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Abstract
The increase in the interest in cryptocurrencies, and the consequent need for technological
maturity of blockchain-based platforms, has been the fuel for some recent advances in cryp-
tographic research. In this context, digital signature protocols have a central role since they
guarantee ownership and control of digital assets.

The absence of trusted central authorities in public blockchains, which is the very foundation
of this technology, poses some interesting challenges on the management of digital identities. In
particular, the computational infeasibility of restoring a lost key is a threat to anyone possessing
this kind of digital assets. A possible solution to this problem is to use threshold multi-signatures,
partially relying on a recovery-party whose only role, even though of paramount importance, is
to intervene in case of key loss.

We present a Schnorr multi-party digital signature scheme that supports an offline par-
ticipant during the key-generation phase, without relying on a trusted third party. Under
standard assumptions we prove our scheme secure against adaptive malicious adversaries and
capable of achieving the resiliency of the recovery in the presence of a malicious party.
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1. Introduction

Custody of cryptocurriencies, and in general of crypto-assets, is at the very core of the
burgeoning digital-asset market. Ownership is guaranteed by digital signatures and
making them available and usable by the general public presents many issues: to provide
a few examples, in case of inheritance heirs cannot access the crypto-assets unless unless
they already have access to the private key, and, in general, private keys can be easily
lost or forgotten, leading to the inaccessibility of the related assets. Many solutions
have been devised to mitigate these problems and to enable safe custody. Some rely on
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personal efforts (e.g., cold storage), others simply delegate full control of the assets to
a third party. Unfortunately, these kinds of solutions are partial: most either sacrifice
usability or completely rely on the trustworthiness of a third party. An alternative and
viable solution is to use threshold digital signatures [8]. This kind of technique addresses
more comprehensively the problems above. It relies on multiple private keys, instead of a
single one, which are distributed among parties, and a subset of them are required to
control the crypto-assets. This approach is resilient with respect to the unavailability or
loss of one party. In particular we design a three-parties protocol, that allows users to
distribute their key to a custodian and a third party, like a bank or another financial
institute. Security is guaranteed as long as the two helping parties do not collude, i.e.,
it is sufficient that one of the two remains honest to preserve the safety of the system.
Furthermore, this solution is effectively agnostic to the underlying blockchain, i.e., it
does not have to be supported by special features.

Starting from the highly influential work of Gennaro et al [14], several authors proposed
both novel schemes [7, 19, 20] and improvements to existing protocols [4, 9, 10, 12, 13,
17, 18, 21].

Recently, in [1] and [2] the authors propose an ECDSA-compatible and an EdDSA-
compatible (2, 3)-threshold multi-signature protocol in which one of the users plays the
role of the recovery party: a user involved only once in a preliminary setup prior even to
the key-generation step of the protocol.

In this paper we propose a third, Schnorr-based, variant of [2]. The Schnorr signature
algorithm has recently gained popularity in the world of cryptocurrencies, especially
since its addition to Bitcoin with BIP3401. Schnorr signatures have many advantages,
such as linearity, non-malleability and provable security. In particular, they are strongly
unforgeable under chosen message attacks: in the random oracle model assuming the
hardness of the discrete logarithm problem, in the generic group model assuming variants
of preimage and second preimage resistance of the used hash function. In contrast, the
best known results for the provable security of ECDSA rely on stronger assumptions.
Moreover, the threshold version presented here allows for fast computation with fewer
rounds of communication with respect to ECDSA, and unlike EdDSA does not require
expensive computation to derive a deterministic nonce.

We prove the protocol secure against adaptive adversaries by reducing it to the classical
Schnorr scheme, assuming the security of a non-malleable commitment scheme, and an
IND-CPA encryption scheme. Moreover we make some considerations about the resiliency
of the recovery, an interesting aspect due to the presence of an offline party, analyzing
possible changes that allow us to achieve this higher level of security.

2. Preliminaries

In this section we present some preliminary definitions and primitives that will be used
in the protocol and its proof of security.

1see https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
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Notation We use the symbol || to indicate the concatenation of bit-strings. Sometimes
we slightly abuse the notation and concatenate a bit-string 𝑀 with a group element 𝒫, in
those cases we assume that there has been fixed an encoding 𝜑 that maps group elements
into bit-strings, so 𝑀||𝒫 ∶= 𝑀||𝜑(𝒫 ).

In the following when we say that an algorithm is efficient we mean that it runs in
(expected) polynomial time in the size of the input, possibly using a random source.

We use a blackboard-bold font to indicate algebraic structure (i.e. sets, groups, rings,
fields), a calligraphic font will generally denote elements of a finite group.

2.1. Cryptographic Hash Functions

In the Schnorr scheme (and therefore in our threshold protocol) a cryptographic hash
function 𝐻 is used as a Pseudo-Random Number Generator (PRNG), employed to derive
secret scalars and nonces. The requirements needed for the hash function used in Schnorr
signatures are analyzed in [23].

2.1.1. Schnorr Signature

Schnorr’s digital signature algorithm is an efficient algorithm able to generate short
signatures without sacrificing security. It is one of the first signatures that bases its
security on the difficulty of discrete logarithm problem [24].

If Alice wants to send a signed message to Bob, she has to choose group 𝔾 with
generator 𝑔 of prime order 𝑞 where the discrete logarithm problem is considered to be
hard and a cryptographic hash function 𝐻. Then they can do the following:

1. Key Generation: Alice chooses randomly a private key 𝑥 ∈ ℤ∗
𝑞 and computes the

public key 𝑦 = 𝑔𝑥;

2. Signature Generation: to sign a message 𝑚, Alice performs the following:

a) Choose randomly 𝑘 ∈ 𝑍∗
𝑞 ;

b) Compute 𝑟 = 𝑔𝑘;

c) Compute 𝑒 = 𝐻(𝑚||𝑟);

d) Compute 𝑠 = (𝑘 − 𝑥𝑒);

e) The signature is the pair (𝑒, 𝑠).

3. Signature Verification: to verify the signature after receiving 𝑚 and (𝑒, 𝑠), Bob
performs the following:

a) Compute 𝑟𝑣 = 𝑔𝑠𝑦 𝑒;

b) Compute 𝑒𝑣 = 𝐻(𝑚||𝑟𝑣);

c) The signature is valid only if 𝑒𝑣 = 𝑒.
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2.2. Encryption Scheme

In our protocol we need an asymmetric encryption scheme to communicate with the
offline party. The minimum requirement we ask for our protocol to be secure is that the
encryption scheme chosen by the offline party has the property of IND-CPA [3, 22].

This hypothesis will be enough to prove the unforgeability of the protocol, but it is
possible to achieve a higher notion of security by using a more sophisticated encryption
scheme that supports Zero-Knowledge Proofs for the Discrete Logarithm. This will be
more clearly explained in Section 4.5.

2.3. Commitment Schemes

A commitment scheme [5] is composed by two algorithms:

• Com(𝑀) ∶ {0, 1}∗ → {0, 1}∗ × {0, 1}∗: takes in input the value 𝑀 to commit2 and, using
a random source, outputs the commitment string 𝐶 and the decommitment string
𝐷.

• Ver(𝐶, 𝐷) ∶ {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⟂}: takes the commitment and decommitment
strings 𝐶, 𝐷 and outputs the originally committed value 𝑀 if the input pair is valid,
⟂ otherwise3.

We require a commitment scheme to have the following properties:

• Correctness: for every value 𝑀 it holds Ver(Com(𝑀)) = 𝑀.

• Binding: for every commitment string 𝐶 it is infeasible to find 𝑀 ≠ 𝑀′ and 𝐷 ≠ 𝐷′

such that Ver(𝐶, 𝐷) = 𝑀 and Ver(𝐶, 𝐷′) = 𝑀′ with both 𝑀,𝑀′ ≠⟂.

• Hiding: Let (𝐶, 𝐷) = Com(𝑀𝑏) with 𝑏 ∈ {0, 1}, 𝑀1 ≠ 𝑀0, then it is infeasible for an
attacker that may choose 𝑀0 ≠ 𝑀1 and sees only 𝐶, to correctly guess 𝑏 with more
than negligible advantage.

• Non Malleability: Given 𝐶 = Com(𝑀), it is infeasible for an adversary A to produce
another commitment string 𝐶′ such that after seeing 𝐷 such that Ver(𝐶, 𝐷) = 𝑀,
A can find a decommit string 𝐷′ such that Ver(𝐶′, 𝐷′) = 𝑀′ with 𝑀′ related to 𝑀,
that is A can only create commitments to values that are independent from 𝑀.

2.4. Zero-Knowledge Proofs

In the protocol, various Zero-Knowledge Proofs (ZKP) [16] are used to enforce the respect
of the passages prescribed by the specifications. In fact, in the proof of security we can
exploit the soundness of these sub-protocols to extract valuable information from the

2In the protocol and the simulations we implicitly encode every value we need to commit into a bit-string,
assuming there is a standard encoding understood by all parties

3Again, in the protocol we implicitly decode valid decommitment outputs (i.e. ≠⟂) into the original value,
assuming that the decoding is also standard and understood by all parties
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adversary, and their zero-knowledge property to simulate correct executions even without
knowing some secrets. We can do so because we see the adversary as a (black-box)
algorithm that we can call on arbitrary input, and crucially we have the faculty of
rewinding its execution.

In particular we use ZKP of Knowledge (ZKPoK) to guarantee the usage of secret values
that properly correspond to the public counterpart, specifically the Schnorr protocol
for discrete logarithms, and its variant that proves that two public values are linked to
the same secret (see [24, 27]). The soundness property of a ZKPoK guarantees that the
adversary must know the secret input, and appropriate rewinds and manipulations of the
adversary’s execution during the proof allows us to extract those secrets and use them
in the simulation. Conversely exploiting the zero-knowledge property we can trick the
adversary in believing that we know our secrets even if we do not, thus we still obtain a
correct simulation of our protocol form the adversary’s point of view.

2.5. Feldman-VSS

Feldman’s VSS scheme [11] is a verifiable secret sharing scheme built on top of Shamir’s
scheme [26]. A secret sharing scheme is verifiable if auxiliary information is included,
that allows players to verify the consistency of their shares. We use a simplified version
of Feldman’s protocol: if the verification fails the protocol does not attempt to recover
excluding malicious participants, instead it aborts altogether. In a sense we consider
somewhat honest participants, for this reason we do not need stronger schemes such
as [15, 25].
The scheme works as follows:

1. A cyclic group 𝔾 of prime order 𝑞 is chosen, as well as a generator 𝑔 ∈ 𝔾. The
group 𝔾 must be chosen such that the discrete logarithm is hard to compute.

2. The dealer computes a random polynomial 𝑃 of degree 𝑡 with coefficients in ℤ𝑞,
such that 𝑃(0) = 𝑠 where 𝑠 ∈ ℤ𝑞 is the secret to be shared.

3. Each of the 𝑛 share holders receive a value 𝑃(𝑖) ∈ ℤ𝑞. So far, this is exactly Shamir’s
scheme.

4. To make these shares verifiable, the dealer distributes commitments to the coeffi-
cients of 𝑃. Let 𝑃(𝑋) = 𝑠 +∑𝑛

𝑖=1 𝑎𝑖𝑋 𝑖, then the commitments are 𝒞0 = 𝑔𝑠 and 𝒞𝑖 = 𝑔𝑎𝑖
for 𝑖 ∈ {1, … , 𝑛}.

5. Any party can verify its share in the following way: let 𝛼 be the share received by
the 𝑖-th party, then it can check if 𝛼 = 𝑃(𝑖) by verifying if the following equality
holds:

𝑔𝛼 =
𝑡

∏
𝑗=0

(𝒞𝑗)𝑖
𝑗
= 𝑔𝑠 ⋅ 𝑔∑

𝑡
𝑗=1 𝑎𝑗(𝑖𝑗) = 𝑔𝑠+∑

𝑡
𝑗=1 𝑎𝑗(𝑖𝑗) = 𝑔𝑃(𝑖).

64



3. Threshold Schnorr Signature

In this section we describe the main protocol: a (2, 3)-threshold variant of Schnorr digital
signature algorithm with an offline participant. Let 𝑃1, 𝑃2, 𝑃3 the parties involved in the
protocol, as already mentioned the goal is to allow to one of them, namely 𝑃3 to remain
offline during the key generation phase. Moreover our goal is to allow for a trustless
setup, where the parties does not have to rely to a third trusted party to generate the
credential. From now on we refer to 𝑃3 as the offline or recovery party, since its role is to
take part in the signing protocol if for any reason one of the two is no more able (secret
key loss, unreachability, etc.).

The protocol is dividend into four algorithms:

1. Setup Phase (3.1): in this phase all three players interact to set some common
parameters. Note that in a practical implementation this phase can be performed
ahead of time without any real communication, because these parameters are usually
fixed (e.g. for Bitcoin applications which have to use secp256k1 and SHA-256).

2. Key-Generation (3.2): performed by 𝑃1 and 𝑃2 to create the public key for the
signature scheme and the private shards for themselves and 𝑃3;

3. Ordinary Signature (3.3): used whenever 𝑃1 and 𝑃2 want to perform a signature. It
is called ordinary signature as this should be the standard signing procedure;

4. Recovery Signature (3.4): ideally, this algorithm is executed when either 𝑃1 or 𝑃2
is no more able to sign. 𝑃3 steps in and performs a signature with the remaining
party. It is important to emphasize that the final signature is still a standard one,
same as the one generated in an ordinary signature and indistinguishable to one
obtained in the centralized protocol.

From now on “𝑃𝑖 does something” means that both 𝑃1 and 𝑃2 perform that action.
Also by saying “ 𝑃𝑖 sends a message to 𝑃𝑗” means that 𝑃1 sends data to 𝑃2 and viceversa.

3.1. Setup Phase

The aim of this phase is to make 𝑃1 and 𝑃2 agree on all the parameters required in the
protocol and set up the private/public key pair used to contact 𝑃3 in case of need.

Player 1 and 2 Player 3
Input: Input:
Private Output: Private Output: sk3
Public Output: 𝔾, 𝑔, 𝑞, 𝐻 Public Output: pk3

𝑃3 picks a key pair (pk3, sk3) for a suitable asymmetric encryption algorithm. Then 𝑃1
and 𝑃2 agree on a secure hash function 𝐻 whose outputs can be interpreted as elements
of ℤ𝑞 and a group 𝔾 with generator 𝑔 of prime order 𝑞 in which the discrete logarithm
problem is considered to be hard.
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3.2. Key generation

This part of the protocol is performed by 𝑃1 and 𝑃2 to produce a common public key 𝒜
and to distribute shards of the corresponding private key to each player.

Player 1 Player 2
Input: pk3 Input: pk3
Private Output: 𝜔1 Private Output: 𝜔2
Public Output: rec1,3, rec2,3, 𝒜 Public Output: rec1,3, rec2,3, 𝒜

1. Secret key generation and communication:

a) 𝑃𝑖 randomly chooses 𝑎𝑖, 𝑦3,𝑖, 𝑚𝑖 ∈ ℤ𝑞 and sets 𝒜𝑖 = 𝑔𝑎𝑖 , 𝒴3,𝑖 = 𝑔𝑦3,𝑖;

b) 𝑃𝑖 computes [KGC𝑖, KGD𝑖] = Com((𝒜𝑖, 𝒴3,𝑖));

c) 𝑃𝑖 sends KGC𝑖 to 𝑃𝑗;

d) 𝑃𝑖 sends KGD𝑖 to 𝑃𝑗;

e) 𝑃𝑖 gets ((𝒜𝑖, 𝒴3,𝑖)) = Ver(KGC𝑗, KGD𝑗) .

2. Feldman VSS and generation of 𝑃3 data:

a) 𝑃𝑖 sets 𝑓𝑖(𝑥) = 𝑎𝑖 + 𝑚𝑖𝑥 and computes 𝑦𝑖,1, 𝑦𝑖,2, 𝑦𝑖,3 where 𝑦𝑖,𝑗 = 𝑓𝑖(𝑗);

b) 𝑃𝑖 encrypts 𝑦𝑖,3, 𝑦3,𝑖 with pk3 and obtains rec𝑖,3;

c) 𝑃𝑖 sends 𝑦𝑖,𝑗 and rec𝑖,3 to 𝑃𝑗;

d) If the asymmetric encryption algorithm supports DLOG verification, the
encryption rec𝑖,3 is accompanied by two NIZKPs: the first one proves that
the first ciphertext in rec𝑖,3 is the encryption of the DLOG of 𝒴𝑖,3 = 𝒜𝑖 ⋅ (ℳ𝑖)3
(where ℳ𝑖 = 𝑔𝑚𝑖 is sent during the Feldman-VSS protocol), the second NIZKP
proves that the second ciphertext is the encryption of the DLOG of 𝒴3,𝑖. 𝑃𝑖
checks the NIZKPs attached to rec𝑗,3.

e) 𝑃𝑖 checks, as in the Feldman-VSS protocol, the integrity and consistency of
the shards 𝑦𝑗,𝑖;

f) 𝑃𝑖 computes 𝑥𝑖 = 𝑦1,𝑖 + 𝑦2,𝑖 + 𝑦3,𝑖.

3. 𝑃𝑖 proves in ZK the knowledge of 𝑥𝑖 using Schnorrs protocol.

4. Public key and shards generation:

a) the public key is 𝒜 = ∏3
𝑖=1𝒜𝑖, where 𝒜3 = (𝒴3,1)2/𝒴3,2 so that 𝑎3 = 2𝑦3,1−𝑦3,2.

From now on we will set 𝑎 = ∑3
𝑖=1 𝑎𝑖 and we have 𝑔𝑎 = 𝒜;

b) 𝑃1 computes 𝜔1 = 2𝑥1, while 𝑃2 computes 𝜔2 = −𝑥2. Note that 𝜔1 + 𝜔2 = 𝑎;
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3.3. Signature Algorithm

This algorithm is the general signature scheme in which two players, 𝑃𝐴 and 𝑃𝐵, want to
sign a message. Each of 𝑃1, 𝑃2, 𝑃3 can take the role of either 𝑃𝐴 or 𝑃𝐵 depending on the
situation, we call Ordinary Signature the case in which 𝑃1 takes the role of 𝑃𝐴 and 𝑃2
takes the role of 𝑃𝐵.

Let 𝑀 be the message, the parameters involved are:

Player A Player B
Input: 𝑀, 𝜔𝐴, 𝒜 Input: 𝑀, 𝜔𝐵, 𝒜
Public Output: (𝑠, 𝑒) Public Output: (𝑠, 𝑒)

The protocol proceeds as follows.

1. Generation of 𝑟:

a) 𝑃𝑖 randomly chooses 𝑘𝑖 ∈ 𝔾;

b) 𝑃𝑖 computes 𝑟𝑖 = 𝑔𝑘𝑖;

c) 𝑃𝑖 computes [KGC𝑖, KGD𝑖] = Com(𝑟𝑖) and sends KGC𝑖;

d) 𝑃𝑖 sends KGD𝑖;

e) 𝑃𝑖 computes 𝑟𝑗 = Ver([KGC𝑗, KGD𝑗]);

f) 𝑃𝑖 computes 𝑟 = 𝑟𝐴𝑟𝐵.

2. Generation of 𝑠:

a) 𝑃𝑖 computes 𝑒 = 𝐻(𝑟 ||𝑀) and 𝑠𝑖 = 𝑘𝑖 − 𝜔𝑖𝑒;

b) 𝑃𝑖 computes [KGC′𝑖 , KGD′𝑖 ] = Com(𝑠𝑖) and sends KGC′𝑖 ;

c) 𝑃𝑖 sends KGD′𝑖 ;

d) 𝑃𝑖 computes 𝑠𝑗 = Ver([KGC′𝑗 , KGD′𝑗 ]);

e) 𝑃𝑖 computes 𝑠 = 𝑠𝐴 + 𝑠𝐵.

3. 𝑃𝑖 computes 𝑟𝑣 = 𝑔𝑠𝒜 𝑒 and checks that 𝐻(𝑟𝑣||𝑀) = 𝑒.

The output signature is (𝑠, 𝑒). If a check fails, the protocol aborts.

3.4. Recovery Signature

This is the scenario where one between 𝑃1 or 𝑃2 is unable to sign. 𝑃3 has to come back
online and perform a recovery signature with the other online party. There are two
different situations, depending whether the other party is 𝑃1 or 𝑃2.

Firstly we consider the case where 𝑃2 is offline and 𝑃1 and 𝑃3 want to perform a
signature. The parameters involved are:

Player 1 Player 3
Input: 𝑀, 𝜔1, 𝒜 , rec1,3, rec2,3 Input: 𝑀, sk3
Public Output: (𝑠, 𝑒) Public Output: (𝑠, 𝑒)
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The protocol is the following.

1. Communication:

a) 𝑃1 contacts 𝑃3 and sends 𝒜, rec1,3, rec2,3;
b) 𝑃3 decrypts rec1,3, rec2,3 using its private key to obtain 𝑦1,3, 𝑦3,1, 𝑦2,3, 𝑦3,2;
c) 𝑃3 computes 𝑎3 = 2𝑦3,1 − 𝑦3,2 and 𝒜3 = 𝑔𝑎3.

2. 𝑃3’s key creation:

a) 𝑃3 computes 𝑥3 = 𝑦1,3 + 𝑦2,3 + 2𝑦3,2 − 𝑦3,1;

b) 𝑃𝑖 proves in ZK the knowledge of 𝑥𝑖 using Schnorrs protocol (𝑥1 =
1
2𝜔1).

3. Signature generation:

a) 𝑃1 computes �̃�1 =
3
4𝜔1;

b) 𝑃3 computes 𝜔3 = −1
2𝑥3;

c) 𝑃1 and 𝑃3 perform the signature algorithm with 𝑃𝐴 = 𝑃1, 𝑃𝐵 = 𝑃3 using 𝜔𝐴 = �̃�1
and 𝜔𝐵 = 𝜔3. Note that it still holds that 𝜔𝐴 + 𝜔𝐵 = 𝑎.

The other scenario is the one in which 𝑃1 is offline and 𝑃2 signs the message with 𝑃3:

Player 2 Player 3
Input: 𝑀, 𝜔2, 𝒜 , rec1,3, rec2,3 Input: 𝑀, sk3
Public Output: (𝑠, 𝑒) Public Output: (𝑠, 𝑒)

The first two steps are the same as in the previous scenario, except that in the ZKP in
[2b] we now have 𝑥2 = −𝜔2.

3. Signature generation:

a) 𝑃2 computes �̃�2 = −3𝜔2;
b) 𝑃3 computes 𝜔3 = −2𝑥3;
c) 𝑃2 and 𝑃3 perform the signature algorithm with 𝑃𝐴 = 𝑃2, 𝑃𝐵 = 𝑃3 using 𝜔𝐴 = �̃�2

and 𝜔𝐵 = 𝜔3. Note that also here 𝜔𝐴 + 𝜔𝐵 = 𝑎.

4. Security Proof

In this section we discuss the security of the scheme in terms of the unforgeability
properties defined below. We also discuss other security aspects, such as recovery
resiliency in the subsequent Section 4.5.

Definition 4.1 (Unforgeability). A (𝑡, 𝑛)-threshold signature scheme is unforgeable if no
malicious adversary who corrupts at most 𝑡 − 1 players can produce the signature on a
new message 𝑚 with non-negligible probability, given the view of the threshold sign on
input messages 𝑚1, … , 𝑚𝑘 (adaptively chosen by the adversary), as well as the signatures
on those messages.
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The unforgeability of our protocol is formally stated in the following theorem:

Theorem 4.1. Assuming that:

• the Schnorr signature scheme instantiated on the group 𝔾 of prime order 𝑞 with
the hash function 𝐻 is unforgeable;

• Com,Ver is a non-malleable commitment scheme;

• the Decisional Diffie-Hellman Assumption holds;

• the encryption algorithm used by 𝑃3 is IND-CPA;

our threshold protocol is unforgeable.

In Section 4.4 we will prove the theorem by showing that if there is an adversary
A able to forge a signature for the threshold scheme with non negligible probability
𝜖 > 𝜆−𝑐 with 𝜆 a polynomial and 𝑐 > 0, then it is possible to build a forger F that forges a
signature for the centralized Schnorr scheme also with non negligible probability. The
simulation works by having an oracle that feeds inputs for the centralized scheme to F,
our goal is to respond by generating a signature exploiting A. First, it has to simulate
the key generation protocol in order to match the key received from the oracle, then
it can proceed with the signature part. The core of this setup is that if A is able to
crack our protocol, F will take advantage of that and will also create a forgery for the
centralized version of the oracle.

Following the definition of unforgeability, A will control one player while F controls
the remaining two. We must consider two different scenarios: one where A controls 𝑃1 or
𝑃2, and the case where A controls 𝑃3. First, we suppose without loss of generality that A
controls 𝑃2.

The adversary interacts by first participating in the key generation part to generate
a public key 𝒜, then starts requesting signatures on some messages 𝑚1, … , 𝑚𝑙. Here it
can either take part in the process or let 𝑃1 and 𝑃3 generate the signature. Eventually A

outputs a message 𝑚 ≠ 𝑚𝑖 ∀𝑖 and its valid signature with probability at least 𝜖, where this
is taken over the random tapes of the adversary and the honest player, respectively 𝜏A
and 𝜏𝑖. So we can write that

ℙ𝜏𝑖,𝜏A(A(𝜏A)𝑃𝑖(𝜏𝑖) = forgery) ≥ 𝜖, (1)

where A(𝜏A)𝑃𝑖(𝜏𝑖) is the output of A at the end of this process and ℙ𝜏𝑖,𝜏A denotes that the
probability is taken over the random tape 𝜏𝑖 and the adversary tape 𝜏A.

We say that a random tape is good if

ℙ𝜏𝑖(A(𝜏A)𝑃𝑖(𝜏𝑖) = forgery) ≥ 𝜖
2
. (2)

We recall the following useful lemma, stated and proved in [2].

Lemma 4.1. If 𝜏A is chosen uniformly at random, the probability that 𝜏A is good is at
least 𝜖

2 .
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4.1. Key generation simulation

Now we see into details how the key generation phase is simulated. F receives from the
challenger the public key 𝒜𝑐 for the centralized Schnorr protocol and a public key pk3 for
the asymmetric encryption scheme. The simulation proceeds as follows:

1. 𝑃𝑖 selects random values 𝑎𝑖, 𝑦3,𝑖, 𝑚𝑖 ∈ ℤ𝑞 and computes 𝒜𝑖 = 𝑔𝑎𝑖 , 𝒴3,𝑖 = 𝑔𝑦3,𝑖;

2. 𝑃𝑖 computes the commitment [KGC𝑖, KGD𝑖] = Com(𝒜𝑖, 𝒴3,𝑖);

3. 𝑃𝑖 sends KGC𝑖, then, after receiving KGC𝑗, 𝑃𝑖 sends KGD𝑖;

4. 𝑃𝑖 gets (𝒜𝑖, 𝒴3,𝑖) = Ver(KGC𝑗, KGD𝑗);

5. Now F knows all the parameters needed in the computation of 𝒜, so it rewinds A

to step 3, aiming to get 𝒜 = 𝒜𝑐;

6. F computes ̂𝒜 = 𝒜𝑐
𝒜2𝒜3

, computes the commitment [ ̂KGC1, ̂KGD1] = Com( ̂𝒜 ,𝒴3,1), and

sends it to A, so that it will receive ̂𝒜 as 𝒜1 which leads to 𝒜 = 𝒜𝑐;

7. F simulates a fake Feldman-VSS with 𝒜 (see e.g. [2]) since it cannot compute the
polynomial 𝑓 (𝑥): it selects 𝑦1,2, 𝑦1,3 randomly and computes 𝑐1,𝑗 =

1
𝑖 (𝑔

𝑦1,𝑖/ ̂𝒜) .

8. 𝑃𝑖 encrypts 𝑦𝑖,3 and 𝑦3,𝑖 with pk3, getting rec𝑖,3, then sends 𝑦𝑖,𝑗, rec𝑖,3;

9. 𝑃𝑖 computes 𝑥𝑖. Since F does not know the discrete logarithm of ̂𝒜, it sets 𝑥1
randomly;

10. F participates in the ZK proofs rewinding A and selecting appropriate challenges
in order to extract 𝑥2 from A;

11. 𝑃𝑗 can compute the key 𝒜 as described in the enrollment phase. A can also compute
𝜔2, while F cannot, since it does not know 𝑥1.

Note that at the end of the protocol, F does not know 𝑥1 nor 𝜔1, but F will still be
able to complete correctly the signing part by querying the oracle.

The proof of the correctness of the simulation is stated in the following lemmas. The
proofs are trivial and use the same argument of the one presented in [2].

Lemma 4.2. If the Decisional Diffie-Hellman assumption holds, and the encryption
algorithm used by 𝑃3 is IND-CPA, then the simulation terminates in expected polynomial
time and is indistinguishable from the real protocol.

Lemma 4.3. For a polynomial number of inputs the simulation terminates with output
𝒜𝑐 except with negligible probability.
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Observation 1. It is important that in step 3 the adversary sends KGC2 and KGD2 before
F, so that after the rewinding A cannot change its commitment (note that this applies
also to the simulation in Section 4.2). If the order were inverted, A could also use the
commitment of F to generate its value. Assuming the non-malleability property, A does
not deduce anything about the content of the commitment, but it could still use it as a
seed for a random generator. If this were to happen, F can guess ̂𝒜 with probability 1

𝑞
with 𝑞 the size of the group, making the expected time exponential.

It is possible to swap the order in the commitment step using an equivocable com-
mitment scheme with a secret trapdoor. In this case we only need to rewind at the
decommitment step and change 𝐾𝐶𝐷1 in order to match ̂𝒜.

4.2. Signature generation simulation

After the the key generation, F has to deal with the signature requests issued by A.
When A asks for a signature, F performs a simulation while having access to the signing
oracle that uses the previously created public key. Here F can fully predict what A will
output and, while it does not know any secret key of 𝑃1, it knows everything of 𝑃2 since
all the secret values were extracted from A during the ZK proofs.

The simulation proceeds as follows:

1. A chooses a message 𝑚 to sign;

2. F queries its signing oracle for a signature for 𝑚 corresponding to the public key 𝒜
and gets (𝑠𝑓, 𝑒𝑓);

3. 𝑃𝑖 randomly chooses 𝑘𝑖 ∈ ℤ∗
𝑞 , then computes 𝑟𝑖 = 𝑔𝑘𝑖 and [KGC𝑖, KGD𝑖] = Com(𝑟𝑖);

4. 𝑃𝑖 sends KGC𝑖, then, after receiving KGC𝑗, sends KGD𝑖 and gets 𝑟𝑖 = Ver([KGC𝑖, KGD𝑖]);

5. F rewinds A to step 4;

6. F computes ̂𝑟1 =
𝑟𝑓
𝑟2
, then its commitment [ ̂KGC1, ̂KGD1] = Com( ̂𝑟1) and sends ̂KGC1 to

A so it receives ̂𝑟1 as 𝑟1 which leads to 𝑟 = 𝑟𝑓;

7. 𝑃𝑖 computes 𝑟 = 𝑟1𝑟2, 𝑒 = 𝐻(𝑟 ||𝑚), and 𝑠𝑖 = 𝑘𝑖 − 𝜔𝑖𝑒 (F picks 𝑠1 at random);

8. 𝑃𝑖 computes [KGC′𝑖 , KGD′𝑖 ] = Com(𝑠𝑖), then sends KGC′𝑖 ;

9. 𝑃𝑖 sends KGD′𝑖 and gets 𝑠𝑖 = Ver([KGC′𝑖 , KGD′𝑖 ]);

10. F computes 𝑟 ′2 = 𝑔𝑠2 ⋅ 𝑔−𝑒𝜔2, if 𝑟2 = 𝑟 ′2 it rewinds A to step 8, otherwise it sends 𝑠1
and aborts;

11. F computes ̂𝑠1 = 𝑠𝑓 − 𝑠2 with its commitment [ ̂KGC′1, ̂KGD′1] = Com( ̂𝑠1) and sends
̂KGC′1 to A so it receives ̂𝑠1 as 𝑠1 which leads to 𝑠 = 𝑠𝑓;

12. 𝑃𝑖 computes 𝑠 = 𝑠1 + 𝑠2 and 𝑟𝑣 = 𝑔𝑠𝒜 𝑒, then checks that 𝐻(𝑟𝑣||𝑚) = 𝑒. If a check fails
the protocol aborts, otherwise the signature is (𝑠, 𝑒).
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Lemma 4.4. If Com is a secure non-malleable commitment scheme, the protocol above is
a perfect simulation of the centralized one and terminates correctly with output (𝑠𝑓, 𝑒𝑓).

Proof. The simulation is identical to the real protocol except that here F does not know
its secret shards. Nevertheless it is still able to retrieve the correct value from A by
rewinding it. As above, if the protocol terminates, by construction it will terminate with
output (𝑠𝑓, 𝑒𝑓). If A is dishonest or refuses to decommit some values, the protocol aborts.
Note that the check of step 10 is introduced to preserve any abort that the adversary
may cause by sending an invalid 𝑠1.

4.3. Recovery signature simulation

Since A can ask both types of signature, we must also consider the case of a recovery
signature. The core algorithm remains the same, so the results above still holds. Here we
only need to change the setup phase during which the third player recovers its secret
data. There are two scenarios: one in which A controls one of 𝑃1 or 𝑃2 and another where
it controls 𝑃3, which is easier, since the enrollment phase can be avoided. We will proceed
in order.

Trivially, if A asks for a recovery signature between the two honest parties, F can
simply ask its oracle and output whatever it received from the oracle. So we can limit
ourselves to deal with the case where A participates in the signing process.

If A controls 𝑃2 the simulation works as follows:

1. 𝑃2 sends to 𝑃3 𝒜, rec1,3, rec2,3. Note that some of them are random data sent by 𝑃1;

2. 𝑃3 cannot decrypt the values received in the previous step. It simulates the ZKP
about 𝑥3 and extracts the secret values from 𝑃2;

3. 𝑃2 computes ̃𝜔2 = −3𝜔2. Note that 𝑃3 does not have the right shards so it cannot
compute its secret key;

4. They perform the signing algorithm using the simulation above. Here F does not
know its secret key, but it can use the signing oracle to get the signature.

If A controls 𝑃1 the only difference is in the computation of �̃�1 =
3
4𝜔1. The last case

is the one where A controls 𝑃3. The enrollment phase is done all by F so it can easily
generate random shards that will be sent to 𝑃3 during the recovery signature phase and
output the public key given by the oracle. Then with the same simulation as before it
can simulate the signature.

4.4. Proof of the unforgeability property

Now that we have dealt with all the possible cases we need to prove Theorem 4.1:
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Proof. Let 𝑄 < 𝜆𝑐 be the maximum number of signature queries that the adversary
makes. In a real instance of the protocol the adversary outputs a forgery after 𝑙 < 𝑄
queries, either because it stops submitting queries or because the protocol aborts. As
we previously proved, our simulator produces a view of the protocol that the adversary
cannot distinguish from the real one, therefore A will produce a forgery with the same
probability as in a real execution. Then the probability of success of our forger F is 𝜖3

8
which is the product of the probability of the following independent events:

1. choosing a good random tape for A, whose probability is at least 𝜖
2 as per Lemma

4.1;

2. getting a good public key, whose probability is at least 𝜖
2 as shown in Lemma 4.2

and 4.3;

3. A successfully produces a forgery, whose probability is again 𝜖
2 (2).

Under the assumption on the security of the Schnorr signature scheme, the probability of
success of F must be negligible, which implies that 𝜖 must be negligible too, contradicting
the hypothesis that A has a non-negligible probability of forging a signature for the
scheme.

4.5. Resilience of the recovery

In our security analysis we focused on the unforgeability of the signature, however with an
offline party another security aspect is worthy of consideration: the resiliency of recovery
in the presence of a malicious adversary. Of course if the offline party is malicious and
unwilling to cooperate there is nothing we can do about it, however the security can
be strengthened if we consider that one of the online parties may corrupt the recovery
material. In this case a generic CPA asymmetric encryption scheme is not sufficient to
prevent malicious behaviour, because we need a verifiable encryption scheme that allows
the parties to prove that the recovery material is consistent, just like they prove that
they computed the shards correctly.

In particular we need an encryption scheme that supports DLOG verification as
explained in point 2d of the Key-Generation algorithm. A suitable candidate could be a
variant of the CramerShoup cryptosystem presented in [6]. This algorithm is equipped
with a ZKP that allows the sender to prove that the plaintext encrypted is the discrete
logarithm of a public value. In particular, since the protocol is a three step ZKP with
special soundness, completeness, and honest-verifier zero knowledge, it is possible to
build a non-interactive ZKP using the Fiat-Shamir heuristic.

5. Conclusions

In this paper, we presented a Schnorr threshold signature with the goal of providing a
reliable and efficient solution for the custody of crypto-assets, both from possible attackers
and from loss due to accidents of various nature. In this sense, threshold signatures
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without a trusted dealer offer a perfect solution, since the private key is never created,
and they overcome the limitations of blockchains that do not have native multi-signature
support. Although decentralized signature algorithms have been known for a while,
we are aware of only few proposals for algorithms that are able to produce signatures
indistinguishable from a standard one. The protocol described in this work is, as far as
we know, the first example of Schnorr threshold multi-signature allowing the presence of
an offline participant during key-generation and whose signatures are indistinguishable
from Schnorr ones.

The focus of this work was to shift away from DSA-like protocols, further motivated
by the recent adoption of Schnorr signatures in Bitcoin4. Moreover, Schnorr signatures
are quite a multi-party-friendly algorithm, unlike EdDSA, since we can avoid expensive
tricks to generate a deterministic nonce.

Similarly to its ECDSA and EdDSA counterparts, in order to guarantee the security of
the signature itself against black-box adversaries, the protocol involves a large utilization
of ZKPs, that are the main bottleneck in terms of efficiency.

Future research steps could be the generalization to (𝑡, 𝑛)-threshold schemes with more
than one offline party and the extension of our notion of security. Although our protocol
is susceptible to DOS attacks on the offline party, there are many ways to overcome this
apparent weakness, such as the distribution of the role of the Recovery party to multiple
servers or the generalization of our scheme to more than three parties.
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