the state variables before calling external contracts;

(ii) introduce a mutex lock [19] in the contract state so that only the owner can update such

state. Similarly, Hyperledger Fabric suffers reentrancy since chaincodes-to-chaincodes are

allowed with no limitations inter-channel. Fabric mitigates such issues through a timeout,

23



however, it is important to note that reentrancy has a limited impact on private settings since no

cryptocurrencies are involved. Conversely, Algorand does not suffer reentrancy since contract-

to-contract calls are allowed one way only, thus if smart contract A calls a smart contract B, the

latter cannot call back A.

(𝐼2) Integer overflow and underflow. This vulnerability occurs when a function computes an

arithmetic operation that falls outside a specific datatype. A prominent role is played by the

programming language. Furthermore, some protections there exist both natively or through

an external library. Ethereum does not provide native prevention for smart contracts, but

some recommendation has been defined, such as (i) using SafeMath library [33] to check on

underflow/overflow, (ii) using Mythril library [15] to check the security of EVM bytecode before

its execution. Algorand does not need any prevention library as TEAL natively copes with

under/overflow issues. Hyperledger Fabric, being based on golang makes us of the native

under/overflow management or common libraries such as overflow.

(𝐼3) Frozen Token. This vulnerability causes users’ funds deposited in the contract account to

be locked and impossible to withdraw back, effectively freezing them into the contract. Both

Ethereum and Algorand are vulnerable to such an issue. The causes of this vulnerability are

twofold: (i) the deposit contract account does not provide any function to spend funds using a

function from an external contract as a library, (ii) the callee contract function (selfdestruct
for Ethereum, ClearState for Algorand) is executed without checks. Prevention method

[14, 37]: a deposit contract shall assure that the mission-critical functions or money-spending

functions are not outsourced to external contracts. Hyperledger Fabric is not vulnerable since

no cryptocurrencies are involved.

(𝐼4) DoS with unexpected revert. This issue occurs if the execution of a transaction is reverted

due to a thrown error or a malicious callee contract that deliberately interrupts the execution.

Ethereum, Algorand and Hyperledger Fabric are vulnerable. For Ethereum, a best practice

to mitigate the issue regards the transaction sender to provide to the callee a certain amount

as a reward for the execution of a transaction so that the callee is not incentivized to revert.

Algorand does not have mitigation in place since no reward fees are available. Fabric, similarly,

does not have solutions to avoid it, due to the absence of cryptocurrencies.

(𝐼5) DoS with GasLimit. This vulnerability causes transactions to be aborted due to exceeding

the gas limit. This affects only Ethereum due to the presence of gas. To mitigate this issue the

contracts should not execute loops on accounts accessible data structures. Loops should be

controlled, such that the execution always terminates, even when transactions are aborted.

(𝐼6) Insufficient signature information. This vulnerability causes a digital signature to be valid

for multiple transactions. This happens when a sender uses a proxy contract [14, 37] as a deposit

for one or more authorised receivers. An authorised receiver owns a digitally signed message

delivered off-chain from the sender. The receiver withdraws funds from the proxy, which must

verify the validity of the digital signature. If the signature is malformed (missing nonces, or

proxy contract address), a malicious receiver can reuse the signature to reply to the withdrawal

transaction and drain the proxy balance. Prevention method: The contract shall check the

address and the nonce within digitally signed messages. Both Ethereum and Algorand are

vulnerable to this issue, while Hyperledger Fabric is not since it authenticates network nodes.

(𝐼7) Generating randomness. This vulnerability concerns smart contracts using pseudorandom

number generators (PRNG) to create random numbers for application-specific use cases. Specifi-

24



cally, this vulnerability affects methods using random numbers created by a PRNG, in which the

base seed of the generator is a parameter controlled by miners, e.g. Solidity’s block.number,

block.difficulty. A malicious miner can manipulate the PRNG to generate an output that

is advantageous for itself. Ethereum, Algorand and Hyperledger Fabric are all affected by this

issue. For mitigation, mining variables should not be used in control-flow decisions. Therefore,

off-chain approaches to PRNG should be used, such as the use of oracles.

(𝐼8) Block Timestamp manipulation. This vulnerability affects smart contracts that use

timestamp parameter in the control-flow (e.g. for periodic payments) or as source of ran-

domness [14]. As miners can control this parameter, they could adjust that value to change the

logic of functions, and thus take profit. Ethereum is vulnerable to such issues and a prevention

method consists in avoiding the parameter in any control-flow decision logic. Algorand is not

vulnerable since it employs a maximum timestamp offset of 20 seconds between two blocks.

Similarly, Hyperledger Fabric has no constant block time.

(𝐼9) Transaction ordering dependence. This vulnerability is caused by a malicious manipulation

of the transaction priority mechanism used in Ethereum. Gas is usually used to prioritise the

execution of certain transactions over others [43]. However, malicious miners can alter this

procedure and always prioritise their transactions regardless of the gas price, hence manipulating

the global state of the blockchain in its favor [37]. Mitigation method: hide the gas price from

transactions using cryptographic committees or guard conditions [14]. Algorand and Hyperldger

Fabric are not affected by this issue since they do not use gas.

(𝐼10) Under-priced opcodes. This vulnerability is caused by under-priced opcodes that can be

executed at low cost and that consume a large number of resources. Misuse of the opcodes,

or a malicious actor, might trigger several invocations of these opcodes wasting the majority

of resources. This vulnerability regards Ethereum and it is caused by misconfigured gas price

parameters [14]. The Ethereum protocol has been upgraded to limit opcodes under-pricing.

Algorand is not affected since the cost is set 1 to all opcodes with a limit of 700 per application.

Hyperledger is not affected due to the nature of private blockchains’ costless computation.

(𝐼11) Token lost to orphan address. This vulnerability is caused by a lack of validation checks

on payment transactions. Ethereum only checks the recipient’s address format but not if such

an address is valid nor if it exists. If a user sends money to non-existing addresses, Ethereum

automatically creates a new orphan address [5]. An orphan address is neither an EOA nor a

contract address, hence the user can’t move the money which is indeed lost. Algorand has the

very same issue, with a small client-side check of existence as mitigation implemented in all

the official clients and SDKs. The only effective prevention method at the time of writing is to

manually assure the correctness of the recipient’s address [14]. Hyperledger nodes are instead

authenticated, thus it is not affected.

(𝐼12) Short address. This vulnerability affects only Ethereum and it is caused by the EVM

missing validation check on addresses. Recall that inputs are expressed as an ordered set of bytes,

in which the first four bytes identify the callee’s function, then other inputs are concatenated

in chunks of 32 bytes. In case of arguments with fewer bytes, EVM auto-pads with zeros to

generate the 32 bytes chunk. An attacker could manipulate this process to execute malicious

actions. For instance, if we consider the transfer(address addr, uint tokens) function

and a bad formatted addr with one missing byte, the auto-pad adds extra zeros at the end

of addr, and consequently increases the number of tokens to transfer [14]. To prevent that,

25



write functions that validate the length of the transaction’s inputs. Algorand has prevention by

design, it does not add extra zeros as padding and the transaction fails in case of a short address.

Hyperledger Fabric, as above, is not affected due to the authentication of nodes.

(𝐼13) Erroneous visibility. This vulnerability takes advantage of Ethereum’s public nature.

Transactions (including data, balances and contract codes) are visible to any user. However,

Solidity provides four types of visibility to restrict the access to a contract’s functions, namely

public open to everyone, external only externally from the contract, internal only in-

ternally (the contract and its related contracts) , and private only within the contract. By

default, Solidity assigns the type public to functions, hence in case of erroneous visibility

configuration, an attacker might be able to call the function from the external [14]. To avoid

this, with Solidity 0.5.0 and above, it is mandatory to specify the function visibility. Algorand

conversely has all functions public only. Hyperledger can hide data in several methods such as

Trusted Execution Environment with Intel SGX, channels [8].

(𝐼14) Unprotected suicide. In Ethereum, Solidity contracts can be killed or deleted using the

suicide or self-destruct methods. Usually, only the contract’s owner, or authorised external

users, can invoke these functions. However, there might be cases in which the owner is not

verified by the functions, or the owner itself is malicious, in that case, an attacker can invoke one

of these methods and kill the contract. The very same situation happens with Algorand through

the ClearState function. Prevention method: enhance security checks with, permissions

mechanisms, to assure that the suicide/self-destruct and ClearState calls are approved

by different parties. Hyperledger Fabric is not affected.

(𝐼15) Unrequested Token. In Ethereum ERC-20 tokens can be sent to an arbitrary address.

This is used as a common phishing technique where a malicious actor creates an ERC-20 token

and sends some amount to random addresses. The token is designed with a sell smart contract

function which drains the wallet. When a phished user attaches his wallet to the application

controlling this contract, the user unintentionally authorises the smart contract to steal his

funds. Algorand mitigates this issue via opt-ins. Hyperledger Fabric is not affected since no

cryptocurrencies are involved.

5. Evaluation of Security Properties for Blockchain

In this section we introduce security and dependability attributes for blockchains and we

evaluate them over three dimensions, i.e., consensus, infrastructure and smart contracts. The

proposed analysis follows a qualitative evaluation that takes into account the descriptions of the

platforms and protocols detailed in the previous section. Therefore, the analysis considers how

the identified properties are met in each system. The methodology used assumes the deployment

of 𝑛 nodes responsible for consensus, which communicate over an eventually synchronous

network [17]. Such a model realistically describes the Internet network, where messages can be

arbitrarily delayed, but eventually delivered within a fixed time-bound.

A distributed protocol is considered if satisfies safety and liveness properties [11]. However,

in a blockchain context, the traditional definition of such properties does not straightforwardly

apply. For instance, transactions are asynchronously committed by the network after the

execution of a consensus protocol. For this reason, safety and liveness must be refined in order

26



Table 1
Security evaluation of blockchain consensus protocols

PoW CPoS PPoS PBFT PoA

persistency eventual eventual yes yes eventual
termination yes yes eventual 𝑛 ≥ 2𝑓 + 1 eventual

validator fairness
hw stake stake

yes yes
dependent dependent dependent

to explicitly reflect the behavior of a blockchain system. To cope with this limitation, we start

from the traditional definitions of safety and liveness [11, 6, 7] to introduce two novel properties,

namely persistency and termination. We also provide a new metric for blockchains, i.e. the

fairness property. Following seminar work by Francez [21], we distinguish two aspects of the

fairness: validator fairness, for consensus protocols and client fairness, for infrastructures. The

novel security attributes for consensus in blockchain are thus summarised as follows:

1. Persistency: nothing wrong happens during the consensus execution; unwanted exe-

cutions must be prevented. When an honest node accepts a transaction, then all the

other honest nodes will make the same decision, which is irreversible. If persistency is

violated after a certain threshold (i.e. confirmation time), it will never be satisfied again.

Persistency is also referred to as finality [41].

2. Termination: ensures that a protocol makes progress towards an end, hence transactions

correctly terminate, i.e. the block including those transactions reaches persistency.

3. Validator fairness: in a blockchain, the consensus mechanism is fair if any honest node

can be potentially selected to the set of nodes that will participate in the agreement to

select the next block.

Table 1 summarises the consensus resilience of the four algorithms acting under the adver-

sarial model presented with our methodology. Firstly, we observe that PoW and CPoS enjoy

strong termination thanks to their probabilistic leader election based on mining, and staking.

Transactions are guaranteed to be added to the blockchain as soon as the mining proceeds, or

there is a majority of stakeholders. Conversely, probability in leader election affects persistency,

because of the possibility of having forks. However, such forks will eventually be resolved,

according to the specifics of the platform. For this reason, persistency must be classified as

eventual. Conversely, the PPoS protocol does not allow forks, and blocks are instantly finalised,

prioritising persistency over termination [24]. Indeed, the PPoS allows stalls in case of mis-

behaviors or network issues. However, PPoS’ introduces a recovery mechanism to ensure

termination, so we classify that as eventual. Both PoS protocols ensure security until a majority

of the stake remains in honest hands. If this condition is not verified, such systems can be

easily compromised. Validators with the majority of the stake can determine the next blocks

straightforwardly. This behavior is reflected with the validator fairness property in Table 1.

Differently in PoW, such property is strongly related to hardware capabilities. Miners with

outstanding computational power will have more chances to produce blocks.

Moving to permissioned blockchains, these systems rely on a higher level of trust, due to the

presence of node authentication. The consensus protocols used in this context are either classical

27



Table 2
Security evaluation of blockchain platforms

Bitcoin Ethereum 2.0 Algorand Hyperledger Ethereum-private

confidentiality no no co-chains channels private txs

integrity
majority of majority of majority of

up to 3𝑓 + 1 eventual
hash power stake stake

availability yes yes yes up to 2𝑓 + 1 eventual
accountability partial partial partial yes yes
authorisation no no no yes yes
client fairness no no yes yes yes

voting-based ones, such as PBFT, or hybrid, as for PoA. PBFT has been broadly demonstrated to

guarantee persistency in the eventually synchronous model, as long as there are 𝑛 ≥ 3𝑓 + 1
active nodes in the network. Whereas as soon as 𝑛 ≥ 2𝑓 + 1 are honest, termination can be

also guaranteed [16]. In PoA, persistency is only eventually guaranteed, because PoAs are open

to forks. Termination is instead eventual, according to the number of honest validators. As long

as a majority of validators are active, termination is guaranteed, otherwise, the protocol stalls

and transactions are not finalised [16]. Finally, PoA’s validator fairness is guaranteed, since

every honest validator has the same chance of being elected as a leader as the others.

Turning to the security evaluation of blockchain platforms, we define six attributes based on

the traditional definitions of security and dependability [6], i.e. the CIA triad and the user’s

profiling. We identify the relevance of the properties of accountability and authorisation. Such

properties lead to fairness constraints which can be used to detect misbehaving participants.

Hence, our suggested attributes are:

1. Confidentiality: the possibility to keep some transactions confidential; absence of unau-

thorised leaking of sensitive information owned by one or more nodes;

2. Integrity: absence of improper alterations of the blockchain data from unauthorised users;

3. Availability: the ability of the system to run correct services without interruptions;

4. Authorisation: the ability of the system to specify access rights and privileges to resources

and to define permission roles for participants;

5. Accountability: the ability of the system to trace back the operations and the behaviour

of a certain user identity/physical entity;

6. Client fairness: the willingness of the system to democratically accept transactions from

any client without any preference.

Table 2, shows our analysis with the aforementioned six attributes. We observed that the

integrity of Bitcoin, Ethereum 2.0, and Algorand is strongly linked to where hash power and

stake lie. Indeed, an attacker owing the majority of the hash power (or stake), could break the

consensus protocol as already mentioned, hence maliciously injecting a fork with a subverted

chain [10]. In contrast, in Hyperledger and Ethereum-private, the integrity property is strongly

tied to the persistency property of their underlying consensus algorithms. Fabric employs PBFT,

which ensures persistency under the assumption of 𝑛 ≥ 3𝑓 +1, while Ethereum-private adopts

28



Table 3
Security issues and native resistance/mitigation

Issue ID Security Issues
Native Resistance/Mitigation

Ethereum Algorand HL Fabric

𝐼1 CI + authorisation ✓
𝐼2 CI + authorisation ✓ ✓
𝐼3 A + authorisation ✓
𝐼4 A
𝐼5 A ✓ ✓
𝐼6 CI + authorisation ✓
𝐼7 I + authorisation
𝐼8 IA ✓ ✓
𝐼9 IA + accountability ✓ ✓
𝐼10 A ✓ ✓
𝐼11 I ✓
𝐼12 I + authorisation ✓ ✓
𝐼13 CI + authorisation ✓ ✓
𝐼14 all ✓
𝐼15 authorisation ✓ ✓

PoA algorithms, which can only guarantee eventual persistency. Despite strong availability,

the full replication of the blockchain in the Bitcoin, Ethereum 2.0, and Algorand platforms

leads to a lack of confidentiality due to the public nature of the information stored on these

blockchains [25]. However, if for Bitcoin and Ethereum 2.0 there is no way to mitigate this

issue, Algorand recently designed a solution which combines the public, permissionless network

with several private networks interconnected, a.k.a., Co-Chains [29]. Contrarily, confidentiality

in both Hyperledger and Ethereum-private can be guaranteed through the use of channels

and private transactions, respectively. Hyperledger Fabric and Ethereum-private can enforce

the so-called profiling properties of authorisation and accounting. This is because nodes

are authenticated. Authorisation is guaranteed by managing the permission of each node.

Accountability is achieved by tracing the interaction of nodes with the blockchain [26]. This is

not so in public permissionless blockchains like Bitcoin, Ethereum 2.0, and Algorand where

identities are pseudo-anonymous [25] and users are not authenticated. However, although

actions are difficult to attributable to specific entities, it is possible to analyze the behaviour of

specific accounts. Therefore, the public, permissionless nature of these blockchains ensures that

anyone can access the history of transactions and trace behavioural patterns. We deduce that

permissionless blockchain offer partial accountability [27, 31]. On the other hand, being these

systems public and decentralised, authorisation is not provided. Lastly, we evaluate the property

of client fairness. Permissioned blockchain benefits from fairness guarantees in that each client’s

transactions are processed without any preference or priority. On the contrary, the execution of

transactions in Bitcoin and Ethereum 2.0 is costly (either hardware or staking), hence making

incentive mechanisms for miners and validators necessary. Low-rewards transactions may

be stalled forever waiting to be processed [42]. Incentives mechanisms for permissionless

blockchain, like Bitcoin and Ethereum 2.0, lead therefore to a lack of client fairness. Differently,

29



in the Algorand blockchain, every transaction counts the same, and there is no such mechanism.

Everything in Algorand is handled by PPoS cryptography and the computation of VRFs. This

allows Algorand to have very low transaction fees, which are thus distributed to rewards

accounts for the users, and to ensure client fairness.

We conclude our analysis with smart contracts. Table 3 illustrates a classification of the CIA
triad and profiling security properties against the issues described in Section 4. From the table

emerges that most of the smart contract issues may cause violation of confidentiality, integrity,

and authorisation properties. The platform that shows better resilience results in Hyperledger

Fabric and this is clearly due to its permissioned nature. Among the public blockchain instead,

Algorand outperforms Ethereum for many issues. This is due mainly to the usage of a constant

fee for transactions and opcodes conversely to Ethereum which is based on gas with a different

amount for opcodes. Also, the programming language used plays a key role. Both Hyperledger

Fabric and Algorand use languages that give some primitive control to avoid issues, such as

control against under/overflow concerning Ethereum. Finally, some design choice related to the

management of asset and smart contract calls makes Algorand more secure than Ethereum. For

instance, reentrancy (𝐼1) in Algorand cannot happen by design, and tokens require to be opted-in

before they can be received (𝐼15). The Ethereum naive solutions and lack of controls make it

the worst in terms of security. The only situation where Ethereum outperforms Algorand is

for erroneous visibility (𝐼13), indeed it allows to build private functions within a smart contract,

while Algorand does not.

6. Conclusion

In this paper, we studied the security aspects of modern blockchain systems. We defined the

security and dependability attributes which are relevant in the context of a blockchain. Thus, we

analysed how five blockchain platforms, namely Bitcoin, Ethereum (with its variants Ethereum

2.0 and private chains), Algorand, and Hyperledger Fabric, guarantee those attributes. The

analysis we proposed is divided into three dimensions, i.e. consensus, infrastructure, and smart

contracts. Firstly, we highlighted the infrastructures’ characteristics and how they differ in

terms of performance (infrastructure). Then, we described their built-in consensus protocols,

respectively, PoW, Casper PoS, PoA, Pure PoS and PBFT, analysing the approaches they adopt

to order transactions and create blocks in a Byzantine, eventually synchronous, network model

(consensus). Then, we listed smart contract issues evaluating whether blockchains are vulnerable

and their native resistance/mitigations (smart contracts).

From our study emerged that permissioned blockchains like Hyperledger Fabric and Ethereum-

private can guarantee fairness and confidentiality while providing accountability and authori-

sation. However, these platforms require strong assumptions on the underlying network and

the number of possibly subverted nodes to also ensure integrity and availability. This is also

reflected in the consensus protocol they adopt, specifically PBFT guarantees persistency at the

cost of eventual termination, whereas in PoAs, both properties are ensured only eventually.

Conversely, permissionless platforms such as Bitcoin, Ethereum 2.0, and Algorand offer bet-

ter integrity and availability, despite failing on profiling, confidentiality, and client fairness

properties. Finally, by studying smart contract issues we observed that Ethereum is the most

30



vulnerable smart contract platform compared to Algorand and Hyperledger Fabric.

References

[1] Algorand. https://www.algorand.com.

[2] Go ethereum - geth. https://geth.ethereum.org.

[3] Hyperledger fabric. https://www.hyperledger.org/use/fabric.

[4] Parity ethereum. https://www.parity.io, 2018.

[5] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum

smart contracts (sok). In POST - 6th International Conference, Proceedings, volume 10204 of

Lecture Notes in Computer Science, pages 164–186. Springer, 2017.

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts

and taxonomy of dependable and secure computing. IEEE Trans. Dep. Secur. Comput., 2004.

[7] Algirdas Avizienis, Vytautas U, Jean-claude Laprie, and Brian Randell. Fundamental

concepts of dependability. 2001.

[8] Fabrice Benhamouda, Shai Halevi, and Tzipora Halevi. Supporting private data on hy-

perledger fabric with secure multiparty computation. IBM Journal of Research and Dev,

2019.

[9] BitFury Group and Jeff Garzik. Public versus private blockchains part 1: Permissioned

blockchains. White Paper, 2015.

[10] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll, and Ed-

ward W Felten. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.

In 2015 IEEE Symposium on Security and Privacy, pages 104–121. IEEE, 2015.

[11] Christian Cachin and Marko Vukolic. Blockchain consensus protocols in the wild. CoRR,

abs/1707.01873, 2017.

[12] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages

173–186, Berkeley, CA, USA, 1999. USENIX Association.

[13] CertiK. The state of defi security - 2021. https://certik-2.hubspotpagebuilder.com/

the-state-of-defi-security-2021.

[14] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. A survey on ethereum

systems security: Vulnerabilities, attacks, and defenses. ACM Comput. Surv., 2020.

[15] ConsenSys. Mythril. https://github.com/ConsenSys/mythril.

[16] Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi, Andrea

Margheri, and Vladimiro Sassone. PBFT vs proof-of-authority: Applying the CAP theorem

to permissioned blockchain. In Proceedings of ITASEC, 2018.

[17] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial

synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[18] Ethereum. Proof-of-stake. https://eth.wiki/en/concepts/proof-of-stake-faqs.

[19] Ethereum. Solidity. https://soliditylang.org.

[20] Ethereum. Vision of ethereum2. https://ethereum.org/en/upgrades/vision/.

[21] Nissim Francez. Fairness. Springer-Verlag, Berlin, Heidelberg, 1986.

[22] Edoardo Gaetani, Leonardo Aniello, Roberto Baldoni, Federico Lombardi, Andrea Margheri,

31



and Vladimiro Sassone. Blockchain-based database to ensure data integrity in cloud

computing environments. In ITA-SEC, volume 1816. CEUR-WS.org, 2017.

[23] Geth. Ethereum. https://geth.ethereum.org/docs/interface/private-network.

[24] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-

gorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles, 2017.

[25] Ryan Henry, Amir Herzberg, and Aniket Kate. Blockchain access privacy: Challenges and

directions. IEEE Security Privacy, 16(4):38–45, 2018.

[26] Maurice Herlihy and Mark Moir. Enhancing accountability and trust in distributed ledgers.

CoRR, 2016.

[27] Ghassan O. Karame, Elli Androulaki, Marc Roeschlin, Arthur Gervais, and Srdjan Čapkun.

Misbehavior in bitcoin: A study of double-spending and accountability. ACM Trans. Inf.
Syst. Secur., 18(1):2:1–2:32, May 2015.

[28] Alexander Mense and Markus Flatscher. Security vulnerabilities in ethereum smart con-

tracts. In Proceedings of the 20th IIWBAS, 2018.

[29] Silvio Micali. Algorand co-chains. https://www.algorand.com/resources/blog/

algorand-co-chains.

[30] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In 40th annual
symposium on foundations of computer science, pages 120–130. IEEE, 1999.

[31] Malte Möser. Anonymity of bitcoin transactions an analysis of mixing services, 2013.

[32] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/

bitcoin.pdf, 2008.

[33] OpenZeppelin. Solidity safemath library. https://docs.openzeppelin.com/.

[34] White Paper. Incentive mechanisms for securing the bitcoin blockchain white paper. 2015.

[35] Parity. Aura - authority round consensus protocol. https://wiki.parity.io/Aura.

[36] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. Sereum: Protecting

existing smart contracts against re-entrancy attacks. CoRR, abs/1812.05934, 2018.

[37] Noama Fatima Samreen and Manar H. Alalfi. A survey of security vulnerabilities in

ethereum smart contracts. CoRR, abs/2105.06974, 2021.

[38] Bano Shehar, Sonnino Alberto, Al-Bassam Mustafa, Azouvi Sarah, McCorry Patrick, Meik-

lejohn Sarah, and Danezis George. Sok: Consensus in the age of blockchains. In Proceedings
of the 1st ACM Conference on Advances in Financial Technologies, 2019.

[39] Péter Szilágyi. Clique - ethereum proof-of-authority consensus protocol. https://github.

com/ethereum/EIPs/issues/225.

[40] Carmela Troncoso, Marios Isaakidis, George Danezis, and Harry Halpin. Systematiz-

ing decentralization and privacy: Lessons from 15 years of research and deployments.

Proceedings on Privacy Enhancing Technologies, 2017:404 – 426, 2017.

[41] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft replication.

In Jan Camenisch and Doğan Kesdoğan, editors, Open Problems in Network Security, 2016.

[42] Ingo Weber, Vincent Gramoli, Alex Ponomarev, Mark Staples, Ralph Holz, An Binh Tran,

and Paul Rimba. On availability for blockchain-based systems. In 2017 IEEE 36th Symposium
on Reliable Distributed Systems (SRDS), pages 64–73. IEEE, 2017.

[43] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. 2014.

32


