
Trace Language: Mining Micro-configurations from Process
Transition Traces
Karnika Shivhare1, Rushikesh K Joshi1

1Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai - 400 076, India.

Abstract
The paper presents Trace Language, a language for compact encoding of process trace sets. Thirteen micro-configurations
are proposed and tested over a few process mining algorithms to identify success and failure points of the latter. Trace
expressions are developed for the micro-configurations using Trace Language.

Keywords
Micro-configurations, Patterns, Petri Nets, Process Mining, Process Models, Traces, Trace Language.

1. Introduction
A process is a progression of activities, and its exe-

cution stamps footprints in form of series of triggered
transitions as the process progresses. These footprint
trails are known as traces, which together form a trace
set corresponding to the set of traces generated out of
multiple executions of the process. Process Mining algo-
rithms routinely use trace sets to recover or build process
models from them. We observed that there are certain in-
herent patterns among processes which we call as micro-
configurations, that get over-passed by process mining
algorithms and stand as fracture points for them. At this
stretch, realizing the need of a language that can repre-
sent trace sets compactly, help in automating implemen-
tations and serve as basis for refinements and improve-
ments in mining algorithms, we propose a compact novel
trace language. It serves the purpose of trace set genera-
tor when used for representing micro-configurations.

The paper first expounds the operators of the Trace
Language, followed by a discussion of results enlist-
ing Trace Language expressions for thirteen micro-
configurations which were tested over five process min-
ing algorithms in the Python (pm4py) framework [1].
The algorithms tested are Alpha Mining [2], Alpha(+)
miner [3], Heuristics Miner [4], Inductive Miner [5] and
Directly-Follows Graphs (DFG) [6].
2. Trace Language Operators
Chronicle Ordering (→), Alternative (⋊), Concur-
rent (‖) These are basic operations of sequence, choice
and parallel composition. For example, 𝑎 → 𝑏 → 𝑐
represents trace set with single trace {abc}, 𝑎⋊ 𝑝𝑞𝑟 rep-
resents trace set with two possible traces {a, pqr}, and

International Workshop on Petri Nets and Software Engineering 2022,
PNSE’22
$ karnika@cse.iitb.ac.in (K. Shivhare); rkj@cse.iitb.ac.in
(R. K. Joshi)
� https://www.cse.iitb.ac.in/~karnika/ (K. Shivhare);
https://www.cse.iitb.ac.in/~rkj/ (R. K. Joshi)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

𝑎 ‖ 𝑏 represents trace set with two possible traces {ab, ba}
and 𝑎𝑏 ‖ 𝑝𝑞 represents trace set {abpq, apbq, apqb, pqab,
pabq, paqb}. In the operators below, the operands can be
individual transitions or composites defined by chronicle
orderings. Chronicle Ordering is the default operator if
there is no operator specified, as in trace abcd, which
represents 𝑎 → 𝑏 → 𝑐 → 𝑑.
Swapper (∦) It operates on chronicle orderings as
operands, treating them as atomic (indivisible) substrings.
It concatenates them in both permutations to represent
two possible traces. For example, 𝑎 ∦ 𝑏 represents trace
set {ab, ba} and 𝑎𝑏𝑐 ∦ 𝑝𝑞𝑟 represents trace set {abcpqr,
pqrabc}. The operator is commutative but not associative.
Bowtie operator (◁▷) This operator represents a gener-
ator of two particularly fashioned traces that are struc-
tured as ordered and pairwise concatenations of tran-
sition sequences sandwiching the common transition
sequence. The common transition sequence is written
as superscript on the operator symbol. For example,
< 𝑎, 𝑏 >◁▷𝑐< 𝑑, 𝑒 > produces two traces {acd, bce}.
The operator is neither commutative nor associative.
m-Subsequence Operator (S𝑚) This operator repre-
sents all valid subsequences of length m for the given
unary operand that represents a sequence of chronicle
orderings. The subsequences are valid if they are in grow-
ing sequence of chronicles. For example, S2 < 𝑥𝑦𝑧 >
represents traces {xy, xz, yz}. With m as 1, the operator
functions as a shredder that creates all traces of length 1.
For example, S1 < 𝑥𝑦𝑧 > represents traces {x, y, z}.
any-Subsequence Operator (S𝑎𝑛𝑦) This unary opera-
tor represents all subsequences that are in growing se-
quence of chronicle orderings of the operand. For exam-
ple, S𝑎𝑛𝑦 < 𝑥𝑦 > represents trace set { x, y, xy}. There
are no empty or null subsequences.
Floating Operator (F) It represents insertion of an indi-
visible floating operand as prefixed, in-fixed or suffixed
subsequence into the divisible host (i.e. base) operand
provided as superscript in the operator symbol. For exam-
ple, < 𝑎𝑏 >F<𝑐> forms traces cab, acb and abc. Similarly,

mailto:karnika@cse.iitb.ac.in
mailto:rkj@cse.iitb.ac.in
https://www.cse.iitb.ac.in/~karnika/
https://www.cse.iitb.ac.in/~rkj/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: Micro-configurations

Table 1
Sr. No. Microconfigurations A A+ H I D Trace Expressions

1 Ticketed Service ✗ ✗ ✗ ✓ ✓ 𝑎 → 𝑋 → 𝑑 where, 𝑋 = (𝜑⋊ 𝑏⋊ 𝑐) → 𝑋

2 Asynchronous Service Loop ✗ ✗ ✗ ✓ ✗ 𝑎 → (𝑋 ‖ 𝑐) where, 𝑋 = (𝑏 → 𝑋)⋊ 𝜖

3 Critical Section ✗ ✗ ✗ ✗ ✗ 𝑎𝑏 ∦ 𝑐𝑑

4 Concurrent Branching ✗ ✓ ✗ ✓ ✗ < 𝑎𝑏 > 𝐹<𝑐>

5 Early Completion Option ✗ ✗ ✗ ✗ ✗ 𝑎 → (< 𝑐, 𝜑 >◁▷𝑏< 𝜑, 𝑑 >)

6 Bowtie ✗ ✗ ✗ ✗ ✗ < 𝑎, 𝑏 >◁▷𝑐< 𝑑, 𝑒 >

7 Seniority ✗ ✗ ✓ ✗ ✗ 𝑆𝑎𝑛𝑦 < 𝑎 → 𝑏 >

8 Initial Bypass ✗ ✗ ✓ ✓ ✗ D𝑎(𝑎𝑏𝑐)

9 Intertwined Vanilla Bypass ✗ ✗ ✗ ✗ ✓ D<𝑐,𝑏>(𝑎𝑏𝑐𝑑𝑒)

10 Intertwined Active Bypass ✓ ✓ ✓ ✗ ✓ B<𝑐𝑑/𝑔,𝑏𝑐/𝑓>(𝑎𝑏𝑐𝑑𝑒)

11 Intertwined Long Bypass ✗ ✗ ✓ ✗ ✓ D<𝑐𝑑,𝑏𝑐>(𝑎𝑏𝑐𝑑𝑒)

12 Ordered Subsequences ✗ ✗ ✗ ✗ ✗ 𝑆2 < 𝑎𝑏𝑐 >

13 Crossover ✗ ✗ ✓ ✗ ✓ B<𝑝𝑞/𝑎>(𝑝𝑞𝑟𝑠) ⋊B<𝑎𝑏/𝑝>(𝑎𝑏𝑐𝑑)

< 𝑎𝑏 >F<𝑐𝑑> creates {cdab, acdb, abcd}. This does not
include any trace involving d before 𝑐 or 𝑏 before 𝑎 since
the floating operand is indivisible. The operator is neither
commutative nor associative.
Substring Bypass Operator (B) This ternary opera-
tor operates on one host operand and a bypass pairing,
which is a pair of chronicle orderings (substrings). In
host trace, an occurrence of pair’s former substring is
replaced to generate another trace. Substring bypass op-
erator generates host trace and also a bypass trace formed
by replacement. For example, B 𝑥/𝑎 < 𝑥𝑦𝑧 > represents
{ayz, xyz}. A compact notation for bulk bypass results is
B 𝑥/𝑎,𝑦/𝑏 < 𝑥𝑦𝑧 > to represent {xyz, ayz, xbz}.
Substring Drop Operator (D) A special case of Sub-
string Bypass Operator, it bypasses substring in host
operand with an empty substring, i.e., it drops the speci-
fied substring from the host to generate a new trace. For
example, D𝑝 < 𝑝𝑞𝑟𝑠 > constructs trace set {pqrs, qrs}
and D𝑝,𝑞𝑟 < 𝑝𝑞𝑟𝑠 > represents trace set {pqrs, qrs, ps}.
3. Results Table 1 shows trace expressions for mi-

croconfigurations (elementary nets in Fig. 1), and suc-
cess/failures of Alpha (A), Alpha+ (A+), Heuristics (H),
Inductive (I) and DFG (D) algorithms in Pm4Py[1] library.

References
[1] A. Berti, S. J. van Zelst, W. van der Aalst, Process min-

ing for python (pm4py): Bridging the gap between
process- and data science, 2019.

[2] W. Aalst, A. Weijters, L. Maruster, Workflow mining:
Discovering process models from event logs, IEEE
Trans. Knowledge and Data Engineering (2004).

[3] A. Weijters, Process mining: Extending the alpha-
algorithm to mine short loops (2004).

[4] A. Weijters, W. Aalst, A. A. K. Medeiros, Process min-
ing with the HeuristicsMiner algorithm, Technische
Universiteit Eindhoven, 2006.

[5] S. Leemans, D. Fahland, W. Aalst, Discovering block-
structured process models from event logs - a con-
structive approach, in: Int. Conf. on Application and
Theory of PN and Concurrency, Springer, 2013.

[6] W. Aalst, Process discovery from event data: Relating
models and logs through abstractions, 2018.


