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Abstract
In certain problem-solving tasks that require Human-AI interactions, a mutual understanding of the reasoning behind the
performed actions can benefit both humans and artificial agents. However, identifying and predicting the cognitive strategies
involved in such a hybrid setting, especially in novel, self-regulated exploratory tasks, is a challenging endeavour. Our aim
is to identify behavioural properties relevant to young children’s cognitive strategies that are present in problem-solving,
with an emphasis on the Aha! moment as an intermediate step between exploratory actions, that typically relate to the
development of tacit knowledge, and the generation of explanations that requires explicit knowledge. We use data from
existing, previously published, behavioural studies with children 5 to 7 years old to explore these mechanisms in two self-
regulated problem-solving tasks. In addition, we reflect on our observations of an Artificial Agent (Q-learning algorithm)
that learns to solve the same task. Our findings indicate that while in current reinforcement learning practice, detecting
the moment of the cognitive transformation of the problem representation normally translates into observing convergence
curves of the objective functions being optimized, in young children this involves more complex behavioural properties, such
as verbal metacognition. These behavioural processes can be used as a proxy for the identification of the Aha! moment.
Finally, we propose a conceptual map which integrates the observed behaviours that are used to detect, communicate and
corroborate learning both in humans and machines and we discuss the association of children’s exploratory behaviours, the
Aha! moments and ultimately their explanation generation.
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1. Introduction
For effective hybrid environments where humans collab-
orate with Artificial Intelligence (AI) systems to make a
decision, a mutual understanding of the reasoning behind
certain actions or recommendations can be of catalytic
importance.

Explainability is one of the features that supports mu-
tual understanding and trust development [1], and can be
considered as an interface through which machine learn-
ing models can be explained towards a customized and
diverse set of audiences [2], debugged, and audited. For
the generation of explanations, though, implicit knowl-
edge should become explicit, which often includes the
cognitive process known as the Aha! moment or in-
sight. We adopt the definition of the Aha! moment in
problem solving as a sudden transformation of the prob-
lem representation [3, 4]; this differs from the solution
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retrieval reached by an analytical, multistep strategy,
through which the solver searches long-term memory
for potential algorithms, mental schemas, analogies or
factual knowledge.

In this paper we seek to clarify what behavioural man-
ifestations indicate the occurrence of the Aha! moment
in children performing certain problem-solving tasks and
instantiate a conceptual map of strategies which are used
to detect, communicate and corroborate learning both
in humans and machines. The ultimate goal is provid-
ing a richer test-bed of procedural protocols and tests
to more broadly assess learning in machines, beyond a
single metric or loss optimization.

1.1. Inspiration by children’s
problem-solving

Reverse engineering human intelligence can usefully in-
form AI and machine learning. The exploration of fun-
damental cognitive processes that can be informative
for AI approaches often requires focusing on infants or
young children in the context of structured or unstruc-
tured activities [5, 6, 7]. Self-regulated play, for example,
that allows children to perform exploratory actions and
come up with insights and discoveries in problems they
generated has previously been correlated with the de-
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Figure 1: Behavioural properties as a proxy for the identification of the Aha! moment in children’s problem solving process.
The proposed conceptual map includes behaviours for the evaluation of the transition from tacit knowledge (appearing in the
phase of exploration) toward explicit knowledge (appearing in the phase of exploitation). The properties include non-verbal
behaviours and verbal metacognitive manifestations (reasoning, planning and reflection). The Aha! moment appears as part of
the transition from tacit to explicit knowledge and functions as an indicator for the generation of explanations.

velopment of their implicit knowledge and their gradual
understanding of the surrounding physical world [8].
However, what cognitive process are mobilized for the
transformation of tacit into explicit knowledge in young
children? And what behavioural properties can be used
as a proxy for the identification of those processes?

Based on a series of behavioural studies with children
5 to 7 years of age, we identify behavioural properties rel-
evant to cognitive processes that are present in problem-
solving tasks, with an emphasis on identifying the Aha!
moments, as an intermediate step between exploratory
actions and the generation of explanations (see Fig. 1),
aiming to inform current and future approaches on ex-
plainable AI (XAI).

2. Relevant Work

2.1. Problem-Solving in Young Children
To understand the fundamentals of problem-solving as
a cognitive process, developmental psychologists have
extensively explored the involved faculties and the ways
they interact with each other. To this end, classic and con-
temporary work has examined various tasks that were
used depending on the child’s age and areas of interest.
Bruner, for example, laid out a plan for the development
of skilled action [9]. First there is intention, then an as-
sembling of “constituent acts”. They initially occur out
of order but later become properly sequenced to reach
the goal. Bruner emphasised the role of exploratory be-
haviour and play prior to achieving skilled action. Flex-
ibility and higher order acts become possible through

reorganization of component acts and modularization.
Although Bruner’s examples came from infants in the
first year of life, his ideas have been applied to the acquisi-
tion of more complex skills beyond infancy. Additionally,
he argued that play is the best way to promote develop-
ment as it can occur with any physical material or with
imagination, alone or with others and can take place
in various settings [10]. The connection of play with
the development of fundamental cognitive processes and
human learning has been well-established [11, 12, 13].
Self-directed and intrinsically motivated goal generation
and problem-solving are among children’s cognitive tools
that affect their overall development [7, 14]. In free play,
children set novel goals, discover unexpected informa-
tion, and invent problems they would not otherwise en-
counter. In this context, children apply exploratory pro-
cesses that allow them to progressively reduce uncer-
tainty about their environment [14].

In this context, a problem is defined as a situation in
which a solver needs to change a given state to a desired
one but there are obstacles. There are different types of
problems such as the routine problem vs. the non-routine
problem. The first one refers to a situation in which the
solver knows a solution method whereas the second is
when the solver has to create a solution method. There is
also the well-defined problem where the state, goal and
set of operators are clearly defined. It is opposed to the
ill-defined problem where the elements are not clearly
defined.

The problem solving process occurs when a person has
to invent a way to solve it following two main stages: the
problem representation and the problem solution. The
solvers need to comprehend the problem and create a



model of the problem situation. Then, they have to build
a solution by using processes of planning, executing and
they have to monitor it using awareness and control. It
implies cognitive and metacognitive processes. Problem
solving is always domain-specific but the thinking by
analogy strategy seems to be almost always successful.
Thinking of a related problem already known and even
better, already solved, helps for success. An application
of this is the heuristics which allow a solver to go faster
to an acceptable solution even if it is not perfectly ac-
curate. Considering the bounded rationality of humans,
heuristics allows us to make judgements, choices and
adapt our behaviours efficiently. This is closely related
to the concepts of “social learning” and “adaptation” in
human development.

In order to solve a problem, twomental representations
are needed: one of the current state and one of the goal
state. As it is goal-oriented and contextualized, a plan
detailing the solution step by step is required. A constant
monitoring process is also required as each move has
consequences that can bring the solver closer to or further
to the desired goal state. It also requires mental flexibility
and thus, inhibitory control [15]. If a first chosen solution
seems to be inappropriate, the solver has to adapt his
strategy.

2.2. Social learning
Social learning is a crucial component of human intel-
ligence, allowing us to rapidly adapt to new scenarios,
learn new tasks, and communicate knowledge that can
be built on by others [16]. The work of Lev Vygotsky
who put forward this view already in the 1920s takes
into account factors such as the language development
and cultural influences in the cognitive development of
children [17]. From his perspective, mental functioning
and development rely on an interdependence between
individual and social processes. When learners, whatever
their age, participate in joint activities, they gain new
abilities and strategies to better understand the world
and adapt to it. This process is also mediated by signs
and tools such as language and mnemonic techniques.
Vygotsky folds them in the category of semiotics means.
They are considered as a cornerstone for knowledge co-
construction and can help independent problem-solving
activity. This leads to the difference of what a learner
can do with or without help as he described under the
concept of the Zone of Proximal Development (ZPD). The
social interaction with the use of linguistic and cultural
tools facilitate the internalization of knowledge and its
transformation into cognitive tools supporting the de-
velopment of new cognitive functions. The latter aspect
has been considered for the design of artificial agents
that are able to interact with others and internalize these
interactions in a similar way as humans [18, 19].

The process named scaffolding is described as a process
that enables a child or novice to solve a task or achieve a
goal that would be beyond his unassisted efforts [20]. To
achieve more complex tasks (like problem-solving), it is
necessary to combine simpler skills in order to achieve
a higher level of competence. This promotes cognitive
growth. The shared space of an activity involving col-
laboration mechanisms between peers is also at great
importance whether it is a human or an artificial agent
[21, 22].

2.3. Insight in Problem-Solving
Most commonly, this phenomenon is called the “Aha!”
experience describing the moment when a person gets
the solution to a problem that up to this point had left
her puzzled. In cognitive science it is referred to as in-
sight problem solving and it is accompanied by a feeling
of satisfaction for the solver. It has been related to cre-
ative thinking [23, 24] and includes an exploratory phase
where divergent thinking takes place, especially during
the early stages of the problem solving process. This al-
lows the person to produce new ideas or connect existing
ideas. The second phase is the convergent thinking phase
where a solution should be elected by synthesizing, ana-
lyzing andmonitoring the matching degree of the current
result to the expected one. Although the experience of
insight is sudden and can seem disconnected from the im-
mediately preceding thought, recent research shows that
insight is the culmination of a series of brain states and
processes operating at different time scales. Elucidation
of these precursors suggests interventional opportunities
for the facilitation of insight [3], including concurrent
verbalization [25]. As for every problem solving, most
of these strategies rely on a constant restructuring of
the mental representation of the problem. One way in
which explicit knowledge manifests itself is through the
formation of causal inferences and the generation of ex-
planations that, in research with children, are used for
detecting gaps in their causal knowledge.

2.4. Explanation generation
Regarding explanation generation, there is a large body
of works in various fields. But it always implies an ex-
plainer and an explainee with their own respective char-
acteristics. Of particular interest across the fields is the
role of the Theory of Mind ie. the ability of a person
to attribute mental states to the consequent behaviours
of herself or others [26]. The selection and evaluation
processes of explanations depend on the explainer and
explainee, but also on the characteristics of the context.
The nature of an interaction for explaining is different
in kindergarten between the teacher and a young child
than between the cockpit desk and the pilots during a



flight. The role of beliefs has also been raised recently
as a cornerstone. An explanation does not necessarily
needs to be consistent with a person’s beliefs but should
help promoting a revision component [27] thus allowing
the evolution of the internal representations. Human
explanations from social sciences became an integrated
part of Artificial Intelligence (AI) through the XAI field
in order to provide explanatory agents and to facilitate
interactions between humans and machines.

3. Methodological approach
We aimed to identify behavioural properties in young
children’s problem-solving process that have been al-
located on the transition from tacit knowledge to the
development of explicit knowledge and the generation of
explanations. We used two types of problem-solving ac-
tivities, an open-ended task (computer-supported music-
making) and the cognitive task of the Tower of Hanoi
(ToH). We considered the above-mentioned theories and
we conducted three behavioural studies to explore chil-
dren’s processes in various settings. In addition, w to
solve the same problem of the ToH. For the purpose of
this paper, we take a case-studymethodological approach.
Case studies are in-depth investigations of a single per-
son, group, event or community which are approached
from a qualitative perspective [28]. All the included case-
studies meet the following criteria: (i) The sample con-
sists of children aged 5 to 7 years old, and (ii) the setting
facilitates children’s self-regulated activities. In order for
us to ensure the necessary variability among the case
studies, we included (i) open vs. non open-ended tasks
and (ii) different types of social contexts (collaboration
with two children, collaboration of one child with a robot,
hybrid collaboration with two children and a robot, see
Figure 5).

It should be noted that any comparison among the
studies was outside the scope of this paper; rather, our
goal is to make a synthesis of the results as appeared in
different settings. For this reason, we only provide the
necessary overall findings for each study and we adopt
a qualitative reflective approach for one representative
case-study per experiment. The selection of the case
studies was based on their relevance to the purpose of
this work and on their representativeness of children’s
average behaviour in specific settings.

4. Empirical Studies: A Selection
of Use Cases

This section presents a line of empirical evidence that
have contributed to our identification of behavioural indi-
cators that facilitated the transition from tacit to explicti

Figure 2: Self-regulated music-making setting: a. The Re-
actable, a table-top interface for sound synthesis and the
touchscreen version of it with two participants; b. The Sibelius
Groovy, a music-making software for children and the setting
with two children.

knowledge. For each study we first describe the original
goal of the study, analysis of the data that are relevant
to the current work and the corresponding findings and
we reflect on how this contributes to the purposes of this
work.

4.1. Study 1: Identification of behaviours
The scope of the study was to identify behaviours that
emerge spontaneously when children are involved in an
open-ended problem solving activity and to observe their
development over time. As such, the setting of the study
was based on ethnographic methodological principles
and there was no adult intervention during the activities.
Open-ended tasks without adult intervention provide the
space for children to pursue their goals in self-regulated
and intrinsically motivated manner. We designed a natu-
ralistic behavioural study in a school-setting with𝑁 = 16
young children (5-6 years old) who were invited to com-
pose music in pairs with the use of two dedicated screen-
based software packages in a weekly basis over a period
of maximum 8 weeks (Fig. 5.) The children were only
asked to create music with the sounds provided by the
digital tool. No other intervention was performed from
the experimenter. The observations included 1795.51𝑚𝑖𝑛
of video data which were transcribed based on an anno-
tation scheme with a taxonomy of behaviours in relation
to children’s cognitive process, social interactions and
affective engagement. For the purposes of this paper we
only focus on the first category. A detailed description
of the study appears in [29].

4.1.1. Data analysis

For the elaboration of the data we used the approach of
microgenetic analysis [30]. The microgenetic method
is defined by three properties: (a) observations span a
period of rapid change in competency; (b) the density of



Code Behaviour Occurrence (%)

C1 Spontaneous musicking 11.05
C2 Sound exploration 15.87
C3 Assessment 27.38
C4 Reasoning 18.6
C5 Deliberate musicking 13.06
C6 Planning 14.04

Table 1
The taxonomy of behaviours that emerged during the open-
ended self-regulated task of children’s collaborative music-
making and the percentage of occurrence per behaviour.

Figure 3: Average percentage of children’s behaviours in
Study 1, Making (C1, C2, C5 and C6) and Reflecting (C3 and
C4).

observations is high relative to the rate of change; and (c)
the observations are subjected to an intensive, trial-trial
analysis to infer the processes that give rise to change.
The annotation of the data was based on children’s verbal
and non-verbal behaviours and the corpus included 7063
annotated behaviours. The taxonomy of the behaviours
that related to children’s cognitive processes and the
percentage of their occurrence appear in Fig. 1.

The results indicate that despite the fact that the par-
ticipant children were of a relatively young age - which is
typically related to exploratory actions - the behaviours
of deliberate musicking (C5) and planning (C6) appeared
slightly more than the exploratory behaviours of sponta-
neous musicking (C1) and sound exploration (C2).

Furthermore, a grouping of the behaviours that corre-
spond to reflective actions (C3 and C4) and the ones that
correspond to active music-making (C1, C2, C5 and C6)
reveals that the “reflecting” behaviours occurred 46.18%
of the total cognitive behaviours, while the active music-
making behaviours occurred 53.82% (see Fig. 3). These
results indicate that despite the young age of the partici-
pants, reflecting and reasoning about the musical choices
appear as an integral part in children’s cognitive engage-
ment with music-making.

4.1.2. Reflection

Computer-supported music composition was selected as
an open-ended task which does not include a predefined
objective final “solution”; rather, it involves decision-
making based on subjective criteria and self-regulated
goal identification and provides the context for the emer-
gence of a variety of processes and interactions. We
identify two major findings relevant to the scope of this
paper; first, despite the unstructured and the highly ex-
ploratory nature of this task, we observed that children
exhibited behaviours that correspond to “making” and to
“reflecting”. Spontaneous and exploratory actions were
mixed with deliberate actions and planning while the
latter were supported by assessment and reasoning. Sec-
ond, the collaborative setting of this study facilitated
children’s verbal interactions and negotiations during
their decision-making process and consequently their
reasoning and reflection on their actions. These process
correspond to the mobilization of theirverbal metacog-
nition part of which was the generation of explanations
during the negotiation of their task-related decisions.
This means that given the opportunity (in this case col-
laborative setting), children as young as 5 years old ac-
tively engage in self-initiated reflection on their actions
and imagine the future outcomes while being able to
explain their reasoning to the collaborator. However,
we observed that they often lacked the verbal abilities
and the terminology for accurate explanations. For this
reason, they mobilised other available modalities, such
as gestures, and used the affordances of the graphical
user interface of the tool provided to complement their
explanatory behaviours.

4.2. Study 2: An indication for the Aha!
moment

The goal of this experiment was to test the impact of
the type of a robot intervention on children’s problem-
solving process. We used the cognitive task of the Tower
of Hanoi (ToH) [31] which is used to measure children’s
planning abilities and inhibitory control. To reach the
optimal solution, it requires participants to involve in-
hibition of impulsive moves that superficially bring the
child closer to the goal, but are unhelpful for the longer-
term solution [32]. We designed a experiment with three
phases: a baseline (single child), an intervention (manipu-
lation of the robot’s behaviour) and an evaluation (child’s
voluntary interaction with the robot) for 𝑁 = 20 chil-
dren 5 to 7 years old. For the intervention phase, we had
two conditions; in Condition1, the robot and the child
solved the task in a turn-taking setting and in Condi-
tion2 we designed a child-initiated voluntary interaction
with the robot. In this paper, we focus on a single child’s
problem-solving process to explore behavioural proper-



Figure 4: A child’s performance of the Tower of Hanoi task over time (in seconds) (x-axis) with the duration of each move (in
seconds), in addition to a moving average of the last three movements (y-axis). We observe that throughout the task the child
exhibited a mixture of optimal (blue lines) / suboptimal (pink lines) and slow (lower) / fast (higher) moves.

ties relevant for our understanding of the transition from
exploratory actions to the transformation of the prob-
lem representation, which requires the involvement of
inhibitory control and the stabilization of the optimal
performance. The details of the study appear in [33].

4.2.1. Data analysis

We evaluated the task performance in relation to the
trajectory of optimal and suboptimal movements over the
course of the task. The optimal movements are defined
as the ones that lead to the solution of the task with
the minimum number of movements. In addition, we
measured the relevant speed of themovements in relation
to the baseline of each participant. Given the assumption
that during the task the children sustained the necessary
attention, we identify point A in Fig. 4 as the point
that separates the phase of mostly suboptimal moves
(red peaks) with the phase of mostly optimal movements
(blue peaks), which are also carried out faster.

4.2.2. Reflection

We observed exploratory behaviours that typically were
characterised by increased number of suboptimal moves.
We identify as an Aha! moment, the point when a trans-
formation of the mental representation of the problem
occurs which, in this task, is behaviourally manifested
by the mobilization of inhibition as a strategy for the
optimal solution of the task, meaning that the child in-
hibits the impulsive move and performs the less obvious
one that will lead to the stabilization of optimal solution
of the task (see point A in Fig. 4). This is a cognitive
strategy that in the age-group of the present studies does
not appear intuitively. As shown in Figure 1, behavioural
properties that appear in the problem-solving process in
the context of the given tasks include the performance

instability, the incremental optimization and the perfor-
mance stabilization. During the exploratory phase, the
children were reinforced by the results of their actions
which eventually guided them to the restructuring of the
problem representation and consequently the use of the
strategy which is based on inhibitory control. After the
Aha! moment, we observe a stabilisation of the optimal
moves which indicates learning. One of the limitations of
this study was the fact that it was not designed in a way
to facilitate the child’s verbalisation of their thoughts,
reasoning and reflections. For this reason, we were not
able to make any inferences regarding the children’s rea-
soning, their verbal metacognition and the generation
of possible explanations during the problem-solving pro-
cess.

4.3. Study 3: Social Interaction and
Explanations

The purpose of study 3 was to explore the role of a social
robot on children’s collective problem-solving and the
child-child social dynamics in a setting of two children
and one robot (see Fig. 5). We built upon study 2 and
we used the same task, the ToH task and the same robot.
We designed a controlled 2X2 experimental study with
𝑁 = 86 children who all participated in a baseline session
(without robot), an intervention (with the manipulation
of robot behaviour, in terms of its cognitive reliability
and expressivity) and an evaluation session (with child-
initiated form of interaction) to solve the Tower of Hanoi
task with an incremental difficulty level in the different
experimental configurations without any expert’s inter-
vention. For the purposes of this paper, we focus on the
findings on the patterns of children’s social interactions
and verbal negotiations and explanations during the col-
lective task performance. The detailed research design,
analysis and findings of the study appear in [22].



Figure 5: Setting of Study 3: Two children collectively solve
the Tower of Hanoi task in a turn-taking or child-initiated
voluntary interaction with the robot.

4.3.1. Data analysis

We observed that the setting of the study facilitated child-
child social interaction and verbal reflection, reasoning
and planning appeared to be an integral part of the pro-
cess which was lacking from study 2. To measure the
team disparity, we define social interaction, 𝑆, as the
number of task-related interactions between children.

𝑆 =
𝑆1 + 𝑆2

𝐿
where 𝑆𝑛 with 𝑛 = 1, 2 refers to the number of times
child 𝑛 addresses their peer with a task-related verbal
or non-verbal (i.e. pointing and gestures) behaviours
and L refers to the number of movements needed by the
team to solve the task. Our analysis showed that children
had a higher 𝑆 rate during the sessions with the robot,
namely the Intervention (𝑀 = 0.16, 𝑆𝐷 = 0.14) and the
Evaluation (𝑀 = 0.13, 𝑆𝐷 = 0.092) which differed signif-
icantly from the Baseline session (𝑀 = 0.06, 𝑆𝐷 = 0.09)
with 𝑝 = 0.08 and 𝑝 = 0.015. Among the verbal manifes-
tations we identified the utterances related to planning
as one of the strategies children used to negotiate for
the next movement on the ToH task. We identified the
balance between children in the planning of the move-
ments, and defined a planning disparity metric, as the
absolute difference in the number of interactions initi-
ated by each child of the team: Our analysis showed that
there was a significant difference in task performance
(𝑈 = 297, 𝑝 < 0.001) between teams with a balanced plan-
ning performing better (𝑁 = 19,𝑀 = 0.51, 𝑆𝐷 = 0.40)
compared to groups with an unbalanced planning be-
haviour (𝑛 = 18,𝑀 = 1, 61, 𝑆𝐷 = 0.98). In this case,
planning was used as part of the explanation formation
which was observed to be one of the strategies for chil-
dren’s negotiations in problem-solving.

4.3.2. Reflection

Children’s social verbal and non-verbal interaction dur-
ing the problem-solving process in Study 3 appeared

Figure 6: Asking for help scenario with different ask for help
values: the LA2 tries to solve the game alone while being able
to ask for help whenever its best action is not good enough
(plot not on logarithmic scale as the agent asks for help at
most 7 times)

catalytic for the facilitation of their task-related planning
as part of explanation generation. This was more evident
in the sessions with the robot. One possible explanation
for this is the fact that one of the conditions involved
a robot that suggested suboptimal movements. In that
case, the children engaged in child-child negotiations
and explanation generation to collectively take a deci-
sion for the next move. Our observations indicate that
two cognitive strategies were involved in children’s ex-
planations, planning as a part of an a priori explanation
of their reasoning for a certain decision and reflecting
as a part of an a posteriori explanation. We need yet to
analyse the association of the strategy of planning in
the context of explanatory behaviours and its relation
to a preceding Aha! moment. It should be noted that
additional non-verbal manifestations, such as pointing
and gestures, were mobilised in the cases that a child did
not have the verbal maturity to formulate the planning
or the explanation.

4.4. Study 4: Multi-agent setting
This study in [34] consists of the same non-open-ended
task (ToH) and collaborative setting: one learning agent
(LA) and one helping agent with focus on the voluntary
interaction among artificial agents. In order to explore
if algorithms benefit from asking for help in collabora-
tive problem-solving, as children do, two hypotheses are
tested:

H1: Canonical interventions from an expert speed up
learning.

H2: Getting help on demand from an expert accelerates
finding the optimal solution compared to not on demand.

The expert intervention occurs in 2 different scenarios:
1) LA1 solves the task in collaboration with the help-
ing agent in a “turn-taking” scenario, which results in
a canonical cognitive intervention from the expert. 2)



LA2 solves the task independently, having the option to
ask for help of the expert whenever (if) this is needed
resulting in an on demand intervention. Two parameters
are assessed: 1) Canonical intervention (help) rate (every
2, 3 or 4 turns), and 2) Ask-for-help threshold (from 0
to 1). The last parameter was created to simulate what
happens when a child asks for help: if the best policy
value is lower than the ask for help parameter, the expert
will play instead of the LA.

4.4.1. Data analysis

From reinforcement learning (RL) plots, as training
episodes evolve as a function of the mean number of
moves to solve the task, some interpretations are ex-
tracted:

From scenario 1 it is observed that the LA is more
efficient when it is helped by the expert in a turn taking
scenario, and that it is even more effective when helped
every 4 turns rather than every 2. The importance of
exploring on its own is showcased by the agent, rather
than always having the optimal solution.

Even when all approaches converge in both scenarios,
in scenario 2, the agent that asks for help becomes also
faster and more effective: help is most useful at the be-
ginning of learning. After asking for help many times
during the first episodes it starts solving the task by itself,
resulting in an increase of inefficient moves. The agent
seems to gain confidence in movements which, while im-
perfect, allow the task resolution by exploring different
states.

Compared to the LA not being helped, the asking-for-
help agent is a lot more efficient, but there is not much
variation among the canonical and the help-asking con-
figurations. This is probably due to the rather simple
simulation of the trigger for the request of help. Simu-
lating the child’s behaviour is a complex task and more
emphasis needs to be placed on accurately describing it,
including how to simulate the ”asking for help” function.
Adding mechanisms such as intrinsic motivation, about
the LA’s desire to solve the game on its own, could make
the comparison more accurate. The agent asks for help
when it considers that a movement is not good enough
to be played, whereas the actual mechanisms that drive
the child to ask for help are more complex.

We identify emergent issues that should be part of the
explanation for the design of a LA, and that are not part of
the modelled problem nor a representation is accessible
for the agent and thus, for its explanation:

1. The lack of a multimodal input space [35] for the
agent to perform in the action-interaction loop
of RL can restrain the agent from exhibiting the
correct behaviour and communicating as humans
would expect.

2. The lack of a natural language interactive commu-
nication interface impedes questioning the sys-
tem about its confidence in real time, or uncer-
tainty estimates.

3. The dependence of a happy end solving the
task constraints explanations during the learn-
ing phase. How can an agent communicate to
its developer or user its struggles in solving the
task when it has not yet achieved a satisfactory
performance? Could common AI practices (data
augmentation, fine-tuning), be accessible to the
agent for it to communicate and be able to choose
to change them?

4. Most deep RL models rely on baselines of other
agents to assess their worth, lacking comparisons
in multi-agent settings [36] with children learn-
ing.

5. The inability of current RL algorithms to commu-
nicate the continual progress beyond reporting
a sole reward value obtained at the end of a con-
vergence curve makes it challenging for LAs to
explain their skills to solve the credit assignment
problem, their difficulties or agility to complete
sub-tasks, their acting self-confidence, or learned
savvy behaviours.

6. The lack of alignment of explanations of LAs with
meta-learning and trustworthy AI dimensions
(such as the trust calibration meta-information
taxonomy [1]) should be accounted for in the
explanation generation process, in the same way
as mechanisms to ensure the reproducibility of
insights-built explanations.

Reflection
This is the only study not involving kids, but follow-

ing the same protocol as in the ToH studies. While RL
model developers communicate a model learning conver-
gence due to reaching plateaus in learning curves, these
changes should as well reflect key changes in kid be-
haviour. However, we showed this is not always evident
to map. Providing the learning agent with signals such as
the Aha! moment to adjust its self learning /hyperparam-
eter changes could be paramount to avoid blind manual
engineering (on e.g., reward function crafting) processes
where no common procedures exist. We believe these
are the explainable dimensions that XAI for RL should
work on (identifying Aha! moments, categorising prob-
lems, difficulty, environments, collaboration/competition
dimensions, etc).

The difficulties to explain the learning process of a
single LA could be reduced by involving interaction with
other agents. One could attend to social interaction [16]
and social influence as intrinsic motivation [37] learning
metrics. Both showed to enhance learning in multiagent
settings.



Explanations should reflect the needs for these incen-
tives that agents depend on to progress. Once an agent
learned, it is not enough that the agent performs tasks
in less time, and better, but also that it uses other human
factors or social outcome metrics such as in [38, 39].

5. Conclusions, Limitations and
Future work

We presented a set of behavioural studies and an exper-
iment with a Q-learning algorithm in order to identify
behavioural properties that relate to the Aha! moment,
i.e., the moment of the restructuring of the problem rep-
resentation (Fig. 1). These behavioural properties appear
as part of the transition from exploratory to explanatory
behaviours (tacit to explicit knowledge). They include
task-related observations such as performance instabil-
ity, incremental optimization and stabilization as well as
verbal metacognitive manifestations (observed only in
two of our studies with children) that involve reasoning,
reflection and planning. These behavioural properties
seem to facilitate the Aha! moment and eventually the
generation of explanations by children.

In current RL practice, detecting this moment normally
translates into observing convergence curves of the ob-
jective functions being optimized (normally reaching a
plateau in cumulative reward or optimized loss, usually
both). This is an external signal not usually leveraged
by the agent. Although there are exceptions such as the
use of artificial curiosity signals for self learning of the
agent [40]), in regular AI model development practice,
we must highlight the need for easier mechanisms to
convey actions that demonstrate the difficulties of the
agent until convergence plateaus and/or a sufficient level
of an XAI metric are reached.

We summarise the main points we propose to consider
in approaches evaluating XAI, as follows:

1. The Aha! moment (or problem representation re-
structuring) acts as the intermediate step between
non-explainable and explainable behaviours. In
a deeper view, since the explanation acts as an
interface between the model and a given target
audience, the Aha! moment is a trigger signal for
a model to start elaborating explanations. More
effort should be put into specifying the meaning
of the Aha! moment in various tasks that RL
models are currently tackling. Defining and de-
tecting high level policies characterising an Aha!
moment (e.g. in terms of key/exploratory action
sequences) can be signs we should be able to not
only programmatically detect, but also communi-
cate. In this way, we can achieve explainable and
reliable models, since Aha! signs must act as an
additional proxy to attain trustworthy systems.

2. Children understand but sometimes lack the cog-
nitive and metacognitive skills to explain. Expla-
nations are subject to both biological and artificial
systems’ understanding of properties of a given
task, and in young children explanations are sub-
ject to their verbal abilities. Children often use
gestures such as pointing, which means that ex-
planations that can support human-AI interaction
are subject to tools responsible for social interac-
tion. Aiming towards human-level AI requires a
broader set of key social skills for complex embod-
ied communication in multimodal settings within
constantly evolving social worlds [41].

3. The hybrid use of strategies of “planning” and
“insight”: Questioning the false dilemma of logi-
cal reasoning vs machine learning, we argue for
a synergy between these two paradigms in order
to obtain hybrid AI systems.

4. Both social interaction [16] and social influence
as intrinsic motivation [37] show to be enhancers
for learning in multi-agent settings.

This paper is our first attempt to synthesise the results
of our research on children’s problem solving in different
settings and combine them with our research on XAI.
However, due to space limitations, we are limited to pro-
vide overviews without in-depth analysis. We aim to
tackle the latter in our future work.

We hope this work is useful beyond developmental
robotics and AI, i.e., facilitating an effective and ethical
deployment of RL systems, e.g. from energy building
management to AI for health, where evaluating single
reward functions simply does not reflect nor assess the
complexity of the system nor the difficulties it has to deal
with.

Future work should aim to involve more tangible eval-
uation metrics that both 1) optimize technical robust-
ness more broadly, and 2) reflect a human-centered view
where machine learning factors are questioned, moni-
tored and explained in parallel ways to how children
learn. Evaluation mappings across human and machine
learning will allow us to better assess the trade-offs be-
tween AI assisted decision making and policies.
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