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Abstract
Object permanence, the understanding and belief that objects continue to exist even when they are not directly observable, is
important for any agent interacting with the world. Psychologists have been studying object permanence in animals for at
least 50 years, and in humans for almost 50 more. In this paper, we apply the methodologies from psychology and cognitive
science to present a novel testbed for evaluating whether artificial agents have object permanence. Built in the Animal-AI
environment, Object-Permanence In Animal-Ai: GEneralisable Test Suites (O-PIAAGETS) improves on other benchmarks for
assessing object permanence in terms of both size and validity. We discuss the layout of O-PIAAGETS and how it can be used
to robustly evaluate OP in embodied agents.
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1. Introduction
Object Permanence (OP) is the understanding and belief
that objects continue to exist even when they are not
directly observable. In behavioural terms, an agent has
OP when they behave as though objects continue to exist
when they cannot see them. Human adults use OP to rea-
son about how objects behave and interact in the external
world. Credited as the first to empirically investigate this
capability, Jean Piaget observed how infants develop the
tendency to search for objects that became occluded [1].
Piaget’s insights have been extended considerably by de-
velopmental and comparative psychologists, usually in
the visual modality [2, 3, 4], although OP is an amodal
phenomenon [5].

Humans and some animals appear to understand that
objects continue to exist independently of them, with the
same properties. However, when an object reappears,
what makes us reidentify this as the same object as be-
fore? Object reidentification has been studied in visual
cognition research with adults [6, 7, 8] and primates [9],
and in developmental psychologywith infants [10, 11, 12].
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The relation between object reidentification and OP is
manifest: when an object passes out of view, we believe
that it continues to exist. When it passes back into view,
we use knowledge about objects to determine whether
this is the same object we saw previously. Here, we use
OP to mean both classical OP and object reidentification.

OP has proven difficult to build into AI systems. Deep
Reinforcement Learning systems perform significantly
worse than human children when solving problems in-
volving OP [13]. Tracking objects under partial occlu-
sion appears to be difficult for modern computer vision
methods [14]. The need for AI agents with robust OP
is important for creating trustworthy embodied AI such
as self-driving cars. Furthermore, robust object tracking
under occlusion would have many applications in the
field of robotics. However, the methods for evaluating
whether an agent has OP suffer from a lack of precision,
reliability, and validity. Developmental and comparative
psychologists have been investigating OP in biological
agents for around a century, developing many experi-
mental paradigms along the way. Until now, AI research
has not applied these methods to AI evaluation [15]. In
this paper, we outline a new test battery, built in the
Animal-AI Environment [16] for evaluating whether em-
bodied artificial agents have OP: the Object-Permanence
in Animal-Ai: GEneralisable Test Suites. O-PIAAGETS is a
novel attempt to use experiments designed for investigat-
ing whether biological agents have OP for AI evaluation.
First, we examine why OP is a challenge for AI research.
Second, we critically review existing OP testbeds. Third,
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we outline the structure of the test battery and how it
can be used to robustly investigate whether agents have
OP. Finally, we discuss how O-PIAAGETS can be used
for evaluation and how it improves on existing testbeds
in the field.

2. Background and Motivations

2.1. The Logical Problem of OP
OPmay appear to be a trivial capacity for an agent to have.
The agent must simply understand that objects continue
to exist when they are not directly observable. Indeed,
Renée Baillargeon and colleagues [17] hypothesise that
children are born with a Principle of Persistence, which
states exactly this [18, 19]. Why, then, can’t we endow AI
systems with such a principle, bias, or heuristic? Can’t
we simply tell an agent that objects continue existing
when they are occluded? Fields [20, 19] has discussed
how the notion of a Principle of Persistence is untenable,
due to the Frame Problem (FP).

The FP implies that endowing an agent, biological or
artificial, with a principle of persistence is not trivial. It
cannot be overcome with a representation as simple as
objects continue to exist even when they aren’t observable.
In its raw form, the FP demonstrates that when logically
describing the effects of particular actions on objects in
a domain, we must also describe ad nauseam all the non-
effects of those actions on those objects. As Fields [19]
says, it amounts to having to describe everything that
doesn’t change in the universe as a result of turning off the
fridge (p. 443). In a domain where objects have certain
properties that can change over time, as in all real-world
scenarios, the FP implies that we can’t simply say that
the objects stay the same over time, without describing
which properties remain unchanged and when [21].

When an agent can observe everything in a domain,
and re-update what has and has not changed at every
timestep, the FP rarely raises any issues. However, when
objects become occluded, it becomes important to track
which properties of those objects do and do not change
and when, in order to identify other objects as identi-
cal or different. For example, imagine a lion watching a
small antelope pass behind some bushes and then seeing
a large antelope emerge at the other side. It becomes
useful to know that antelope don’t change size over such
time periods, and therefore the smaller antelope contin-
ues to exist because of the persistence of its size (and
other) properties. It also becomes useful to know that
the antelope doesn’t change when the lion changes their
perspective, or occludes the antelope through its own
actions, an analogue of the Simultaneous Location and
Mapping (SLAM) problem in robotics [22]. Overcoming
the FP either requires sophisticated deductive techniques

[21], or robust inductive and abductive learning heuris-
tics and biases [20, 19, 8]. It is therefore not as simple as
imputing a Principle of Persistence to build AI systems
with OP.

2.2. Existing Evaluation Methods for OP
in AI

AI researchers, particularly those working on computer
vision, embodied agents, and robotics, are interested in
building AI systems capable of robustly reasoning about
visual scenes, in a similar way to how humans and ani-
mals do. Researchers have built several evaluation frame-
works for assessing whether embodied artificial agents
and computer vision systems have OP.

Lampinen et al. [23] built OP tasks in a 3D Unity envi-
ronment. Here, the agent was fixed as it watched three
boxes. Periodically, objects would leap out of the three
boxes, simultaneously or sequentially with or without
a refractory time lag. The agent would then be turned
away from the boxes, released, and asked to go to the
box with a particular object. If it chose the correct box, it
was rewarded, similar to tasks used with human infants
[24] and non-human primates [4]. Crosby et al. [16]
developed a series of 90 OP tests as part of the Animal-AI
Testbed and Olympics, inspired and directly developed by
developmental and comparative psychology. Some work
has been done comparing embodied deep reinforcement
learning agents to humans on these tasks. Children aged
6-10, with limited training, significantly outperformed
Deep Reinforcement Learning systems on the OP tasks
in the Animal-AI Testbed [13], indicating there is room
to improve these systems until they reach human-level
performance. Leibo et al. [25] developed Psychlab for
probing psychophysical phenomena in Deep Reinforce-
ment Learning systems using cognitive science methods
and qualitatively comparing performance with human
participants, but they did not investigate OP.

Having OP is not only applicable to embodied agents,
but also to passive computer vision systems engaged in
object tracking. The Localisation Annotations Compo-
sitional Actions and TEmporal Reasoning (LA-CATER)
dataset [26] is prominent in computer vision research.
LA-CATER contains 14000 video scenes where objects
can move in three dimensions, contain, and carry each
other. Several tasks in this dataset happen to behave
similarly to OP experiments used in psychology. For
example, one task involves an object being occluded by
one of three identical ‘cups’; once occluded, the cups are
moved relative to each other. This bears resemblance to
the cup-tasks used in the Primate Cognition Test Battery
[4] (see Figure 3) or in the Užgiris and Hunt [24] test
battery for infants. Other benchmark datasets include
ParallelDomain (PD) and KITTI [27]. PD is a synthetic
dataset designed to test occlusions in driving scenarios.



It contains 210 photo-realistic driving scenarios in city
environments, from 3 camera angles, creating a dataset of
630. KITTI [28] has 21 labelled videos of real-world city
scenes, in which cars, pedestrians, and other objects pass
behind each other and become partially or fully occluded,
a small fraction of the total KITTI dataset [27].

Piloto et al. [29] directly applied a measurement frame-
work innovated in developmental psychology to probe
physics knowledge in artificial systems, including OP. Vi-
olation of Expectation has been used by the neo-Piagetian
school of developmental psychology [3], investigating in-
fants’ knowledge about the world by determining when
they are surprised to see something, violating their ex-
pectations. For example, infants at about 4.5 months tend
to show surprise (by looking more) if an object appears
to change size whilst occluded [10, 11]. Piloto et al. pro-
cedurally generated 28 3-second videos that emulated a
small subset of these studies, and used Kullback-Leibler
divergence as the AI equivalent of looking time. They
demonstrated the utility of this technique for probing
physical knowledge in computer vision systems.

In both computer vision and embodied AI, several
methods for detecting when agents have OP have been
proposed. However, with the exception of the work of
Piloto et al. [29] and Lampinen et al. [23] at DeepMind
and the Animal-AI Testbed and Olympics, little attention
has been paid to systematically applying the methodolo-
gies of psychology to try to understand and evaluate OP
in artificial agents.

2.3. Problems with Current Evaluation
Frameworks for OP

Twomain problems exist with the methods for evaluating
whether AI has OP. The first problem is that most of
these benchmarks and testbeds use independent-and-
identically-distributed (i.i.d.) test data, meaning testing
data is drawn from the same distribution as training data.
This especially applies to LA-CATER, PD, and KITTI. The
second problem is a lack of internal validity. Sufficient
controls to eliminate alternative explanations for certain
behaviours are often lacking.

The problem with i.i.d. testing data is that it is in prin-
ciple impossible to distinguish between an agent that has
OP and one using problem-irrelevant shortcuts to max-
imise reward, appearing as if they have OP. This means
that even if we had an agent that genuinely had OP, our
evaluation methods limit how certain we can be of that.
Geirhos et al. [30] argue that an effective measure against
this is to test AIs on out-of-distribution (o.o.d.) test data,
where training data and test data are drawn from dif-
ferent (but meaningfully related) distributions. This is
related to the notion of transfer tasks in developmental
and comparative psychology. The move from i.i.d to o.o.d.
testing is still not mainstream, but is gaining prominence

[31, 32, 33]. LA-CATER and the procedurally generated
test sets mentioned earlier were generated according to
a series of rules, with training, validation, and test sets
divided arbitrarily. The PD and KITTI datasets were
generated and collected non-procedurally, but again, the
distinction between training and test sets is often arbi-
trary [27].

Moving from i.i.d. to o.o.d. test data promotes robust-
ness in AI systems. Developing a testbed for OP in which
training and test data are kept distinct means that we can
be more certain that AI systems have OP if they perform
successfully, rather than overfitting to the data distribu-
tion. This means we can evaluate whether an AI has an
ability corresponding to OP, rather than a propensity for
solving some distribution of tasks that require it1 [35, 36].

O.o.d. testing enables researchers to have grounds to
say they are testing for the presence of abilities. However,
selecting a test distribution must be guided by some prin-
ciple that tells us why the training and test distributions
aremeaningfully related. This takes us to the second prob-
lem for OP evaluation in AI: that testing lacks internal
validity. Developmental and comparative psychologists
have developed numerous experimental designs to test
for the presence of cognitive abilities in biological agents,
introducing numerous controls to eliminate alternative
explanations. As a point of reference, let’s take the classic
A-not-B paradigm for testing OP. Participants are pre-
sented with an object of interest that is hidden for several
trials at location A. In the AI context, this amounts to a
training distribution around location A (with variance
corresponding to minor differences between trials). To
test the participant to find an object of interest at A, true
OP understanding as an explanation is conflated with
other explanations in terms of memorising spatial loca-
tion or returning to a previously rewarding location as
infants under 9 months, and many animals, do [1, 37].
To eliminate (some of) these explanations, in the test
condition, participants are faced with an object hidden
at location B. The testing distribution now includes ob-
jects hidden at B, and the relation between the two is
meaningful in the context of OP, because an agent needs
OP to solve the task. The logic is that one would only
perform well on training (A-only) and testing (B-only)
if one had OP. Of course, there are further alternative
explanations for correct search at locations A and B, such
as simply searching where the experimenter’s hand has
just been [24]. So internal validity tends to increase the

1For example, an anonymous reviewer pointed out that Deep-
Mind’s FTW agent [34] arguably has object permanence, since it can
successfully fight players who duck for cover in a 3D capture-the-flag
game. While this is certainly evidence for OP in an artificial agent,
it remains speculative for now, since FTW has not yet been tested
on an internally valid, out-of-distribution test set like O-PIAAGETS
- although O-PIAAGETS itself is not yet developed for testing such a
multi-agent system.



more diversity in training and test data there is, as they
become mutually controlling.

Psychologically-inspired testbeds for evaluating OP
in AI systems, such as Piloto et al. [29], Lampinen et al.
[23] and Crosby et al. [16], remain small and so internal
validity remains relatively low. The confluence of low
internal validity in some testbeds and the lack of o.o.d.
testing means that even if an AI system genuinely has OP,
our evaluation frameworks and metrics are not internally
valid enough to show this. In this paper, we propose a
novel large testbed for conducting o.o.d. testing with
high internal validity.

3. Introducing O-PIAAGETS
In the previous section, we established three things:

1. OP poses a challenging logical problem. It is not
trivial for an agent to have OP.

2. Computer vision and embodied agent results sug-
gest that trained computer architectures solve
tasks involving OP at a level significantly lower
than that of humans.

3. Current benchmarks and testbeds for evaluating
whether AI systems possess OP have limitations
such that even if an AI system had OP, we might
not be able to tell with reasonable certainty.

Our novel testbed, Object-Permanence in Animal-Ai:
GEneralisable Test Suites (O-PIAAGETS), overcomes the
limitations of other testbeds by applying an out-of-
distribution testing framework on a large internally valid
set of tasks adapted from comparative and developmental
psychology and visual cognition research.

O-PIAAGETS uses the Animal-AI Environment to gen-
erate individual tasks for training and testing, based on
theoretical and empirical findings in the psychology lit-
erature. The testbed has an internal structure in which
certain tasks are designed to test certain aspects of OP
understanding. There is also a tailored training curricu-
lum to ensure out-of-distribution testing, and more direct
comparison between biological and artificial machines.
This work complements and extend the work of Piloto
et al. [29], Lampinen et al. [23], Crosby et al. [16], and
Voudouris et al. [13].

3.1. The Animal-AI Environment
The Animal-AI Environment [16] is a 3D world with Eu-
clidean geometry and Newtonian physics built in Unity
[38]. The environment contains several objects, a single
agent, and a finite number of actions it can perform (move
and rotate in x-z plane). The agent is situated in a square
arena. The arena can be populated with appetitive (green
and yellow spheres) and aversive stimuli (red spheres

Figure 1: The Animal-AI Environment. A bird’s eye view of
the arena is given top centre. The various objects that can
populate it are shown and described in the text.

and red lava zones), pink ramps, and transparent and
opaque2 blocks and tunnels (see Figure 1). These objects
can be any size, constrained only by the dimensions of
the arena and the fact that two objects can’t occupy the
same location (apart from lava zones). The lights can also
be switched on or off for preset periods of time, removing
all visual information (see Figure 7 for an example).

Points are gained and lost through contact with re-
wards of differing size and significance, and punishments
of differing severity. Obtaining a yellow sphere increases
points. Obtaining a green sphere also increases points
and is episode-ending. Obtaining a red sphere decreases
points and is episode ending, as does touching red lava
zones. All spheres can be stationary or in motion through
all three dimensions. Points start at 0 and decrease lin-
early with each timestep over an episode, creating time
pressure and therefore motivation for fast and decisive
action.

3.2. Structure of O-PIAAGETS
O-PIAAGETS adapts some tasks from the open-source
Animal-AI Testbed, but mostly includes new ones. It
currently contains 5000 tasks, divided into four suites,
although it continues to expand as new features are re-
leased for the Animal-AI Environment. There are three
suites which test different aspects of OP and one suite
which contains controls for non-OP based explanations.
The three suites were motivated a priori by Brian Scholl’s
[7] exposition of OP research. Here, Scholl reviews work
on OP from across research in psychology, neuroscience,
and philosophy, arguing that OP appears to be under-
pinned by three key cognitive strategies. Humans appear
to reason about objects under occlusion as (a) existing on
continuous spatiotemporal trajectories, (b) maintaining
certain properties, such as size, but not necessarily oth-

2Of any RGB colour combination



ers, such as colour, and (c) existing as unified cohesive
wholes. O-PIAAGETS therefore contains a Spatiotem-
poral Continuity suite, a Persistence Through Prop-
erty Change suite, and a Cohesion suite. Each suite is
subdivided based on the psychology and AI research into
sub-suites testing different aspects of the suites. Those
sub-suites are subdivided into experimental paradigms
from the psychology literature. To maintain high inter-
nal validity, each sub-suite has at least 3 experimental
paradigms. These are further divided into tasks which
are specific instantiations of an experimental paradigm as
used in specific experiments. These tasks are composed
of instances, that are procedurally generated variations
of the global structure of the task, such as right and left
versions or versions with goals of different sizes or in
different positions. Finally, these instances are composed
of variants, which are procedurally generated variations
of the local structure of instances, with changes to the
colours of walls and the starting orientation of the agent.
In every test below, the objective is simple: maximise
reward. This involves obtaining yellow and green re-
wards while avoiding red rewards and ‘lava’, as quickly
as possible.

3.2.1. Spatiotemporal Continuity

The Spatiotemporal Continuity suite examines how par-
ticipants reason about objects as persisting in the same
spatiotemporal region, given initial starting velocities
and other interacting objects. This suite is divided into
two sub-suites: egocentric OP and allocentric OP.

Egocentric OP pertains to reasoning about objects per-
sisting when they pass out of view through the actions of
the agent. This allows us to evaluate how well an agent
can learn about the identity and location of objects in
a region while also moving around that region, a vari-
ant of the SLAM problem in robotics. An example of
an egocentric OP task is a detour task where a goal is
observable but inaccessible behind an obstacle. The way
to obtain it is to detour around the obstacle such that
the goal is temporarily left out of sight. The logic here is
that one would only execute the detouring behaviour if
one believed that the goal would still exist when one has
finished detouring (see Figure 2).

Allocentric OP pertains to reasoning about objects that
pass out of view not because of the actions of the agent,
but because they become occluded by another object.
The Cup Task in Figure 3 is an example [4]. A goal is
hidden inside a ‘cup’ for some time. To succeed, the agent
would need to search in the correct ‘cup’.

The Tunnel Effect paradigm is a second example. An
object passes behind an occluder, and another emerges
some time later. If the second object appears as a human
would expect it to, given the first object’s trajectory, we
perceive it as though the first object has gone through

Figure 2: An example detour task. To get to the reward, the
agent must navigate around the wall and up the ramp. This
means that the goal will go out of view through the movement
of the agent.

a tunnel and come out of the other side (Burke, 1952).
However, if the second object appears later than expected
or on a different trajectory, we do not identify it as the
same object [6] (see Figure 4). The Tunnel Effect tasks
enable us to probe where OP ‘breaks’ in the agent in
question, and how it compares to human performance.
In the Tunnel Effect tasks here and below, the agent
is frozen until they have observed the whole scene, so
they don’t miss the important occlusion events we are
probing, eliminating a potential explanation for why an
agent failed on these tasks.

In line with developments of the Animal-AI Environ-
ment, we will introduce allocentric OP tasks involving
containment in stationary and moving containers, as
done in the LA-CATER and Lampinen et al. [23] testbeds
discussed earlier.

3.2.2. Persistence Through Property Change

The second suite of tests extends the Tunnel Effect tasks,
investigating which properties of an object must change
under occlusion for the post-occlusion object and pre-
occlusion to be classified as different. Scholl [7] reports
that the Tunnel Effect is not disrupted by colour or
shape change, only size changes, and the spatiotemporal
changes in the previous sub-suite [39, 9, 6, 40]. Wilcox
and Baillargeon [10] present evidence that the Tunnel
Effect is disrupted by colour, shape, and texture changes.
O-PIAAGETS permits more control over the timing and



Figure 3: An example allocentric task inspired by the Primate
Cognition Test Battery [4]. Red arrows indicate goals, pale
arrow indicates agent.

nature of changes, so can be used for empirical study
with humans to investigate these inconsistent results, as
well as to analyse under what conditions OP breaks in
AI agents.

Currently, this suite only contains one sub-suite, test-
ing the Tunnel Effect with apparent size change under
occlusion. However, in line with developments in the
Animal-AI Environment, we are building sub-suites for
apparent shape, colour, and pattern change. An example
of a task in which size appears to change is provided in
Figure 5. The post-occlusion object is smaller than the
pre-occlusion object, so the agent must search for two
distinct objects, not just the visible one.

3.2.3. Object Cohesion

Scholl [7] argues that OP is not disrupted in human adults
when the contours are partially or completely removed
from a visual object representation, so long as size does
not appear to change. Humans, and many animals, as-
sume that an object is of constant size [41], even when
contour information is partially occluded or completely
removed and replaced with point lights [42, 43]. Cur-
rently, this suite contains only one sub-suite, examining
size constancy under partial occlusion. An example of
this is the aperture task in Figure 6, innovated for O-
PIAAGETS based on discussion in Scholl [7]. Agents
watch a large green goal roll behind a wall with a small
hole in it. It is then released and given the choice to turn

Figure 4: A Tunnel Effect task. Humans would perceive the
object in 1A as the same as the object in 1B, but the object in
2A as different to the object in 2B, because of the impossible
trajectory.

Figure 5: A tunnel effect task manipulating the property of
size.

left and seek out the large goal behind the wall, or turn
right and seek out the entirely visible smaller goal. The
smaller goal is larger than the hole in the wall, so agents
that compare the number of green pixels visible at one
time without understanding that size remains constant
under (brief) occlusion will make the wrong choice.



Figure 6: The Aperture Task. A and B are before and after par-
tial occlusion. Parts 1 and 3 are variants of the same instance,
with differing wall colours. Part 2 is a different instance of the
aperture task, the mirror image of Part 1.

3.3. Increasing Internal Validity
3.3.1. Control Suite

The fourth suite is a set of control tests that serve to de-
termine whether agents can solve tests not measuring OP.
There are two sub-suites here. The first is an introduction
to the environment, introducing basic controls and the
objects present in the environment. These tasks allow an
agent, human or artificial, to learn which objects increase
reward and which objects decrease reward, and which
objects are inert. Agents that fail some or all the tasks in
the above three suites might not be failing because they
lack OP, but because they do not, for example, navigate
towards green rewards or away from red lava, or under-
stand the utility of ramps for movement in the up-down
plane. The second sub-suite contains further control tests
for the OP tasks in the previous three suites. These are
tests that do not require OP to be solved, but introduce
the kind of landscapes and choices an agent might have
to make. This means we can determine whether poor
performance on the OP tasks was a result of a lack of OP,
or a lack of understanding of the landscapes those tests
took place in. Since every task in the test battery will
require other abilities distinct from OP, these controls
allow developers to check whether errors are a result of
a lack of OP or a lack of some other ability. These tasks
can either be used in training or for further testing. An
example would be Figure 2 but without a grey wall and
with a pink ramp the length of the blue platform. This in-
creases internal validity, because if agents performs well
on the control task, but not well on the equivalent OP
task, then we have reason to believe that they lack OP. If
they perform well on both, we have reason to believe that

they possess OP. If they perform poorly on both, then
there is some issue with understanding the environment
or how to interact with it. If they perform well on the OP
tasks but not the controls, then we have counter-intuitive
evidence that OP can be decoupled from other abilities
required to solve tasks in the environment.

3.3.2. Paradigms, Instances, Variants

Within the test suites themselves, two measures have
been taken to increase internal validity. First, each task
has several instances and variants. We have procedurally
generated many versions of the same task that are mirror
images of each other (left/right versions), have rewards
and goals in different positions, or use different kinds
of occluders. This counterbalanced design allows us to
detect when agents are solving tasks through problem-
irrelevant shortcuts. For example, in the aperture task
in Figure 6.1, an agent with a bias to turning left might
appear to succeed, but would not succeed at the instance
which is a mirror image of this task, as in 6.2. These
instances have many variants, changing the colour (often
randomly) and initial orientation of the agent, as seen in
6.3. This allows us to control for policies such as search
behind the grey obstacle, which may be successful in some
tasks but does not indicate OP.

Second, the inclusion of several experimental
paradigms in each sub-suite means they are mutually
controlling. The philosophy of science tells us that
no single experiment would be able to diagnose the
presence or absence of OP [44, 45], because there are
always alternative explanations that could be appealed
to. Using several distinct experimental paradigms means
that they can control for each other and help eliminate
these alternative explanations. The cup task in Figure 3
could be solved by a policy of navigating to where the
reward was last seen [46], which is not necessarily the
same as understanding that the object continues to exist
even though the agent can’t see it. An adaptation of
Chiandetti and Vallortigara’s [47] paradigm controls for
this (see Figure 7). Here, the agent watches a reward roll
away from across lava. Then the lights go out, removing
visual information for a short period. When the lights
go back on, the goal is not visible. However, there is
only one place it can be. Going to where the reward was
last seen would end in failure, by touching lava, and the
position of the goal before the lights out provides no cue
as to whether the agent should go right or left. The use
of several experimental paradigms in each sub-suite has
the effect of reducing the likelihood of confounds that
we have not foreseen.



Figure 7: A task inspired by Chiandetti and Vallortigara’s
[47] study with day-old chicks.

4. Evaluating OP using
O-PIAAGETS

4.1. Out-of-Distribution Testing
O-PIAAGETS facilitates out-of-distribution testing by
providing a tailored training set using the control suite,
and a separate test set using the three test suites. The
control suite contains tasks where the positions and ori-
entations of objects is specified and tasks where those
positions are randomly generated, providing in principle
a very large amount of training data that is on a different
distribution to the test data.

4.2. Measurement Layouts
Each variant in O-PIAAGETS is tagged with its position
in the test battery (i.e., what suite, sub-suite, experimen-
tal paradigm, etc., it is a member of) as well as features
such as goal sizes, the abilities an agent might require
in addition to OP to solve it, and the other variants it
controls for. This leads to an incredibly rich dataset for
evaluating agents beyond merely aggregating their score
or success across the test suites. For example, develop-
ers can explore how relevant and irrelevant features of
the tests, such as goal size, occluder colour, or right/left
variants, correlate with performance [48], and use this
to evaluate whether an agent has OP or is using other
policies to solve OP tasks. For example, assuming any
agent interacting with O-PIAAGETS will make errors,
including humans [13], it is important to evaluate how
those errors are distributed. By hypothesis, an agent
with OP will produce random error, uncorrelated with
experimental paradigms, goal sizes, or the colours of
occluders.

5. Future Directions and
Conclusions

Using O-PIAAGETS, developers can robustly evaluate
whether artificial embodied agents have OP using the
methodologies of cognitive science. It improves on other
benchmarks and testbeds in the field both in terms of
its size, internal validity, and ability to detect the pres-
ence of robust and generalisable OP in artificial systems.
O-PIAAGETS is going through the final stages of develop-
ment for general release of Version 1.0, including around
5000 tasks using the current Animal-AI Version 3.0.1.
After validation with human participants and the devel-
opment of baseline agents to characterise state-of-the-art
performance in O-PIAAGETS, it will be expanded to in-
clude containment tasks, point lights, and shape, colour,
and pattern changes. In its final form, O-PIAAGETS will
provide a comprehensive and robust evaluation frame-
work for assessing OP in artificial agents.
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