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Abstract 
The modification of the algorithm of the lexical compression LZ77 for increasing the 

efficiency of the progressive hierarchical compression with the use of additional search of 

identical sequences of the nearest pixels that have been processed before is offered. Variants 

of rejection of inefficient substitutions while forming such a schedule are listed. The results 

of using the suggested algorithm and variants of rejection of the substitutions for 

compression of the images of ACT set are demonstrated. It is shown, for example, the 

elimination of overlays of substitutions among the nearest adjacent pixels allows to improve 

the compression. 
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1. Introduction 

Today, due to the rapid development of communication technologies and increasing information 

needs of society, the problem of data compression is still relevant. After all, data compression allows 

to increase the speed of information exchange over the network and decrease the use of disk space 

proportionally [1]. It is well known that data compression is possible by reducing the redundancies. 

The more types of redundancies the algorithm detects and reduces, the more efficient the compression 

is. To reduce the level of cross-element redundancy in image file formats and archiver vocabulary 

data compression algorithms because they provide the fastest decoding [2, с. 82]. Therefore, 

increasing the efficiency of dictionary algorithms in general and the most popular among them is 

LZ77 algorithm [3] in particular is an urgent task nowadays. 

2. Related works 

The Deflate dictionary compression format was developed by Phil Katz in 1993 for the second 

version of the PKZIP archive and formalized in RFC 1951 [4] in 1996. Compression in this format is 

performed by the context-sensitive algorithm LZH [2, p. 90-91], which is a variant of the LZ77 

algorithm, and the context-independent Huffman algorithm [5]. Today, this format is successfully 

used not only in many ZIP archives, but also in the popular graphic format PNG, which is actually the 

standard for saving images without losses. In addition, the Deflate format does not require the 

purchase of licenses for the use in software application [2, p. 95]. Therefore in this article we will 
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propose modifications of the LZ77 algorithm and Deflate format for progressive hierarchical lossless 

image compression. 

3. Application of the LZ77 algorithm for sequential lossless image 
compression 

The dictionary algorithm eliminates redundancy between the same data fragments, keeping 

references to the same data when duplicates are detected. Describing dictionary algorithms, a fixed 

number of previously encoded indivisible elements (literals) of the input stream is called a dictionary, 

and subsequent uncoded – a buffer. Totality dictionary with encoded literals and buffer with uncoded 

are also called sliding windows, because they are constantly moving synchronously on the elements of 

the stream. 

Algorithm LZ77 [3] (in the context of the dictionary compression format Deflate [4]) is based on 

the replacement in the encoding process in the output stream of the sequence of consecutive literals of 

the buffer with reference to a similar sequence of vocabulary literals in the form of a pair of numbers 

<length, offset from the end of the dictionary>. In the absence of a similar sequence of literals in the 

dictionary longer than two literals, the first literal buffer is transferred to the output stream without 

changes. After that, the encoded literals are transferred from the beginning of the buffer to the end of 

the dictionary and encoding continues similarly until the end of the literals of the input stream. The 

same sequence may extend beyond the dictionary to the buffer area, but must begin in the dictionary. 

It is clear that the more and longer replacements <length, offset> can be found in the encoding process 

– the better the compression ratio will be. 

When decoding the codes of the LZ77 algorithm, individual literals are copied to the output stream 

without changes. Pairs w <length, offsets> are decoded by sequentially copying from the end of the 

output stream at the specified offset to the end of the output stream the required number of literals. 

Naturally, the LZ77 code decoding algorithm must distinguish between individual literals and 

pairs <length, offset>. In the Deflate format for this purpose, the substitution lengths and individual 

literals of the LZ77 algorithm are coded together by numbers within [0; 285] (as in the LZH algorithm 

[2, pp. 90-91]). The numbers from the range [0; 255] correspond to the codes of individual literals, 

256 indicates the end of the block, and numbers in the range [257; 285] indicate the basic values of 

lengths. After the base values of the lengths there is an additional number of bits (up to five) 

determined by the format, which together with the base value unambiguously determines the length of 

the replacement [2, p. 98]. The offset is saved immediately after the corresponding replacement length 

in the same way - in the form of a base value and additional bits (up to 13). The base value of the 

offset is within [0; 29] [2, p. 99]. To eliminate code redundancy, the elements of the distributions of 

literals/base values of lengths and base values of offsets are encoded by Huffman codes (hereinafter 

HUFF) [5]. For example, the same sequence of 20 components at the beginning of the buffer and also 

contained in the dictionary of offset 24 components in Deflate format is encoded by the HUFF code 

of the base value 269 of the literal / substitution length distribution and two additional substitution 

length bits and the HUFF code of the base value 8 offset distribution and three additional offset bits. It 

is clear that longer substitutions occur less often than shorter ones, just as larger offsets occur less 

often than smaller ones, so the technology of base values and additional bits actually groups elements 

with lower probabilities and thus speeds up their HUFF code. In the Deflate format, the maximum 

value of the length of the encoded sequence can reach 258, the offset – 32768, and to encode 

literals/base values of lengths and base values of offsets, different HUFF codes are used. 

Consider the example of using the LZ77 algorithm for sequential lossless image compression, 

which is most commonly used today. Most images are now stored in the RGB color model with an 8-

bit sampling accuracy. That is, the color of each pixel is set by three bytes, which consistently contain 

the brightness of its red, green and blue components. The sequence of sequentially bypassing the 

brightness of the pixel components in this color model is schematically shown in Figure 1. 

 



 

Figure 1: The brightness of the pixel components of the upper left corner of the conditional RGB 
image and the sequence of their sequential traversal (indicated by a solid arrow) 

 

For example, when sequentially traversing the brightness of the components of the first four pixels 

with Figure 1 form a flow 3, 4, 6, 3, 4, 6, 3, 2, 6, 3, 4, 4. This stream in the LZ77 encoded form will 

be written as 3, 4, 6, <4, 3>, 2, <3, 6>, 4. The step-by-step results of the LZ77 algorithm before 

adjusting the dictionary and buffer for this stream are shown in Table 1. 

Table 1 
Step-by-step flow compression results 3, 4, 6, 3, 4, 6, 3, 2, 6, 3, 4, 4 according to the algorithm LZ77 

№ 
step 

Sliding window (input stream) 
Matching 
sequence 

Encoded data 
(output stream) 

vocabulary buffer 
<length, 
offset> 

element 

1.  - 3, 4, 6, 3, 4, 6, 3, 2, 6, 3, 4, 4 - - 3 

2.  3 4, 6, 3, 4, 6, 3, 2, 6, 3, 4, 4 - - 4 

3.  3, 4 6, 3, 4, 6, 3, 2, 6, 3, 4, 4 - - 6 

4.  3, 4, 6 3, 4, 6, 3, 2, 6, 3, 4, 4 3, 4, 6, 3 <4, 3> - 

5.  3, 4, 6, 3, 4, 6, 3 2, 6, 3, 4, 4 - - 2 

6.  3, 4, 6, 3, 4, 6, 3, 2 6, 3, 4, 4 6, 3, 4 <3, 6> - 

7.  3, 4, 6, 3, 4, 6, 3, 2, 6, 3, 4 4 - - 4 

8.  3, 4, 6, 3, 4, 6, 3, 2, 6, 3, 4, 4  - - - 

 

According to the LZ77 algorithm, matching sequences of maximum length are searched in the 

dictionary from the\ end from right to left, because the same fragments of data are often found nearby. 

As a result, smaller offsets in the output stream occur more often than larger ones, and therefore are 

encoded in the Deflate dictionary compression format [4] with fewer bits. 

4. The effect of progressive hierarchical image compression without losses 
on the efficiency of the LZ77 algorithm 

We propose to use hierarchical bypass pixels in graphic formats of lossless image compression 

instead of sequential [6; 7]. On the one hand, translational hierarchical image compression allows to 

speed up decoding when the output area is many times smaller than the image size, and on the other 

hand to take into account the value of previously processed elements from four, not just two different 

sides. That is why to achieve the goal of the study we have developed an effective scheme of pixel 

bypass and appropriate predictors [7]. In particular, for progressive hierarchical traversal, we propose 

a scheme in which the first layer of pixels of the image is processed sequentially, starting with the 

first in the upper left corner, in rows from top to bottom, and in each row – from left to right in steps 

kh 21  , where k is determined from the condition 
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height – number of lines, width – the number of image pixel columns (Figure 2a). This step provides 

processing on the first layer of at least 16 pixels on each of the axes (as in the icons), if the image is 

smaller. 



 

    
 a) b) c) 

Figure 2: The order of pixel traversal in the process of progressive hierarchical processing: a) pixels 
of the first layer, b) pixels of the first pass of the next layer, c) pixels of the second pass of the next 
layer 

 

In the following layers ( 1,2  kl ) intermediate pixels of the image are processed in two passes: the 

first is sequentially processed those that are contained at the intersection of diagonals of squares with 

vertices in adjacent pixels of the previous layers with a step lk

l
h  22  both in rows and in columns 

(see Figure 2b), and on the second raw pixels successively pass between adjacent pixels of previous 

layers and pixels of the first pass with the same step on columns and with twice reduced - on lines 

(see Figure 2c). On Figure 2 the symbol F indicates the pixels of the first layer, symbol P – pixels of 

the previous layers, number 1 –pixels of the first pass of the next layer, number 2 – pixels of the 

second pass of the next layer. Pixels that have been processed before and therefore are not processed 

in the next pass of the layer are highlighted in italics. 

Sequentially placed data of all passes form an input stream for encoding by the LZ77 algorithm. 

The data of the next layer increases the number of processed pixels by about 4 times. Therefore, it is 

possible to stop the decoding process using this bypass scheme after filling the output area, without 

processing the codes to the end. However, the proposed sequence of the image pixel traversal allows 

not only to speed up decoding when the size of the output area is much smaller than the image size, 

but also to use hierarchical predictors to predict the value of each element of the next pixel [7]. 

On the other hand, bypassing pixels of the image in several passes increases the compression ratios 

of the LZ77 algorithm relative to sequential traversal, because in the process of progressive traversal 

for unencoded brightness of each pixel of the buffer corresponding brightness of adjacent pixels, 

which are encoded by a significant number of bits. In particular, on the first layer pixels are processed 

with a step kh 21   (see Figure 2a), therefore, the brightness of adjacent pixels will not be included in 

the dictionary at all. The existence of the large identical fragments in the image, removed at this step, 

is questionable, so the first layer of the LZ77 algorithm is inefficient. With each subsequent layer after 

the second pixel traversal step is halved and therefore the probability of the same sequences in the 

buffer and dictionary increases, but for the next pixel buffer brightness adjacent pixels images will 

either be processed on subsequent layers and therefore not included in the dictionary or already 

processed on the previous layers or passages, and therefore have large offsets in the dictionary. 

5. Modification of the LZ77 algorithm for progressive hierarchical 
compression of images without losses  

To increase the efficiency of the LZ77 algorithm in the process of progressive hierarchical 

traversal on all layers, starting from the second, we will search for the same sequences for buffer 

elements not only in the dictionary, but also starting from the nearest previously processed pixels 

with the next layer. Because among the previously processed pixels is another pixel X has the 

highest level of correlation with the nearest among them, the smallest 6 offsets (with codes from 1 to 



6) will be fixed on the nearest previously processed pixels (Figure 3), and to ensure the uniqueness of 

the decoding offset codes in the dictionary increase by 6. 

 

a) 

 

b) 

Figure 3: Offset codes to the brightness of adjacent previously processed pixels on the layers, 
starting with the second: a) for the first pass; b) for the second pass 

 

In the first passes, the four closest contiguous previously processed pixels are removed diagonally 

(see Figure 3а). These are pixels from the previous layers (see Figure 2b) and therefore they have 

large offsets in the dictionary, and the same sequences in the image that start with them can generally 

be scattered throughout the dictionary. The fifth and sixth offsets for the first pass encode the nearest 

processed pixels of the same pass horizontally and vertically, respectively, but in the dictionary the 

offset of the nearest vertical pixels is increased by the number of pixels in the pass line. 

In the second passages, the four nearest contiguous pixels are spaced horizontally and vertically 

(see Figure 3b). These are pixels from previous layers or passes (see Figure 2c). They are located 

closer to the next pixel than in the first pass, and therefore they start more identical sequences. 

Searching for the same sequences, starting with the nearest previously processed pixels of the 

previous layers, allows you to find matching sequences that are generally scattered on different layers 

in the dictionary and therefore are encoded on average by a larger number of bits. 

The fifth and sixth offsets for the second pass are diagonally spaced and encode the pixels of the 

same pass from the previous line, but they have larger offsets in the dictionary. Symmetrical pixels 

relative to pixel X for offsets 5 and 6 are not encoded because they have not yet been processed in the 

next pass. 

Most importantly, finding the same sequences from the nearest previously processed pixels 

reduces the compression ratio (hereinafter CR) on the last layer, because these pixels are contained in 

the image next to the next pixels of the X buffer and have the highest level of correlation with them. 

For example, during the first pass of the last layer for the brightness of the pixel components of the 

image from Figure 1, the same sequence among the nearest pixels (Figure 4) will be found at offset 3 

(according to the codes of Figure 3a). In the dictionary, this same sequence is generally scattered in 

different places. 

 

 
Figure 4: The same sequence of 6 components at offset 3 (shaded vertically) for the brightness of 
the pixels of the first pass of the last layer (shaded horizontally) conditional RGB-image 
 

The pixels in this pass are processed with step 2 both in the image and in the same sequence. The total 

number of matching components in Fig. 4 is 6. Adjacent pixels to the left of the shaded ones are also 

the same, but in the process of progressive hierarchical compression they bypass the previous layers, 



and therefore are not included in this replacement, although during a sequential traversal they would 

be included in one 12-component replacement (on Fig. 1 it is indicated by dotted arrows). 

Therefore, additional search of identical sequences, starting from the nearest previously processed 

pixels, either finds such sequences that are generally scattered in the dictionary and thus increases the 

probability of finding these sequences, or uses smaller offsets than when searching only in the 

dictionary, and therefore reduces CR images. 

6. Rejection of the inefficient substitutions in the process of forming 
schedule of the modified algorithm LZ77 

As it was mentioned above, the modified schedule of the LZ77 algorithm should be formed in two 

passes: the first to look for replacements among the nearest previously processed pixels, and the 

second to find replacements in the dictionary for those pixel’s components that are not replaced by the 

first pass. We will consider the algorithm for rejection of inefficient generated substitutions of the 

modified LZ77 schedule in [8]. In the same section, we will substantiate the options for refusing or 

extending replacements in the process of forming a modified LZ77 schedule, which predictably 

increase the length of the code. 

6.1. Analysis of increments of additional bits of the offset codes 

Substitutions among the nearest previously processed pixels (offset from 1 to 6) in addition to the 

context-independent code of the base value are encoded with a maximum of one additional bit [4]. 

But dictionary substitutions have larger offsets and their code can contain up to thirteen additional bits 

[2, с. 99]. Longer identical sequences are searched in the dictionary from right to left, so longer 

identical sequences for buffer literals have larger offsets and, as a result, are encoded with fewer 

additional bits. 

On the other hand, the entropy of the pixel components after the application of combinations of 

hierarchical predictors for our discrete-tone images including ACT [9] is on average 2.02 bpb, for 

photorealistic – 4.54 bpb [7], but as it is impossible to determine the image type, we predict the value 

of entropy on average at 4 bpb. Therefore, we will assume that lossless image compression by a 

context-independent algorithm after using these combinations of predictors provides data compression 

by an average of 50 %. Therefore, in the process of forming a modified schedule of the LZ77 

algorithm, it is likely that a longer identical sequence in the dictionary of 1, 2 or 3 literals, which 

without the LZ77 algorithm would be encoded on average in 4, 8, or 12 bits, respectively, will 

increase additional bits offset codes by 13. Thus, such an extension of the replacement will be 

impractical, as it will increase the length of the code. It is not a good idea to rely only on the 

algorithm of rejection of inefficient generated substitutions of the modified schedule LZ77 [8] the 

previous replacement could be effective (encoded with fewer bits than the literals it replaces), and the 

current extended - inefficient. The algorithm [8] will reject this extended replacement and return all 

replaced literals, but will not return the previous effective replacement. Therefore, inefficient 

replacements should be discarded both during and after the formation of each Deflate block. The 

fragment of the subroutine in the C++ language to reject ineffective substitutions based on the 

analysis of increments of additional bits of the offset codes may be as follows: 

if (requiredReplace // if the replacement is still considered to be effective 
    && bestlength>0 // and there is a previous replacement (the current extends the previous one) 
    && bestPos-current->index+delta>180 // and the distance between the previous and 
    // current replacements from 60 pixels (4 additional offset bits possible) 
    && countlength-bestlength<=3 // extensions no more than 3 literals 
    && currentPosImage-bestPos<=3054) // 3054/3+plusOffset=1024 – 
    // the previous offset had up to 8 additional bits 
 {deltaReplace=ceil(log2((currentPosImage-current->index+delta)/3.0+ 
      plusOffset))-2; // number of additional bits of the current extended replacement 
  // to calculate the increments of additional bits of the offset codes 



  // subtract the number of additional bits of the previous replacement 
  if (bestPos!=currentPosImage) // the previous replacement was also in the dictionary 
   deltaReplace-=ceil(log2((currentPosImage-bestPos)/3.0+plusOffset))-2; 
  else // the previous replacement was based on the nearest previously processed pixels 
   if (bestoffset>4) deltaReplace--; // additional offset bits 5 and 6 
  lenPlusLiteral=4*(countlength-bestlength); // predicted code length extension replacement 
  // (increase in length) without using the LZ77 algorithm 
  if (lenPlusLiteral<deltaReplace) // if the code length of the literals is less 
  // increment of additional bits of the offset code 
   requiredReplace = false; } // the current replacement extension is ineffective 

6.2. Elimination of overlays of dictionary replacements with replacements 
among the nearest previously processed pixels 

In the process of forming a modified schedule of the LZ77 algorithm, it may happen that the 

replacement of the dictionary on the second pass will overlap with the replacement among the nearest 

previously processed pixels of the first pass. This will not only reduce the replacement of the first 

pass, but may eliminate it altogether if it is shorter than three literals. Dictionary substitutions have 

more substitutions and not fewer extra bits of code than the nearest processed pixel substitutions, so 

this overlay can increase code length and be ineffective. Therefore, each dictionary overlay on the 

next pixel replacement should be eliminated by reducing the length of the dictionary override. 

Therefore, each overlay of the dictionary replacement on the part of the replacement of the next pixels 

should be eliminated by reducing the length of the dictionary replacement. In addition, for a read 

replacement for previously processed pixels, it is not even advisable to look for an extended 

replacement for the dictionary, if it is followed by a replacement for previously processed pixels. 

In addition, there are situations when the dictionary replacement completely absorbs the effective 

replacement of the nearest previously processed pixels and several adjacent literals (Figure 5), but is 

rejected by the analysis of the generated Deflate-block algorithm in [8]. 

 

 
Figure 5: Example of absorption by substitution according to the dictionary of effective substitution 
by the nearest previously processed pixels 

 

Then the compressed data encodes literals that correspond to a dictionary replacement, rather than an 

effective replacement for the nearest previously processed pixels and related literals. Thus, it 

increases the length of the code. Therefore, the dictionary replacement, which may be ineffective after 

the formation of the Deflate-block (in our implementation of the compressor - shorter than 9 literals) 

and contains replacements for the nearest previously processed pixels, it is also advisable to reduce 

the separation of first pass replacements. We separated the substitutions by the nearest processed 

pixels, if they were placed at the beginning or end (see Figure 5) dictionary replacements. If the 

replacement of the first pass was located in the middle of the replacement of the second pass, we did 

not reduce the replacement in the dictionary, because it covers several unencoded literals in the first 

pass to the left and right of the replacement of the next processed pixels. 

To form the schedule of the modified LZ77 algorithm, we use an additional byte array 

offsetAdjacentPixel, in which for each literal (brightness of the components of each pixel) save the 

offset to the next identical previously processed pixels (1 to 6) or 0 if no pixels. This array is formed 

Replacement on the next processed pixels 

Replacement according to the dictionary 

... 3 4 6 8 ... 

 



during the first pass of this algorithm on the principle of «greedy» decomposition, because 

compression on the nearest processed pixels is often more effective than compression on the 

dictionary. Using the array offsetAdjacentPixel allows in the second pass of the modified algorithm 

LZ77 to eliminate the overlap of replacements in the dictionary for replacements on the nearest 

previously processed pixels, as described above. The fragment of the program in C++ to eliminate 

such overlays can be as the following: 

// check for two adjacent replacements on the next pixels 
if (offsetAdjacentPixel[currentPozImage]!=0) // there is a replacement for the next pixels 
   {readReplaceImage(lenAdjacent, offsetAdjacent); 
    bestlength=lenAdjacent; 
    bestoffset=offsetAdjacent; 
    // if after the current replacement there is a replacement for the next processed pixels 
    if (currentPosImage+bestlength < countByteImage && 
        offsetAdjacentPixel[currentPosImage+bestlength]!=0) 
       return; }} // then we are not looking for an extended replacement in the dictionary 

// eliminate the overlap on the replacement part by adjacent pixels 
if (currentPosImage+countlength<countByteImage && 
    offsetAdjacentPixel[currentPosImage+countlength-1]!=0) 
 {// if the last literal replacement is in the dictionary to be replaced by the next pixels 
  while (countlength>bestlength && // while the current replacement is longer than the 
            // previous one and the last literal is to be replaced by the next pixels 
            offsetAdjacentPixel[currentPosImage+countlength-1]== 
            offsetAdjacentPixel[currentPosImage+countlength]) 
   countlength--; // reduce the replacement in the dictionary 
   if (countlength==bestlength) // if reduced to the previous replacement 
    requiredReplace=false; } // then reject the current replacement 

// look for and separate the replacement by the next pixels 
// if dictionary replacement may be ineffective (shorter than 9 literals) 
if (requiredReplace && countlength<minLenReplaceLiteral) 
 {// if at the beginning of the dictionary replacement there is no replacement for the next pixels 
  if (offsetAdjacentPixel[currentPosImage]==0) 
   {// reject the right replacement by adjacent pixels 
    while (countlength>bestlength && 
               offsetAdjacentPixel[currentPosImage+countlength-1]!=0) countlength--; 
    if (countlength==bestlength) 
     requiredReplace=false; } // replacement expansion did not occur 
  else // if at the beginning of the dictionary replacement a replacement for the next ones  
   requiredReplace=false; } // is detected pixels, then leave the detected replacement 

6.3. Elimination of the dictionary substitutions using predicted entropy 
code lengths 

As it was noted above, the replacement of the <length, offset> of the modified LZ77 algorithm 

should be considered to be effective if it is encoded with fewer bits than the length of the literal codes 

it replaces. In this subsection we will consider an algorithm for rejection of the dictionary 

substitutions in the process of scheduling a modified LZ77 algorithm if they are ineffective to 

predicted entropy code lengths. 

Context-independent coding applied to the distribution of literals / base values of substitution 

lengths and the distribution of base values of offsets is based on the fundamental position of 

information theory, according to which to minimize the length of the sequence code each value of the 

distribution element i with the probability of occurrence ip  it is advisable to encode 
ii

pl
2

log  

bits [2, p. 17], and therefore average code length of the block element after the application of any 

context-independent algorithm, according to the formula of Shannon [10, с. 621], cannot be less than 



the entropy of the source .log
2 

i 
i i

ppH  So let's li call the length of the entropy code of the 

element i.
 
For context-independent coding of literals, substitution lengths and offsets of the modified 

LZ77 algorithm, we modified the Deflate format, using arithmetic coding (hereinafter ARIC) [2, p. 

35-43; 11] instead of HUFF coding, because the average length of the ARIC code is close to entropy 

[12, p. 76]. This made it possible to use the length of the entropy code to estimate the code length of 

each distribution element. 

Let each of the values i (brightness of an individual component or the base value of context-

sensitive code), occurs in  times in sequence length 
i

inN . According to the statistical definition of 

probability, Nnp ii / , therefore, the length of the entropy code of the element is 
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But the entropy (average code length) of literals decreases with increasing layer number [7] and 

substitution effective on the previous layer or pass may be ineffective for the current layer or pass. 

Therefore, after the first pass of the modified algorithm LZ77 on the nearest processed pixels and the 

formation of the array offsetAdjacentPixel for each layer and pixel pass of the image, we predict the 

lengths of the literal/length distribution codes to determine the effectiveness of dictionary 

substitutions during the second pass of this algorithm. The lengths of the distribution codes of the 

base values of the offset offsets in the dictionary are not predicted, because they can not be 

determined in advance. 

A subroutine for predicting the lengths of distribution codes literal/substitution lengths 

lenPrognozLLBlockFilter by formula (1) in language C++ for each pass of hierarchical processing can 

look like this: 

void generatePrognozLenLiteralBlockFilter() 
 {UBYTE4 freqLL[286]; // array for accumulation of frequencies literal/lengths 
  memset(freqLL, 0, 286*sizeof(UBYTE4)); 
  unsigned int lenPixelImage, offsetPixelImage, i; 
  // cycle on the literals of the next layer 
  for (i=currentPozImage; i<nextPozStartBlockFilter[indexBlockFilter]; i++) 
   // if the literal is not a substitute for the nearest processed pixels, 
   // then accumulate the frequency of the literal after applying the predictor 
   if (offsetAdjacentPixel[i]==0) freqLL[imageDataPredict[i]]++; 
   else // otherwise read the replacement and accumulate the frequency of its length 
    {readReplaceImage(lenPixelImage, offsetPixelImage, i); 
     freqLL[codesLength[lenPixelImage-3]]++; 
     i+=lenPixelImage-1; } // move to replace the first pass 
  memset(lenPrognozLLBlockFilter, 0, 286*sizeof(double)); 
  UBYTE4 count=0; 
  for (i=0; i<286; i++) count+=freqLL[i]; // the sum of all frequencies of the distribution elements 
  for (i=0; i<286; i++) // prediction of distribution code lengths 
   if (freqLL[i]) lenPrognozLLBlockFilter[i]=log2((double)count/freqLL[i]); // by formula (1) 
   else lenPrognozLLBlockFilter[i]=16; // maximum length 
  for (i=257; i<286; i++) // add additional bits to the replacement lengths to the format Deflate 
   lenPrognozLLBlockFilter[i]+=extrasLength[i-PngFirstLengthCode]; } 

Then the code snippet to check the effectiveness of the next replacement using the predicted code 

lengths of literals/substitution lengths can be as follows: 

UBYTE2 lenNDistance=ceil(log2((currentPosImage-current->index+delta)/3.0+ 
              plusOffset))+3; // length of the offset code of the new replacement 
deltaReplace=lenPrognozLLBlockFilter[codesLength[countlength-3]]+ 
                       lenNDistance; // predicted length of the new replacement code 
if (bestlength>0) // was a previous replacement – subtract the length of its code 
 {// calculate the increase in the length of the replacement 
  deltaReplace-=lenPrognozLLBlockFilter[codesLength[bestlength-3]]; 



  // reduce by the length of the offset code of the previous replacement 
  if (bestPos!=currentPosImage) // the previous replacement was in the dictionary 
   deltaReplace-=ceil(log2((currentPozImage-bestPoz)/3.0+plusOffset))+3; 
  else // the previous replacement was for the next processed pixels 
   {deltaReplace-=2; 
    if (bestoffset>4) deltaReplace--; }} // additional offset bits 5 and 6 
// predict the length of the code increment of literals 
double lenPlusLiteral=0; 
bool isAdjacent=false; 
// cycle on the growth of literals 
for (int i=bestlength; i<countlength && lenPlusLiteral<deltaReplace; i++) 
 // if the next literal is replaced by the next pixels 
 if (offsetAdjacentPixel[currentPosImage+i]!=0) 
  {readReplaceImage(lenAdjacent, offsetAdjacent, currentPosImage+i); 
   isAdjacent=true; 
   if (i+lenAdjacent<=countlength) // replacement for the next pixels is included in the new 
    lenPlusLiteral+=lenPrognozLLBlockFilter[codesLength[lenSumign-3]]+2; 
   i+=lenSumign-1; } // move to replace the first pass 
 else // otherwise add the predicted length of the literal code 
  lenPlusLiteral+=lenPrognozLLBlockFilter[imageDataPredict[currentPosImage+i]]; 
if (lenPlusLiteral<deltaReplace) // if the literal code is shorter than the replacement code 
 if (!(bestlength==0 && !isAdjacent)) // first replacements that do not overlap 
  // replacements for the next pixels are also included in the LZ77 schedule for analysis 
  requiredReplace=false; 

7. The results of the use of algorithms for rejection of inefficient 
substitutions in the process of forming the schedule of the modified 
algorithm LZ77 

Let’s analyze the results of the use of different variants for rejection of inefficient substitutions in 

the process of forming the modified algorithm LZ77 (Table 2-3) on the example of progressive 

hierarchical compression of images of the ACT set. The decoding time of the files obtained as a result 

of the application of these variants is almost the same, so it was not analyzed here. 

We see that the analysis of the increments of additional bits of the offsets reduces the compression 

ratio on the ACT set for an average of 0.01 bpb due to the discrete-tone images and photorealistic 

images with the same distant fragments. However, the effect of rejecting inefficient substitutions of 

the modified schedule of the LZ77 algorithm at the time of coding is not so homogeneous: on 

average, the ACT coding set has slowed down by 1.11 %, with coding accelerated by 6.7 % for 

discrete tones and has slow from 1.6 % to 9.7 %. 

 

Table 2 
ACT image compression ratios after the application of various options for discarding inefficient 
substitutions in the process of forming the schedule of the modified algorithm LZ77, bpb 

Variants of rejection of inefficient substitutions 
№ of the file Average 

CR 1 2 3 4 5 6 7 8 

Without rejection of inefficient substitutions 1.36 0.65 4.65 3.90 4.16 5.20 0.67 4.36 3.12 

Analysis of increments of additional bits of offset 

codes 

1.36 0.64 4.65 3.89 4.16 5.18 0.66 4.35 3.11 

Elimination of overlays for replacements on the 

nearest processed pixels 

1.34 0.59 4.65 3.82 4.15 5.17 0.62 4.33 3.08 

Elimination of overlays and the analysis of 

devices of additional offset bits 

1.34 0.59 4.65 3.82 4.15 5.16 0.62 4.33 3.08 

With calculation of the predicted entropy code 

lengths 

1.34 0.57 4.65 3.82 4.15 5.16 0.60 4.33 3.08 



Table 3 
The time of encoding the images of the ACT set with the use of different variants of rejecting of 
inefficient substitutions in the process of forming the schedule of the modified algorithm LZ77, с 

Variants of rejection of inefficient 

substitutions 

№ of the file Average 

time 1 2 3 4 5 6 7 8 

Without rejection of inefficient substitutions 2.13 3.27 1.03 1.85 1.09 1.86 1.34 1.84 1.80 

Elimination of overlays and / or analysis of 

increments of additional bits 

2.19 3.05 1.06 1.93 1.16 2.04 1.25 1.87 1.82 

With calculation of the predicted entropy code 

lengths 

2.26 3.85 1.09 2.01 1.18 2.08 1.61 1.87 1.99 

 

This is due to the previous rejection of inefficient substitutions, which allows the discrete-toned 

images to leave more effective replacements and increases the number of short substitutions that are 

being found for the next pixels of hierarchical bypass. 

The best compression rates for the ACT set are achieved due to the elimination of overlays of 

dictionary replacements for replacements of the nearest previously processed elements: almost at the 

same time, the coding of the CR on this set has decreased by an average of 0.04 bpb. At the same 

time, the improvement of CR is observed for 88 % of the set files, but it is the most significant for 

discrete-tone images (maximum 0.06 bpb) and photorealistic images with the same distant fragments 

(maximum 0.08 bpb). 

The expected total reduction of CR from the combination of these two options for rejecting of 

inefficient replacements did not occur (penultimate line of Table 2), because many inefficient 

substitutions from the dictionary due to increments of additional bits of offset codes are superimposed 

on replacements on the next processed pixels. Therefore, throughout the ACT set, the maximum 

reduction in CR from such a combination of 0.01 bpb is observed only for the Sail.bmp. 

A significant reduction of image CR is achieved by rejecting of inefficient substitutions with the 

use of the predicted entropy code lengths: for discrete-toned images, such a reduction is 0.02 bpb (for 

example, for frymire.bmp it is 9 KB). However, the coding time of images has increased by an 

average of 9.3% (last row of Table 3) due to the calculation of predicted entropy code lengths for the 

ACT set, which is unacceptable for standard modes of storing files in graphic formats with such a 

slight reduction in CR. Therefore, the rejection of inefficient substitutions with the use of the 

predicted entropy code lengths should be used in archivers and to ensure maximum compression of 

discrete-toned images and in the standard mode of storing images in format with the implementation 

of progressive hierarchical compression should be limited with the eliminating overlays of dictionary 

substitutions for substitutions and with the analysis of increments of additional offset bits. 

8. Discussions 

Our further research found that the lengths of substitutions of the LZ77 algorithm, multiples of 

whole pixels, are much more common than the lengths of substitutions that are not multiples of them. 

And this is not surprising, because pixels of the same color are found in images much more often than 

the same pixels with equal adjacent components. Replacement lengths of up to ten components 

correspond to different base values in the literal / replacement length distribution. Therefore, 

truncating such substitutions to whole pixel lengths (3, 6, or 9 components) by increasing subsequent 

substitutions should predictably increase the probability of their occurrence and therefore reduce the 

code lengths. But such truncations reduce the size of not all encoded images, because truncating a 

sequence of short substitutions can increase their number and therefore increase the overall length of 

the code. Therefore, our current research is aimed at establishing universal rules for such cuts. 

Further, in order to additionally reduce the file size of compressed images without losses and 

speeding up the decoding in the process of progressive hierarchical compression, we plan to improve 

the algorithm for reducing the size of the formed Deflate-blocks using entropy code lengths, adapt to 

such compression other context-sensitive compression methods [13, 14] and increase the efficiency of 

symmetric and asymmetric predictors using differential color models [15]. 



9. Conclusions 

1. Reducing the size of the compressed images considered by the modified dictionary algorithm 
LZ77 in the process of progressive hierarchical traversal is achieved mainly on the last layers, because 
the pixels that are used with the next buffer pixels have on average the highest level of correlation 
relative to previous layers. 

2. It is possible to increase the efficiency of the classical LZ77 algorithm in the process of 
progressive hierarchical compression without losses by additional search for the same sequences 
starting from the nearest previously processed pixels. 

3. Vocabulary algorithms significantly reduce the CR of primarily artificial discrete-tone images, 
because such images contain many similar adjacent sequences of brightness of the pixel components. 

4. Rejection of inefficient substitutions with the use of the predicted entropy code lengths should 
be used in archivers and to ensure maximum compression of discrete-toned images, and in the 
standard mode of storing images in format with the implementation of progressive hierarchical 
compression should be limited to eliminating overlays of dictionary substitutions for replacements 
and analysis of increments of additional offset bits. 
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